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OPERATOR PARAMETERIZATIONS OF g-FRAMES

Xunxiang Guo

Abstract. In this paper, we mainly parameterize g-frames in Hilbert space in terms
of operators. Firstly, under the condition that there exists a g-orthonormal basis
we establish the one to one correspondence between different kinds of g-frames
with certain kinds of operators. Then we parameterize g-frames without the above
restriction. Finally, we consider some special g-frames, and their operator param-
eterizations are established. We also obtain some interesting results on g-bases
and g-dual frames of the transforms by applying the operator parameterizations
of g-frames.

1. INTRODUCTION

In 1946, D. Gabor [1] introduced a fundamental approach to signal decomposition
in terms of elementary signals. In 1952, Duffin and Schaeffer [2] abstracted Gabor’s
method to define frames in Hilbert space. Frame was reintroduced by Daubechies,
Grossmann, and Meyer [3] in 1986. Today, frame theory is a central tool in many
areas such as characterizing function spaces and signal analysis. We refer to [4-10] for
an introduction to frame theory and its applications.

Recently, several generalizations of frames in Hilbert spaces have been proposed,
in which g-frame is one of the most important generalizations which was proposed by
Sun in [11]. Sun has pointed out that many other generalizations are special cases
of g-frames. Let’s recall some basic conceptions on g-frames first. Let H and V be
Hilbert spaces, {Hj : j ∈ N} be a family of closed subspaces of V . B(H) denotes
the space of all linear bounded operators from H to H , B(H, Hj) denotes the space
of all linear bounded operators from H to Hj . We call {Λj ∈ B(H, Hj) : j ∈ N} a
g-frame for H with respect to {Hj : j ∈ N} if there exist two positive constants A

and B such that

A‖f‖2 ≤
∑
j∈N

‖Λjf‖2 ≤ B‖f‖2, ∀f ∈ H,(1.1)
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where A and B are called the lower and upper frame bounds, respectively(for simpli-
fication, if the spaces are clear, we will just say that {Λj : j ∈ N} is a g-frame with
frame bounds A and B in the sequel). If A = B, we call {Λj ∈ B(H, Hj) : j ∈ N}
a g-tight frame. If A = B = 1, we call {Λj ∈ B(H, Hj) : j ∈ N} a g-normalized
tight frame. If the inequality (1.1) is satisfied only on span{Λ∗

j(Hj) : j ∈ N}, then
we call {Λj ∈ B(H, Hj) : j ∈ N} a g-frame sequence with respect to {Hj : j ∈ N}.
{Λj ∈ B(H, Hj) : j ∈ N} is called g-complete with respect to {Hj} if {f : Λjf =
0, ∀j} = {0}. If {Λj ∈ B(H, Hj) : j ∈ N} is g-complete and for any finite subset
J ⊂ N and fi ∈ Hi, i ∈ J , we have

A
∑
i∈J

‖fi‖2 ≤ ‖
∑
i∈J

Λ∗
i fi‖2 ≤ B

∑
i∈J

‖fi‖2,

where A and B are called the lower and upper Riesz bounds, respectively, then we
call {Λj ∈ B(H, Hj) : j ∈ N} a g-Riesz basis for H with respect to {Hj : j ∈ N}.
It is well known that if {Λj ∈ B(H, Hj) : j ∈ N} is a g-frame with respect to
{Hj : j ∈ N}, then the operator S : H → H defined by

Sf =
∑
j∈N

Λ∗
jΛjf

is well defined and it is also an invertible bounded operator on H . S is called the
frame operator associated with {Λj ∈ B(H, Hj) : j ∈ N}. It is also well known that
{ΛjS

−1 : j ∈ N} is a g-frame for H with respect to {Hj : j ∈ N} as well. And
{ΛjS

−1 : j ∈ N} is called the canonical dual g-frame of {Λj : j ∈ N} and it is
denoted by {Λ̃j : j ∈ N}. All the g-frames {Γj : j ∈ N} which satisfy

f =
∑
j∈N

Λ∗
jΓjf, ∀f ∈ H,

are called dual g-frames of {Λj : j ∈ N}.
g-Frames in Hilbert spaces have been studied intensively, for more details see [12-

20] and the references therein. Recently, there are many mathematicians who apply
operator theory tools to do research on frame theory in Hilbert spaces, in particular,
they apply operator techniques to consider the construction of frames, which is a basic
problem in theory and applications. Many interesting and useful results are obtained,
we refer to [21-25] as references for this. In this paper, we apply the operator theory
tools to consider the similar problems on g-frame theory. In section 2, we introduce
the definitions and lemmas which are needed in the sequel. In section 3, given a g-
orthonormal basis of H , we establish the one to one correspondence between all kinds of
g-frames with certain operators. In section 4, we parameterize the g-frames in general.
In section 5, some special g-frames are considered and their operator parameterizations
are obtained.
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2. DEFINITIONS AND LEMMAS

In this section, we give the definitions and lemmas which we need in the sequel.

Definition 2.1. For each Hilbert space sequence {Hi}i∈N , we define the space
l2(⊕Hi) by

l2(⊕Hi) = {{fi}i∈N : fi ∈ Hi, i ∈ N,

+∞∑
i=1

‖fi‖2 < +∞}.

With the inner product defined by 〈{fi}, {gi}〉 =
∑+∞

i=1 〈fi, gi〉, it is easy to see that
l2(⊕Hi) is a Hilbert space.

Definition 2.2. {Λj ∈ B(H, Hj)}∞j=1 is called g-linearly independent with respect
to {Hj} if

∑∞
j=1 Λ∗

jgj = 0, then gj = 0, where gj ∈ Hj(j = 1, 2, · · ·).
Definition 2.3. {Λj ∈ B(H, Hj)}∞j=1 and {Γj ∈ B(H, Hj)}∞j=1 are called g-

biorthonormal with respect to {Hj}, if

〈Λ∗
jgj, Γ∗

i gi〉 = δj,i〈gj, gi〉, ∀j, i ∈ N, gj ∈ Hj , gi ∈ Hi.

Definition 2.4. We say {Λj ∈ B(H, Hj)}∞j=1 is a g-orthonormal basis for H with
respect to {Hj}, if it is g-biorthonormal with itself and for any f ∈ H we have

∑
j∈N

‖Λjf‖2 = ‖f‖2.(2.1)

Remark 2.5. Equation (2.1) implies that a g-orthonormal basis is a g-normalized
tight frame.

Definition 2.6. We call {Λj ∈ B(H, Hj)}∞j=1 a g-basis for H with respect to
{Hj} if for any x ∈ H there is a unique sequence {gj} with gj ∈ Hj such that

x =
∞∑

j=1

Λ∗
jgj.(2.2)

Remark 2.7. g-basis is a natural generalization of Schauder basis, for more details,
please see [20].

Definition 2.8. Suppose {Λj : j ∈ N} is a g-Riesz basis of H with respect to
{Hj : j ∈ N} and {Γj : j ∈ N} is a g-Riesz basis of Y with respect to {Hj : j ∈ N}.
If there is a homemorphism S : H → Y such that Λj = ΓjS for each j ∈ N , then we
say that {Λj : j ∈ N} and {Γj : j ∈ N} are equivalent.
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Lemma 2.9. ([5]). Suppose that T : K → H is a bounded surjective operator.
Then there exists a bounded operator (called the pseudo-inverse of T) T † : H → K
for which

TT †f = f, ∀f ∈ H.

Lemma 2.10. ([20]). If {Λj : j ∈ N} is a g-basis for H with respect to {Hj :
j ∈ N}, then {Λj : j ∈ N} is g-complete and g-linearly independent with respect to
{Hj : j ∈ N}.

Lemma 2.11. ([11]). A g-Riesz basis {Λj : j ∈ N} is an exact g-frame. Moreover,
it is g-biorthonormal with respect to its dual {Λ̃j : j ∈ N}.

Lemma 2.12. A sequence {Λj : j ∈ N} is a g-frame for H if and only if

T : {fi : i ∈ N} →
∑
i∈N

Λ∗
i fi

is a well-defined and bounded mapping from l2(⊕Hj) onto H .

Lemma 2.13. ([20]). Let Λj ∈ B(H, Hj), j ∈ N . Then the following statements
are equivalent:

(1) The sequence {Λj}j∈N is a g-Riesz basis for H with respect to {Hj}j∈N .
(2) The sequence {Λj}j∈N is a g-frame for H with respect to {Hj}j∈N and {Λj}j∈N

is g-linearly independent.
(3) The sequence {Λj}j∈N is a g-basis and a g-frame with respect to {Hj}j∈N .

Lemma 2.14. Every g-frame {Λj : j ∈ N} is g-complete.

Proof. Since {Λj : j ∈ N} is a g-frame, there exist positive constants A and B
such that

A‖f‖2 ≤
∑
j∈N

‖Λjf‖2 ≤ B‖f‖2, ∀f ∈ H.

So if Λjf = 0, ∀f ∈ H , then f = 0. It follows that {Λj : j ∈ N} is g-complete.

Lemma 2.15. ([13]). {Λj : j ∈ N} is g-complete if and only if span{Λ∗
j(Hj) :

j ∈ N} = H .

Lemma 2.16. ([11]). A sequence {Λj : j ∈ N} is a g-Riesz basis for H with
respect to {Hj : j ∈ N} if and only if there is a g-orthonormal basis {θj : j ∈ N}
for H and a bounded invertible linear operator T on H such that Λj = θjT, j ∈ N .
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Lemma 2.17. Suppose that {Λj ∈ B(H, Hj) : j ∈ N} is g-complete and T ∈
B(H). Then {ΛjT : j ∈ N} is g-complete if and only if T is injective.

Proof. ⇒: Suppose that ΛjTf = 0 for every j ∈ N . Since {Λj : j ∈ N} is
g-complete, Tf = 0. Since T is injective, f = 0. It implies that {ΛjT : j ∈ N} is
g-complete.
⇐: Suppose that Tf = 0. Then ΛjTf = 0 for every j ∈ N . Since {ΛjT : j ∈ N} is
g-complete, f = 0. It implies that T is injective.

3. CONDITIONAL OPERATOR PARAMETERIZATIONS OF g-FRAMES

In this section, we mainly parameterize the g-frames under the assumption that
there exists a g-orthonormal basis for H .

Theorem 3.1. Suppose that {θj : j ∈ N} is a g-orthonormal basis for H . Then
{Λj : j ∈ N} is a g-normalized tight frame sequence if and only if there exists a
unique partial isometry T ∈ B(H) such that Λj = θjT , ∀j ∈ N .

Proof. ⇒: Suppose that {Λj : j ∈ N} is a g-normalized tight frame sequence.
Define a linear operator T by

Tx =
∑
j∈N

θ∗j Λjx, x ∈ span{Λ∗
j(Hj) : j ∈ N},

and Tx = 0, x ∈ (span{Λ∗
j(Hj) : j ∈ N})⊥. Since for any x ∈ span{Λ∗

j(Hj) : j ∈
N}, we have

‖Tx‖2 = ‖
∑
j∈N

θ∗j Λjx‖2 =
∑
j∈N

‖Λjx‖2 = ‖x‖2,

T is isometric on span{Λ∗
j(Hj) : j ∈ N} = (KerT )⊥. So T is a partial isometry.

Since {θj : j ∈ N} is a g-orthonormal basis, we have

〈θjθ
∗
kgk, gj〉 = 〈θ∗kgk, θ

∗
j gj〉 = δj,k〈gk, gj〉 = 〈δj,kgk, gj〉, ∀j, k ∈ N, gj ∈ Hj, gk ∈ Hk.

So, for any j ∈ N and any x ∈ span{Λ∗
j(Hj) : j ∈ N}, we have

θjTx = θj

∑
k∈N

θ∗kΛkx = Λjx.

If x ∈ (span{Λ∗
j(Hj) : j ∈ N})⊥, then θjTx = 0. Since

〈Λjx, gj〉 = 〈x, Λ∗
jgj〉 = 0, ∀gj ∈ Hj, ∀x ∈ (span{Λ∗

j(Hj) : j ∈ N})⊥,
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Λjx = 0 for all x ∈ (span{Λ∗
j(Hj) : j ∈ N})⊥. It follows that

θjTx = Λjx, ∀x ∈ H,

i.e., θjT = Λj, ∀j ∈ N . If there exist partial isometries T1, T2 such that θjT1 =
θjT2 = Λj ∀j ∈ N , then T ∗

1 θ∗j = T ∗
2 θ∗j ∀j ∈ N . Hence for any j ∈ N and gj ∈ Hj ,

we have that T ∗
1 θ∗j gj = T ∗

2 θ∗j gj . But span{θ∗j (Hj)} = H , so T ∗
1 = T ∗

2 . It follows that
T1 = T2. So the partial isometry which satisfies the condition is unique.

⇐: If there exists a partial isometry T such that Λj = θjT , ∀j ∈ N , then
∑
j∈N

‖Λjf‖2 =
∑
j∈N

‖θjTf‖2 = ‖Tf‖2.

Since ‖Tf‖2 = ‖f‖2 for all f ∈ (KerT )⊥ = Range(T ∗) = span{T ∗θ∗j (Hj) : j ∈
N} = span{Λ∗

j(Hj) : j ∈ N}. So {Λj : j ∈ N} is a g-normalized tight frame
sequence.

Corollary 3.2. Suppose that {θj : j ∈ N} is a g-orthonormal basis for H . Then
{Λj : j ∈ N} is a g-normalized tight frame for H if and only if there exists a unique
isometry T ∈ B(H) such that Λj = θjT , ∀j ∈ N .

Proof. If {Λj : j ∈ N} is a g-normalized tight frame for H , then there exists
a unique partial isometry T such that Λj = θjT , ∀j ∈ N by Theorem 3.1. So it is
sufficient to show that T is an isometry. Suppose that Tf = 0. Then

0 = ‖Tf‖2 =
∑
j∈N

‖θjTf‖2 = ‖f‖2.

So f = 0. It implies that KerT = {0}. Since T is a partial isometry, T is isometric
on (KerT )⊥ = H , which means that T is an isometry. Conversely, if there is an
isometry T such that Λj = θjT ∀j ∈ N , then {Λj : j ∈ N} is a g-normalized tight
frame sequence by Theorem 3.1. So for any f ∈ span{Λ∗

j(Hj) : j ∈ N}, we have
that

‖f‖2 =
∑
j∈N

‖Λjf‖2.

To show that {Λj : j ∈ N} is a g-normalized tight frame for H , it is sufficient to show
that span{Λ∗

j(Hj) : j ∈ N} = H . Suppose that f⊥span{Λ∗
j(Hj) : j ∈ N}, then

〈f, Λ∗
jgj〉 = 〈f, T ∗θ∗j gj〉 = 〈Tf, θ∗j gj〉 = 0, ∀j ∈ N, gj ∈ Hj.

Since {θj : j ∈ N} is a g-orthonormal basis, it is a g-normalized tight frame. So
{θj : j ∈ N} is g-complete by Lemma 2.14. Hence span{θ∗j (Hj) : j ∈ N} = H
by Lemma 2.15. So Tf = 0. Since T is an isometry, f = 0. It follows that
span{Λ∗

j(Hj) : j ∈ N} = H .
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Theorem 3.3. Suppose that {θj : j ∈ N} is a g-orthonormal basis for H . Then
{Λj : j ∈ N} is a g-frame sequence for H with fame bounds a and b if and only if
there exists a unique T ∈ B(H) such that Λj = θjT , ∀j ∈ N and aP ≤ TT ∗ ≤ bP

for some orthogonal projection.

Proof. The uniqueness of T can be verified similarly as we do in Theorem 3.1.
⇒: Define a linear operator T by

Tx =
∑
j∈N

θ∗j Λjx, ∀x ∈ span{Λ∗
j(Hj) : j ∈ N},

Tx = 0, ∀x ∈ (span{Λ∗
j(Hj) : j ∈ N})⊥.

Then it is easy to verify that

θjTx = Λjx, ∀x ∈ span{Λ∗
j(Hj) : j ∈ N}, ∀j ∈ N,

θjTx = Λjx = 0, ∀x ∈ (span{Λ∗
j(Hj) : j ∈ N})⊥, ∀j ∈ N.

Let P be the orthogonal projection from H onto span{Λ∗
j(Hj) : j ∈ N}. Then we

have Tx = TPx, ∀x ∈ H . So

‖Tx‖2 = ‖TPx‖2 = ‖
∑
j∈N

θ∗j ΛjPx‖2 =
∑
j∈N

‖ΛjPx‖2.

Since

a‖Px‖2 ≤
∑
j∈N

‖ΛjPx‖2 ≤ b‖Px‖2, ∀x ∈ H,

we have that a‖Px‖2 ≤ ‖Tx‖2 ≤ b‖Px‖2, ∀x ∈ H . So aP ≤ T ∗T ≤ bP .

⇐: If there exists an operator T ∈ B(H) such that Λj = θjT, ∀j ∈ N and aP ≤
T ∗T ≤ bP for some orthogonal projection P , then

∑
j∈N

‖Λjx‖2 =
∑
j∈N

‖θjTx‖2 = ‖Tx‖2.

Since for all x ∈ PH , we have that a〈Px, x〉 ≤ 〈T ∗Tx, x〉 ≤ b〈Px, x〉, i.e., a‖x‖2 ≤
‖Tx‖2 ≤ b‖x‖2, ∀x ∈ PH , for every x ∈ PH , we have

a‖x‖2 ≤
∑
j∈N

‖Λjx‖2 ≤ b‖x‖2.
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Since aP ≤ T ∗T ≤ bP , a‖Px‖2 ≤ ‖Tx‖2 ≤ b‖Px‖2. It is easy to see that KerT =
KerP = Range(I − P ). It implies that

PH = (KerT )⊥ = T ∗(H) = T ∗span{θ∗j (Hj) : j ∈ N}
= span{T ∗θ∗j (Hj) : j ∈ N} = span{Λ∗

j(Hj) : j ∈ N}.
So {Λj : j ∈ N} is a g-frame sequence with bounds a and b.

From the arguments of the above theorem, the following result is obvious.

Corollary 3.4. Suppose that {θj : j ∈ N} is a g-orthonormal basis for H . Then
{Λj : j ∈ N} is a g-frame for H with fame bounds a and b if and only if there exists
a unique T ∈ B(H) such that Λj = θjT , ∀j ∈ N and aI ≤ TT ∗ ≤ bI .

Theorem 3.5. Let {Λj : j ∈ N} be a g-orthonormal basis for H and T ∈ B(H).
Then {ΛjT : j ∈ N} is a g-orthonormal basis if and only if T is unitary.

Proof. ⇒: Since {Λj : j ∈ N} is a g-orthonormal basis for H , we have∑
j∈N ‖ΛjTf‖2 = ‖Tf‖2, for any f ∈ H . On the other hand, {ΛjT : j ∈ N} is also

a g-orthonormal basis for H , we have
∑

j∈N ‖ΛjTf‖2 = ‖f‖2 for any f ∈ H . So
‖Tf‖2 = ‖f‖2, which implies that T is an isometry. Hence T ∗T = I . On the other
hand, for any i, j ∈ N and gi ∈ Hi, gj ∈ Hj , we have

〈TT ∗Λ∗
jgj, Λ∗

igi〉 = 〈T ∗Λ∗
jgj, T

∗Λ∗
i gi = δi,j〈gj, gi〉,

since {ΛjT : j ∈ N} is a g-orthonormal basis. And

〈Λ∗
jgj, Λ∗

igi〉 = δi,j〈gj, gi〉,
since {Λj : j ∈ N} is a g-orthonormal basis. So 〈TT ∗Λ∗

jgj, Λ∗
i gi〉 = 〈Λ∗

jgj, Λ∗
igi〉. It

implies that TT ∗Λ∗
jgj = Λ∗

jgj for any j ∈ N and gj ∈ Hj . Since {Λj : j ∈ N} is
a g-orthonormal basis, {Λj : j ∈ N} is a g-frame by the definition of g-orthonormal
basis. So {Λj : j ∈ N} is g-complete by Lemma 2.14. Hence span{Λ∗

j(Hj)} = H

by Lemma 2.15. So TT ∗ = I . Hence T is unitary.

⇐: If T is unitary and {Λj : j ∈ N} is a g-orthonormal basis, then for any i, j ∈ N
and gi ∈ Hi, gj ∈ Hj , we have

〈(ΛjT )∗gj, (ΛiT )∗gi〉 = 〈T ∗Λ∗
jgj, T

∗Λ∗
i gi〉

= 〈TT ∗Λ∗
jgj, Λ∗

igi〉 = 〈Λ∗
jgj, Λ∗

i gi〉
= δi,j〈gj, gi〉.

And for any f ∈ H , we have∑
j∈N

‖ΛjTf‖2 = ‖Tf‖2 = ‖f‖2.

Thus, {ΛjT : j ∈ N} is a g-orthonormal basis.
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Theorem 3.6. Suppose that {Λj ∈ B(H, Hj) : j ∈ N} is a g-basis and T ∈
B(H). If T is invertible, then {ΛjT

∗ : j ∈ N} and {ΛjT : j ∈ N} are g-bases for
H . Conversely, if {ΛjT

∗ : j ∈ N} and {ΛjT : j ∈ N} are g-bases for H and T has
closed range, then T is invertible.

Proof. Since T is invertible, there exists an operator T−1 ∈ B(H) such that
TT−1 = I . Since {Λj : j ∈ N} is a g-basis for H , for any f ∈ H , there exists a unique
sequence {gj : j ∈ N} such that T−1f =

∑
j∈N Λ∗

jgj . So TT−1f =
∑

j∈N TΛ∗
jgj ,

i.e., f =
∑

j∈N(ΛjT
∗)∗gj. Suppose that there is another sequence {hj : j ∈ N} such

that f =
∑

j∈N(ΛjT
∗)∗hj . Then

∑
j∈N(ΛjT

∗)∗(gj − hj) = 0, i.e.,
∑

j∈N TΛ∗
j(gj −

hj) = 0. Hence, T−1
∑

j∈N TΛ∗
j(gj − hj) = 0. So

∑
j∈N Λ∗

j(gj − hj) = 0. Since
{Λj : j ∈ N} is a g-basis, gj −hj = 0 for every j ∈ N , i.e., gj = hj for every j ∈ N .
So {ΛjT

∗ : j ∈ N} is a g-basis for H . If T is invertible, then T ∗ is also invertible.
So {ΛjT : j ∈ N} is a g-basis for H as well.

Conversely, assume {ΛjT
∗ : j ∈ N} and {ΛjT : j ∈ N} are g-bases for H

and T has close range. To prove that T is invertible, it is sufficient to prove that
KerT = {0} and Range(T ) = H . Suppose that f ∈ H and Tf = 0. Then there
exists a sequence {gj : j ∈ N} such that f =

∑
j∈N Λ∗

jgj . So Tf =
∑

j∈N TΛ∗
jgj =∑

j∈N(ΛjT
∗)∗gj . Hence

∑
j∈N(ΛjT

∗)∗gj = 0. So gj = 0, ∀j ∈ N , which implies
that f = 0. So KerT = {0}. Similarly, KerT ∗ = {0}. Since Range(T ) =
Range(T ) = (KerT ∗)⊥ = H , T is invertible.

Theorem 3.7. Let {Λj : j ∈ N} be a g-Riesz basis for H , {Λ̃j : j ∈ N} be
its dual g-Riesz basis and T ∈ B(H). Then {ΛjT : j ∈ N} is a g-Riesz basis if
and only if T is invertible. Moreover the dual g-Riesz basis of {ΛjT : j ∈ N} is
{Λ̃j(T ∗)−1 : j ∈ N}.

Proof. Since {Λj : j ∈ N} is a g-Riesz basis for H , there exists a g-orthonormal
basis {θj : j ∈ N} and an invertible operator U ∈ B(H) such that Λj = θjU, j ∈ N

by Lemma 2.16. So ΛjT = θjUT, j ∈ N . Since U is invertible, UT is invertible if
and only if T is invertible. It implies that {ΛjT : j ∈ N} is a g-Riesz basis if and
only if T is invertible by Lemma 2.16. Suppose that the frame operator associated with
{Λj : j ∈ N} and {ΛjT : j ∈ N} are S and S ′ respectively. Then Sf =

∑
j∈N Λ∗

jΛjf

and S ′f =
∑

j∈N T ∗Λ∗
jΛjTf . So S ′ = T ∗ST . Since

ΛjT (S ′)−1 = ΛjTT−1S−1(T ∗)−1 = ΛjS
−1(T ∗)−1 = Λ̃j(T ∗)−1.

Hence the dual g-Riesz basis of {ΛjT : j ∈ N} is {Λ̃j(T ∗)−1 : j ∈ N}.

4. GENERAL OPERATOR PARAMETERIZATIONS OF g-FRAMES

In this section, we mainly parameterize the g-frames in general without assuming
the existence of g-orthonormal bases. All these results are inspired by the results in
[24].
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Theorem 4.1. Let {Λj : j ∈ N} be a g-frame of H with frame bounds 0 < A < B

and T ∈ B(H). Then {ΛjT : j ∈ N} is a g-frame of H if and only if there exists a
positive constant γ such that ‖Tf‖2 ≥ γ‖f‖2.

Proof. ⇐: Since {Λj : j ∈ N} is a g-frame with bounds 0 < A < B,
∑
j∈N

‖ΛjTf‖2 ≤ B‖Tf‖2 ≤ B · ‖T‖2‖f‖2, and

∑
j∈N

‖ΛjTf‖2 ≥ A‖Tf‖2 ≥ A · γ‖f‖2.

So, {ΛjT : j ∈ N} is a g-frame of H with frame bounds Aγ and B‖T‖2.
⇒: Suppose {ΛjT : j ∈ N} is a g-frame with frame bounds a and b. Then for any
f ∈ H

a‖f‖2 ≤
∑
j∈N

‖ΛjTf‖2 ≤ B‖Tf‖2.

So ‖Tf‖2 ≥ a
B‖f‖2, for any f ∈ H . Let γ = a

B , then the proof is completed.

Similarly, we have the following results. We leave the details for the readers.

Corollary 4.2. Let M be a closed subspace of H and {Λj : j ∈ N} be a g-frame
of H . T is a bounded linear operator from H into M . Then {ΛjT

∗ : j ∈ N} is a
g-frame of M if and only if there exists a positive constant γ such that

‖T ∗f‖2 ≥ γ‖f‖2, ∀f ∈ M

Corollary 4.3. Let {Λj : j ∈ N} be a g-tight frame of H with frame bound B

and T ∈ B(H). Then {ΛjT : j ∈ N} is a g-tight frame of H with frame bound b if
and only if ‖Tf‖2 = b

B‖f‖2.

Theorem 4.4. Let M be a closed subspace of H and {Λj : j ∈ N} be a g-frame
of H with frame bounds A and B. Suppose P is the orthogonal projection from H
onto M , {Λ̃j : j ∈ N} is the canonical dual g-frame of {Λj : j ∈ N}. Then {Λ̃jP}
is a dual g-frame of {ΛjP : j ∈ N} in M . Moreover, A and B are also frame bounds
of {ΛjP : j ∈ N}.

Proof. Since P is the orthogonal projection from H onto M , we have that P

= P ∗ and ‖Pf‖2 = ‖f‖2 for any f ∈ M . It follows that {ΛjP : j ∈ N} and
{Λ̃jP : j ∈ N} are g-frames of M by Theorem 4.1. Since for every f ∈ M , we have

f =
∑
j∈N

Λ̃∗
jΛjf =

∑
j∈N

Λ̃∗
jΛjPf.
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Since f = Pf for every f ∈ M , we have

f = Pf = P
∑
j∈N

Λ̃∗
jΛjPf

=
∑
j∈N

P Λ̃∗
jΛjPf =

∑
j∈N

(Λ̃jP )∗(ΛjP )f.

So {Λ̃jP : j ∈ N} is a dual g-frame of {ΛjP : j ∈ N} in M . Since for any f ∈ M

∑
j∈N

‖ΛjPf‖2 =
∑
j∈N

‖Λjf‖2,

A and B are also frame bounds of {ΛjP : j ∈ N}.

5. OPERATOR PARAMETERIZATIONS OF g-FRAMES WITH SPECIAL STRUCTURES

In this section, some special g-frames are parameterized in terms of operators.
Given a Hilbert space K, we define sequence space l2(K) and l∞(K) by

l2(K) = {{fi}|fi ∈ K,
∑
i∈N

‖fi‖2 < ∞},

with the inner product defined by 〈{fi}, {gi}〉 =
∑

i∈N〈fi, gi〉. It is easy to see that
l2(K) is a Hilbert space.

l∞(K) = {{fi}|fi ∈ K, and ∃ C > 0 such that ‖fi‖ ≤ C},

with the norm defined as ‖{fi}‖ = supi∈N‖fi‖, l∞(K) is a Banach space. Let
U = (um,n) be a bounded linear operator on l2(N ). Since

‖
∑
j∈N

uj,ngj‖2 ≤ (
∑
j∈N

|uj,n|‖gj‖)2

≤
∑
j∈N

|uj,n|2 ·
∑
j∈N

‖gj‖2 = ‖Uen‖2‖{gi}‖2

≤ ‖U‖2 · ‖{gi}‖2,

where {en : n ∈ N} denotes the standard orthonormal basis of l2(N ), and {gj} ∈
l2(⊕Hj). So

∑
j∈N uj,ngj is convergent. So U induces a linear bounded operator

TU : l2(⊕Hj) → l∞(K) by

(TU{gi})n =
∑
j∈N

uj,ngj,



324 Xunxiang Guo

and ‖TU‖ ≤ ‖U‖. Particularly, if M =
∑

i,j∈N |ui,j|2 < ∞, then
∑
n∈N

‖(TU{gi})n‖2 =
∑
n∈N

‖
∑
j∈N

uj,ngj‖2

≤
∑
n∈N

(
∑
j∈N

|uj,n|‖gj‖)2 ≤
∑
n∈N

∑
j∈N

|uj,n|2
∑
j∈N

‖gj‖2

= M
∑
j∈N

‖gj‖2.

So, TU is a linear bounded operator from l2(⊕Hi) into l2(K) with ‖TU‖ ≤ ∑
i,j∈N |ui,j|2.

From the above analysis, it is easy to get the following result.

Theorem 5.1. Let {Λj : j ∈ N} be a g-frame of H with frame bounds A and B,
and let U = (ui,j) be a linear bounded operator on l2(N ) with M =

∑
i,j∈N |ui,j|2 <

∞. Let Γn ∈ B(H, K), n ∈ N be defined by Γnf = (TU{Λif})n =
∑

j∈N un,jΛjf .
Then {Γn : n ∈ N} is a g-Bessel sequence of H with respect to K with bound MB.

Theorem 5.2. Let {Λj : j ∈ N} be a g-frame of H with frame bounds A and
B and U be a linear bounded operator on l2(N ) such that TU is a linear bounded
operator from l2(⊕Hi) into l2(V ). Γnf = (TU{Λif})n =

∑
j∈N un,jΛjf for each

n ∈ N . Then {Γn : n ∈ N} is a g-frame of H with respect to V if and only if there
exists a positive constant γ such that for all x ∈ X = Range(T ), where T is the
analysis operator associated with {Λj : j ∈ N}, we have

‖TUx‖2 ≥ γ‖x‖2.

Proof. ⇒: Since {Λj : j ∈ N} be a g-frame of H with frame bounds A and B,
A‖f‖2 ≤ ∑

j∈N ‖Λjf‖2 ≤ B‖f‖2, ∀f ∈ H . So {Λjf : j ∈ N} ∈ l2(⊕Hj) and
∑
j∈N

‖Γjf‖2 =
∑
j∈N

‖(TU{Λif})j‖2 = ‖TU{Λif}‖2

≤ ‖TU‖2‖{Λif}‖2 = ‖TU‖2 ·
∑
i∈N

‖Λif‖2 ≤ ‖TU‖2 ·B · ‖f‖2.

On the other hand, since {Λjf : j ∈ N} ∈ X = Range(T ), we have
∑
j∈N

‖Γjf‖2 = ‖TU{Λif}‖2 ≥ γ‖{Λjf}‖2 ≥ γ ·A · ‖f‖2.

Thus, {Γj : j ∈ N} is a g-frame of H with respect to V .

⇒: Assume that {Γj : j ∈ N} is a g-frame of H with frame bounds a and b with
respect to V . Then
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b‖f‖2 ≥
∑
j∈N

‖Γjf‖2 = ‖TU{Λif}‖2 ≥ a‖f‖2.

On the other hand, since {Λj : j ∈ N} is a g-fame of H with frame bounds A and B,
we have

B‖f‖2 ≥
∑
j∈N

‖Λjf‖2 ≥ A‖f‖2.

So,

‖TU{Λif}‖2 ≥ a‖f‖2 ≥ a

B
·
∑
j∈N

‖Λjf‖2 =
a

B
· ‖{Λif}‖2.

The proof is completed.

Theorem 5.3. Suppose dimHi < ∞ for any i ∈ N . Then {Λi ∈ B(H, Hi) :
i ∈ N} is a g-frame of H if and only if there exists a bounded linear operator Q

from l2(⊕Hi) onto H such that Q({δn,jen,kn}∞n=1) = Λ∗
jej,kj for each j ∈ N , where

{en,kn : kn = 1, 2, · · · , Kn} denotes an orthonormal basis of Hn.

Proof. Let Fj,kj = en,kn if j = n, Fj,kj = 0, if j �= n. Then {Fj,kj : j ∈ N, kj =
1, 2, · · · , Kj} = {{δn,jen,kn}∞n=1 : j ∈ N, kn = 1, 2, · · · , Kn} is an orthonormal basis
of l2(⊕Hj).

⇒: If {Λi ∈ B(H, Hi) : i ∈ N} is a g-frame for H with respect to {Hi : i ∈ N},
then there exist positive constants A and B such that for any f ∈ H , A‖f‖2 ≤∑

i∈N ‖Λif‖2 ≤ B‖f‖2. In particular, {Λif : i ∈ N} ∈ l2(⊕Hi). Let U be
the analysis operator associated with {Λi : i ∈ N} and Q = U∗ be the synthesis
operator associated with {Λi : i ∈ N}. Then Q maps l2(⊕Hi) onto H and for
any {gi : i ∈ N} ∈ l2(⊕Hi), Q{gi} =

∑
i∈N Λ∗

i gi by Lemma 2.12. Since for all
f ∈ H, j ∈ N , we have

〈f, QFj,kj 〉 = 〈Q∗f, Fj,kj 〉 = 〈Uf, Fj,kj〉

= 〈{Λif}, Fj,kj〉 = 〈Λjf, ej,kj 〉 = 〈f, Λ∗
jej,kj 〉,

it follows that QFj,kj = Λ∗
jej,kj , for all j ∈ N .

⇐: Suppose that Q is a bounded linear operator from l2(⊕Hj) onto H such that
QFj,kj = Λ∗

jej,kj , for all j ∈ N . Since {Fj,kj : kj = 1, 2, · · · , Kj, j ∈ N} is an
orthonormal basis for l2(⊕Hj), then for any f ∈ H , we have

Q∗(f) =
∑
j∈N

Kj∑
kj=1

〈Q∗(f), Fj,kj〉Fj,kj =
∑
j∈N

Kj∑
kj=1

〈f, QFj,kj 〉Fj,kj

=
∑
j∈N

Kj∑
kj=1

〈f, Λ∗
jej,kj 〉Fj,kj =

∑
j∈N

Kj∑
kj=1

〈Λjf, ej,kj 〉Fj,kj .
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Hence

‖Q∗f‖2 =
∑
j∈N

Kj∑
kj=1

|〈Λjf, ej,kj 〉|2 =
∑
j∈N

‖Λjf‖2.

Since Q is onto, there exists a bounded linear operator Q† such that QQ† = IH by
Lemma 2.9. It implies that (Q†)∗Q∗ = IH . So for any f ∈ H , ‖(Q†)∗Q∗f‖ = ‖f‖.
It implies that

‖f‖ ≤ ‖(Q†)∗‖ · ‖Q∗f‖, i.e., ‖Q∗f‖ ≥ 1
‖(Q†)∗‖ · ‖f‖.

So
1

‖(Q†)∗‖2
· ‖f‖2 ≤

∑
j∈N

‖Λjf‖2 = ‖Q∗f‖2 ≤ ‖Q∗‖2 · ‖f‖2.

It follows that {Λj : j ∈ N} is a g-frame of H with respect to {Hi : i ∈ N}.

Theorem 5.4. If {Hj : j ∈ N} is a sequence of closed subspaces of Hilbert
space V with dimHj < ∞ for each j ∈ N , then every g-frame of H with respect
to {Hj : j ∈ N} is equivalent to one of the g-frames {J∗

j P : j ∈ N}, where P is
some orthogonal projection on l2(⊕Hj) and Ji is the natural embedding of Hj into
l2(⊕Hj), which is defined by Jj(gj) = {δi,jgj : i ∈ N}.

Proof. If P is some orthogonal projection of l2(⊕Hj) onto a closed subspace X
of l2(⊕Hj), then

(J∗
j P )∗ej,kj = P (Jjej,kj ) = P ({δn,jej,kj : n ∈ N}),

where {ej,kj : kj = 1, 2, · · · , Kj} is an orthonormal basis for Hj , ∀j ∈ N . So
{J∗

j P : j ∈ N} is a g-frame for X with respect to {Hj : j ∈ N} by Theorem 5.3. Now,
suppose that {Λj : j ∈ N} is any g-frame for H with respect to {Hj : j ∈ N}. Then
by Theorem 5.3, there exists a bounded surjective linear operator Q : l2(⊕Hj) → H
such that for each n ∈ N , we have

Q({δn,jen,kn}∞j=1) = Λ∗
nen,kn .

But {δn,jen,kn} = Jn(en,kn), so QJn(en,kn) = Λ∗
nen,kn for each n ∈ N . Let P be the

orthogonal projection of l2(⊕Hj) onto (KerQ)⊥. Then

Λ∗
nen,kn = Q({δn,jen,kn}∞j=1)

= QP ({δn,jen,kn}∞j=1) = QPJn(en,kn), ∀n ∈ N.

So, Λ∗
n = QPJn, ∀n ∈ N . It follows that Λn = (PJn)∗Q∗ = (J∗

nP )Q∗, ∀n ∈ N .
Since Q∗ is an isomorphism from H onto (KerQ)⊥, {Λj : j ∈ N} is equivalent to
{J∗

j P : j ∈ N}.



Operator Parameterizations of g-Frames 327

REFERENCES

1. D. Gabor, Theory of communications, Jour. Inst. Elec. Eng., 93 (1946), 429-457.

2. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Transactions
of AMS, 72, 341-366.

3. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthognal expansions, J. Math.
Phys., 27 (1986), 1271-1283.

4. D. Han and D. R. Larson, Frames, basis and group representations, Mem. Amer. Math.
Soc., 147 (2000).

5. O. Christensen, An Introduction to Frames and Riestz Bases, Birkhäuser, Boston, 2003.
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