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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLOCAL−→p (x)-LAPLACIAN PROBLEM

G. A. Afrouzi* and M. Mirzapour

Abstract. In this paper, we study the nonlocal anisotropic −→p (x)-Laplacian prob-
lem of the following form

−
N∑

i=1

Mi

( ∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)
∂xi

(
|∂xiu|pi(x)−2∂xiu

)
= f(x, u) in Ω,

u = 0 on ∂Ω.

By means of a direct variational approach and the theory of the anisotropic variable
exponent Sobolev space, we obtain the existence and multiplicity of weak energy
solutions. Moreover, we get much better results with f in a special form.

1. INTRODUCTION

The purpose of this paper is to analyze the existence and multiplicity of the nonlocal
anisotropic problem

(1.1) −
N∑

i=1

Mi

( ∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)
∂xi

(
|∂xiu|pi(x)−2∂xiu

)
= f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, for i ∈

{1, . . . , N}, pi are continuous functions on Ω such that 2 ≤ pi(x) < N , Mi : R+ →
R

+ are continuous functions and f : Ω×R → R is a Caratheodory function, satisfying
some certain conditions.
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Since the first equation in (1.1) contains an integral over Ω, it is no longer pointwise
identity; therefore it is often called nonlocal problem. Problem (1.1) is related to the
stationary version of the Kirchhoff equation

(1.2) ρ
∂2u

∂t2
−

(ρ0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0,

presented by Kirchhoff in 1883, see [11]. This equation is an extension of the classical
D’Alembert’s wave equation, by considering the effect of the changing in the length of
the string during the vibrations. The parameters in (1.2) have the following meanings:
L is the length of the string, h is the area of the cross-section, E is the Young modulus
of the material, ρ is the mass density and P0 is the initial tension.

In the last few decades, one of the topics from the field of partial differential
equations that has continuously attracted interest is that concerning the Sobolev space
with variable exponents, W 1,p(.) (where p is a function depending on X). Naturally,
problems involving the p(.)-Laplace operator

Δp(x)u = div(|∇u|p(x)−2∇u)
were intensively studied. Variable Sobolev spaces have been used in the last decades
to model various phenomena. Chen, Levine and Rao [3] proposed a frame work for
image restoration based on a variable exponent Laplacian. An other application which
uses nonhomogeneous Laplace operators is related to the modeling of electrorheological
fluids. The first major discovery in electrorheological fluids is due to Willis Winslow
in 1949. These fluids have the interesting property that their viscosity depends on the
electric field in the fluid. They can raise the viscosity by as much as five orders of
magnitude. This phenomenon is known as the Winslow effect. Electrorheological fluids
have been used in robotics and space technology. The experimental research has been
done mainly in the USA, for instance in NASA Laboratories. For more information on
properties, modelling and the application of variable exponent space to the fluids, we
refer to Diening [4], Rajagopal and Ruzicka [14] and Ruzicka [15].

In this paper, the operator involved (1.1) is more general than the p(.)-Laplace
operator. Thus, the variable exponent Sobolev space W 1,p(.)(Ω) is not adequate to
study nonlinear problems of this type. This lead us to seek weak solution for problem
(1.1) in a more general variable exponent Sobolev space which was introduced for the
first time by Mihăilescu et al [13].

Motivated by the papers [6, 10] and the ideas introduced in [9], the goal of this
paper is to study the existence and multiplicity of solutions for problem (1.1).

2. NOTATIONS AND PRELIMINARIES

We recall in this section some definitions and basic properties of the variable expo-
nent Lebesgue Sobolev space Lp(.)(Ω) and W 1,p(.)(Ω), where Ω is a bounded domain
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in R
N . Roughly speaking, anisotropic Lebesgue and Sobolev spaces are functional

spaces of Lebesgue’s and Sobolev’s type in which different space directions have dif-
ferent roles.

Let Ω be a bounded domain of R
N , denote

C+(Ω) = {h(x) : h(x) ∈ C(Ω), h(x) > 1, ∀x ∈ Ω};

for any h ∈ C+(Ω), we define

h+ = max{h(x) : x ∈ Ω}, h− = min{h(x) : x ∈ Ω};

for any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(.)(Ω)

=
{
u : u is a measurable real-valued function such that

∫
Ω
|u(x)|p(x)dx <∞

}
,

endowed with the so-called Luxemburg norm

|u|Lp(.)(Ω) = |u|p(.) = inf
{
μ > 0;

∫
Ω
|u(x)
μ

|p(x)dx ≤ 1
}
,

and the space (Lp(.)(Ω), |.|p(.)) becomes a reflexive Banach space [12].

Proposition 2.1. (see [5, 7]). (i) The space (Lp(.)(Ω), |.|p(.)) is a separable, uni-
formly convex Banach space and its dual space is Lq(.)(Ω), where 1

p(.) + 1
q(.) = 1. For

any u ∈ Lp(.)(Ω) and v ∈ Lq(.)(Ω), we have∣∣∣ ∫
Ω
uvdx

∣∣∣ ≤ ( 1
p−

+
1
q−

)
|u|p(.)|v|q(.) ≤ 2|u|p(.)|v|q(.)

(ii) If p1(.), p2(.) ∈ C+(Ω), p1(.) ≤ p2(.), ∀x ∈ Ω, then Lp2(.)(Ω) ↪→ Lp1(.)(Ω) and
the embedding is continuous.

Proposition 2.2. (see [6]). If we denote ρp(.)(u) =
∫
Ω |u|p(x)dx, then for u ∈

Lp(.)(Ω), (un) ⊂∈ Lp(.)(Ω), we have

(1) |u|p(.) < 1 (respectively = 1;> 1) ⇐⇒ ρp(.)(.) < 1 (respectively = 1;> 1),

(2) for u �= 0, |u|p(.) = λ⇐⇒ ρp(.)(u
λ) = 1,

(3) if |u|p(.) > 1, then |u|p−p(.) ≤ ρp(.)(u) ≤ |u|p+

p(.),

(4) if |u|p(.) < 1, then |u|p+

p(.)
≤ ρp(.)(u) ≤ |u|p−

p(.)
,

(5) |u|p(.) → 0 (respectively → ∞) ⇐⇒ ρp(.)(u) → 0 (respectively → ∞),
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since p+ <∞.

The variable exponent Sobolev space W 1,p(.)(Ω) is defined by

W 1,p(.)(Ω) = {u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)},

and it can equipped with the norm

||u|| = |u|p(.) + |∇u(x)|p(.).

As shown by Zhikov [18, 19] the smooth functions are in general not dense in
W 1,p(.)(Ω), but if the exponent variable p in C+(Ω) is logarithmic Hölder continu-
ous, that is,

|p(x)− p(y)| ≤ −M
log(|x− y|) for all x, y ∈ Ω such that |x− y| ≤ 1

2
,

then the smooth functions are dense in W 1,p(.)(Ω).
The Sobolev space with zero boundary values W 1,p(.)

0 (Ω), defined as the closure of
C∞

0 (Ω) with respect to the norm ||.||. Of course also the norms ||u|| = |∇u|p(.) and
||u|| = ∑N

i=1 |∂xiu|p(.) are equivalent norms in W 1,p(.)
0 (Ω). Note that when s ∈ C+(Ω)

and s(x) < p∗(x) for all x ∈ Ω, where p∗(x) = Np(x)
N−p(x) if p(x) < N and p∗(x) = ∞

if p(x) ≥ N , then the embedding W 1,p(.)
0 (Ω) ↪→ Ls(.)(Ω) is compact and continuous.

Finally, we introduce a natural generalization of the variable exponent Sobolev space
W

1,p(.)
0 (Ω) that will enable us to study with sufficient accuracy problem (1.1). For this

purpose, let us denote by �p : Ω → RN the vectorial function �p = (p1(.), p2(.), ..., pN(.)).
We define X = W

1,�p(x)
0 (Ω), the anisotropic variable exponent space, as the closure

of C∞
0 (Ω) with respect to the norm

||u|| =
N∑

i=1

|∂xiu|pi(x).

It was proved that W 1,�p(x)
0 (Ω) is a reflexive Banach space for any �p(x) ∈ RN with

p−i > 1 for all i ∈ {1, . . . , N} and the �p(x)-Laplacian operator −Δ�p(x) : W 1,�p(x)
0 (Ω) →

(W 1,�p(x)
0 (Ω))∗

−Δ�p(x)u =
N∑

i=1

∂xi

(
|∂xiu|pi(x)−2∂xiu

)

is strictly monotone homeomorphism [2].
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In order to facilitate the manipulation of the spaceW 1,�p(x)
0 (Ω) we introduce �P+, �P− ∈

R
N and P+

+ , P
+
− , P

−
+ , P

−
− ∈ R+ as

�P+ = (p+
1 , p

+
2 , . . . , p

+
N), �P− = (p−1 , p

−
2 , . . . , p

−
N),

P+
+ = max{p+

1 , p
+
2 , . . . , p

+
N}, P+

− = max{p−1 , p−2 , . . . , p−N},
P−

+ = min{p+
1 , p

+
2 , . . . , p

+
N}, P−

− = min{p−1 , p−2 , . . . , p−N}.
Throughout this paper, we assume that

N∑
i=1

1
p−i

> 1,(2.1)

and define P ∗− ∈ R
+ and P−,∞ ∈ R

+ by

P ∗
− =

N
N∑

i=1

1
p−i

− 1

, P−,∞ = max{P+
− , P

∗
−}.

In addition, for the Caratheodory function f : Ω×R → R, we consider the antiderivative
F : Ω × R → R,

F (x, s) =
∫ s

0
f(x, t)dt.

With the previous notation, the functions Mi, f satisfy the conditions:
(M0) For each i = 1, . . . , N, Mi : (0,+∞) → (0,+∞) is continuous and Mi ∈

L1(0, t) for any t > 0.
(F0) For every (x, t) ∈ Ω × R

|f(x, t)| ≤
m∑

i=1

bi(x)|t|qi(x)−1,

where bi(x) ≥ 0, bi(x) �= 0, bi ∈ Lri(Ω) ∩ L∞(Ω), ri, qi ∈ C+(Ω), P+
+ <

qi(x) < P ∗−, and there are si ∈ C+(Ω), such that P+
+ < si(x) < P ∗−,

1
ri(x) +

qi(x)
si(x) = 1.

Proposition 2.3. (see [13].) Let Ω ⊂ R
N (N ≥ 3) is a bounded domain with

smooth boundary. Assume relation (2.1) is satisfied. For any q ∈ C(Ω) verifying

1 < q(x) < P−,∞, ∀x ∈ Ω,

then the embedding

W
1,�p(.)
0 (Ω) ↪→ Lq(.)(Ω)

is continuous and compact.
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It should be noticed that from the condition (F0), we have P−,∞ = max{P+
− , P ∗−} =

P ∗−. Define for i = 1, . . . , N,

M̂i(t) =
∫ t

0

Mi(s)ds, ∀t ≥ 0,

Ii(u) =
∫

Ω

|∂xiu|pi(x)

pi(x)
dx,

Ji(u) = M̂i(Ii(u)) = M̂i

( ∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)
, ∀u ∈ X,

J(u) =
N∑

i=1

Ji(u), ∀u ∈ X,

φ(u) =
∫

Ω
F (x, u)dx, ∀u ∈ X,

E(u) = J(u) − φ(u), ∀u ∈ X.

Proposition 2.4. (see [9]). Let (F0) and (M0) hold. Then for i ∈ {1, . . . , N} the
following statements hold:
(1) M̂i ∈ C0([0,∞)) ∩ C1((0,∞)), M̂i(0) = 0, M̂i

′
(t) = Mi(t) > 0 for any

t > 0, M̂i is strictly increasing on [0,∞).
(2) Ji, φ, E ∈ C0(X), Ji(0) = φ(0) = E(0) = 0. Ji ∈ C1(X\{0}), φ ∈

C1(X), E ∈ C1(X\{0}). For every u ∈ X\{0} and v ∈ X , it holds that

E ′(u)v=
N∑

i=1

Mi

(∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)∫
Ω
|∂xiu|pi(x)−2∂xiu∂xivdx−

∫
Ω
f(x, u)vdx.

Thus u ∈ X\{0} is a weak solution of (1.1) if and only if u is a nontrivial
critical point of E .

(3) The functional Ji : X → R is sequentially weakly lower semi-continuous, φ :
X → R is sequentially weakly continuous, and thus E is sequentially weakly
lower semi-continuous.

(4) The mapping φ′ : X → X∗ is sequentially weakly-strongly continuous.

Proposition 2.5 (See [9]). Let (F0) and (M0) hold. Then the mapping J ′ and
E ′ : X\{0} → X∗ are of type (S+), namely,

un ⇀ u and lim sup
n→+∞

J ′(un)(un − u) ≤ 0 implies un → u.

Corollary 2.6. Let (F0) and (M0) hold. Then for any c �= 0, every bounded
(PS)c sequence for E , i.e. a bounded sequence {un} ⊂ X\{0} such that E(un) → c
and E ′(un) → 0, has a strongly convergent subsequence and such u is a nonzero
solution of (1.1).
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Proof. Let {un} ⊂ X\{0} be bounded (PS)c sequence for E with c �= 0. Then
there exists a subsequence {unk

} of {un} such that unk
⇀ u in X . The condition

E ′(un) → 0 implies that E ′(unk
)(unk

− u) → 0. Since E ′ is of type (S+), we
have unk

→ u in X . If, in addition, E(un) → c �= 0, then, by the continuity of
E at u, E(u) = c �= 0 = E(0). Thus u �= 0, and by the continuity of E ′ at u,
E ′(u) = limnk→∞E ′(unk

) = 0.

Remark 2.7. By Corollary (2.6), to verify that E satisfies (PS)c with c �= 0, it is
sufficient to prove that every (PS)c sequence with c �= 0 is bounded.

Remark 2.8. Under assumption (M0), the function Mi may be singular at 0 and
in this case the energy functional E may be non-differentiable at 0. It is obvious
that, under assumptions (F0) and (M0), if in addition, for each i = 1, . . . , N , Mi is
continuous at 0, then E ∈ C1(X) and E : X → X∗ is of type (S+).

In the sequel, we use c, c′, C, C′, M , to denote the general nonnegative or positive
constant ( the exact value may change from line to line).

3. SOLUTIONS WITH NEGATIVE ENERGY

Theorem 3.1. Let (F0) and (M0) and the following conditions hold:
(M1) For each i = 1, . . . , N , there are positive constants γi, M and C such that

M̂i(t) ≥ Ctγi for t ≥M .
(H1) q+ < γiP

−
− for i = 1, . . . , N .

Then the functional E is coercive, that is, E(u) → ∞ as ||u|| → ∞, and E attains its
infimum in X at some u0 ∈ X . Therefore, u0 is a solution of (1.1) if E is differentiable
at u0, and in particular, if u0 �= 0.

Proof. Set ε = min{γiP
−
− − q+ : i = 1, . . . , N}. Then by (H1), ε > 0. For

||u|| large enough, by (M1), we have that

Ji(u) = M̂
( ∫

Ω

|∂xiu|pi(x)

pi(x)
dx

)
≥ M̂

( 1
P+

+

|∂xiu|
P−
−

pi(x)

)
≥ C(|∂xiu|pi(x))

γiP
−
− ≥ C(|∂xiu|pi(x))

q++ε,

and hence,

J(u) =
N∑

i=1

Ji(u) ≥
N∑

i=1

C(|∂xiu|pi(x))
q++ε ≥ C||u||q++ε.

For simplicity, in (F0) we assume that m = 1, b1 = b, s1 = s and r1 = r. we have
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|φ(u)| =
∣∣∣ ∫

Ω
F (x, u)dx

∣∣∣ ≤ ∫
Ω
|F (x, u)|dx ≤

∫
Ω

b(x)
q(x)

|u|q(x)dx

≤ 2
q−

|b|r(x)

∣∣∣|u|q(x)
∣∣∣

s(x)
q(x)

≤ 2
q−

|b|r(x)(|u|s(x))
q+

≤ c||u||q+
.

Thus,

E(u) = J(u) − φ(u) ≥ C||u||q++ε − c||u||q+ → +∞,

that is, E is coercive. Since E is sequentially weakly lower semi-continuous and X
is reflexive, E attains its infimum in X at some u0 ∈ X . In this case where E is
differentiable at u0, u0 is a solution of (1.1).

Theorem 3.2. Let (F0), (M0) and (H1) and the following conditions hold:

(M1) For each i=1, . . . ,N, there exists αi > 0 such that lim supt→0+
M̂i(t)
tαi

< +∞.
(F1) There exists a positive constant δ > 0 such that f(x, t) ≥ b0(x)tq0(x)−1 for

x ∈ Ω and 0 < t ≤ δ, where b0 ≥ 0, b0(x) ∈ C(Ω,R), b0 �= 0, q0(x) ∈
C+(Ω), q+0 < P−

− .
(H2) q+0 < αiP

−
− for i = 1, . . . , N .

Then (1.1) has at least one nontrivial solution which is a global minimizer of the
functional E .

Proof. Setting ε1 = min{αiP
−
− − q+0 : i = 1, . . . , N}, then by (H2), ε1 > 0.

From Theorem 3.1 we know that E has a minimizer u0. It is clear that F (x, 0) = 0
and consequently E(0) = 0. As b0 ≥ 0 and b0 �= 0, we can find an open set Ω0 ⊂ Ω
such that b0(x) > 0 for x ∈ Ω. Take ω ∈ C∞

0 (Ω)\{0}. Then, by (F1), (M2) and
(H2), for sufficiently small λ > 0, we have that

Ji(λω) = M̂i

( ∫
Ω

λpi(x)|∂xiω|pi(x)

pi(x)
dx

)
≤ c

( ∫
Ω

λpi(x)|∂xiω|pi(x)

pi(x)
dx

)αi

≤ cλαiP
−
−

(∫
Ω

|∂xiω|pi(x)

pi(x)
dx

)αi ≤ cλαiP
−
− ≤ cλq+

0 +ε1 .

Thus for sufficiently small λ > 0,

E(λω) = J(λω) − φ(λω) =
N∑

i=1

Ji(λω)−
∫

Ω
F (x, λω)dx

≤ cλq+
0 +ε1 −Cλq+

0 < 0.
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Hence E(u) < 0 which shows u0 �= 0.

Since X is a reflexive and separable Banach space, then X∗ is too. There exist
(see [17]) {ej} ⊂ X and {e∗j} ⊂ X∗ such that

X = span {ej : j = 1, 2, ...}, X∗ = span {e∗j : j = 1, 2, ...},

and

〈ei, e∗j〉 =
{

1 if i = j,

0 if i �= j,

where 〈., .〉 denote the duality product between X and X∗. We define

Xj = span {ej}, Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k

Xj.(3.1)

Lemma 3.3. (see [6]). Assume that ψ : X → R is weakly-strongly continuous and
ψ(0) = 0, ν > 0 is a given number. Set

βk = sup
u∈Zk,||u||≤ν

|ψ(u)|,

then βk → 0 as k → ∞.

Theorem 3.4. Let all the hypotheses of Theorem 3.2 hold, and let, in addition, f
satisfy the following condition:

(f2) f(x,−t) = −f(x, t) for x ∈ Ω and t ∈ R.

Then (1.1) has a sequence of solutions {±uk} such that E(±uk) < 0, and E(±uk) →
0 as k → ∞.

Proof. Denote by κ(A) the genus of A. Denote∑
= {A ⊂ X\{0} : A is compact and A = −A},∑

k

= {A ∈
∑

: κ(A) ≥ k},

ck = inf
A∈∑

k

sup
u∈A

E(u), k = 1, 2, . . . ,

we have −∞ < c1 ≤ c2 ≤ · · · ≤ ck ≤ ck+1 . . . .

For any k, we can choose a k-dimensional linear subspace Ek of W k,p(.)
0 (Ω) such

that Ek ⊂ C∞
0 (Ω). As the norms on Ek are equivalent to each other, there exists
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ρk ∈ (0, 1) such that u ∈ Ek with ||u|| ≤ ρk implies |u|L∞ < δ. Set S(k)
ρk = {u ∈

Ek : ||u|| = ρk}. Since S(k)
ρk is compact, we can find a positive constant dk such that∫

Ω

b0(x)
q0(x)

|u|q0(x)dx ≥ dk, ∀u ∈ S(k)
ρk
.

For u ∈ S
(k)
ρk and t ∈ (0, 1), we have

E(tu) ≤ tαiP
−
−

P−
−

ρ
P−
−

k − tq
+
0 dk.

By (H2), we can find tk ∈ (0, 1) and εk > 0 such that E(tku) ≤ −εk < 0 for every
u ∈ S

(k)
ρk , which implies E(uk) ≤ −εk < 0 for every u ∈ S

(k)
tkρk

. Since κ(S(k)
tkρk

) = k,
we get the conclusion ck ≤ −εk < 0.

By the genus theory, each ck is a critical value of E , hence there is a sequence of
solutions {±uk : k = 1, 2, . . .} of problem (1.1) such that E(±uk) = ck < 0.

At last, we will prove ck → 0 as k → ∞. Since E is coercive, then there exists a
constant η > 0 such that E(u) > 0 when ||u|| ≥ η. For any A ∈ ∑

k, let Yk and Zk

be the subspace of X as mentioned above. According to the properties of genus, we
know A ∩ Zk �= ∅. Set

βk = sup
u∈Zk, ||u||≤η

|φ(u)|,

we know βk → 0 as k → ∞. When u ∈ Zk and ||u|| ≤ η, we have E(u) ≥ −βk and
then ck ≥ −βk, which concludes ck → 0 as k → ∞.

4. SOLUTIONS WITH POSITIVE NERGY

In this section we will find the Mountain Pass critical points of the energy functional
E associated to problem (1.1).

Lemma 4.1. Let (M0), (F1) and the following conditions be satisfied:
(M1)′ The condition (M1) holds and γiP

−
− > 1 for i = 1, . . . , N .

(M3) For each i = 1, . . . , N , there exist λi > 0 and M > 0 such that λiM̂i(t) ≥
Mi(t)t for t ≥M .

(F3) There exist μ > 0 and M > 0 such that 0 ≤ μF (x, t) ≤ f(x, t)t for |t| ≥ M
and x ∈ Ω.

(H3) λiP
+
+ < μ for i = 1, . . . , N .

Then E satisfies condition (PS)c for any c �= 0.
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Proof. By (M3), for each i = 1, . . . , N , and for sufficiently large |∂xiu|pi(.),

λiP
+
+ Ji(u) = λiP

+
+ M̂i

(∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)

≥ P+
+Mi

( ∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)∫
Ω

|∂xiu|pi(x)

pi(x)
dx

≥Mi

( ∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)∫
Ω
|∂xiu|pi(x)dx = J ′

i(u)u.

In [8] it was proved that, (M1)′ and (F3) imply that, given any ε ∈ (0, μ), there
exists Cε such that

φ′(u)u− (μ− ε)φ(u) ≥ −Cε for u ∈ X.

Now let {un} ⊂ X\{0}, E(un) → c �= 0 and E ′(un) → 0. By (H3), there
exists ε > 0 small enough such that λiP

+
+ < (μ − ε) for i = 1, . . . , N . Setting

d = min{γiP
−
− ; i = 1, . . . , N} and e = (μ − ε) − λiP

+
+ , then d > 1 and e > 0.

Since {un} is a (PS)c sequence, for sufficiently large n, we have

(μ− ε)c+ 1 + ||un|| ≥ (μ− ε)E(un) −E ′(un)un

≥ (μ−ε)
N∑

i=1

Ji(un)−
N∑

i=1

J ′
i(un)un+φ′(un)un−(μ−ε)φ(un)

≥
N∑

i=1

(
(μ− ε) − λiP

+
+

)
Ji(un)− c−Cε

≥ eJ(un)− c−Cε

≥ c′||un||d − C.

This shows that {||un||} is bounded because d > 1. By Corollary 2.6, E satisfies
condition (PS)c for any c �= 0.

Lemma 4.2. Under the hypotheses of Lemma 4.1, for any ω ∈ X\{0}, E(sω) →
−∞ as s→ +∞.

Proof. Setting τ = min{μ− λiP
+
+ : i = 1, . . . , N}, then by (H3), τ > 0. Let

ω ∈ X\{0} be given. From (M3), for each i = 1, . . . , N , and sufficiently large t > 0
we have

M̂i(t) ≤ Cit
λi

and then it follows that for s large enough

Ji(sω) ≤ d1s
λiP

+
+ ≤ d1s

μ−τ ,
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where d1 is a positive constant depending on ω. Thus for s large enough we have
J(sω) ≤ Nd1s

μ−τ .

From (F3) for x ∈ Ω and t ∈ R we have
F (x, t) ≥ C|t|μ − c,

which implies that for s large enough

φ(sω) =
∫

Ω

F (x, sω)dx ≥ d2s
μ,

where d2 is a positive constant depending on ω. Hence for s large enough, we have
E(sω) ≤ d1s

μ−τ − d2s
μ,

and consequently, E(sω) → −∞ as s→ +∞.

Lemma 4.3. Let (F0), (M0) and the following conditions be satisfied:

(M4) For each i = 1, . . . , N , there exists βi > 0 such that lim inft→0+
M̂i(t)

tβi
> 0.

(F4) There exists r1(x) ∈ C0(Ω) such that P+
+ < r1(x) < P ∗−(x) for x ∈ Ω and

lim inft→0
|F (x,t)|
|t|r1(x) < +∞ uniformly in x ∈ Ω.

(H4) βiP
+
+ < r−1 for i = 1, . . . , N .

Then there exist positive constants ρ and δ such that E(u) ≥ δ for ||u|| = ρ.

Proof. Setting ε = min{r−1 − βiP
+
+ : i = 1, . . . , N}, then by (H4), ε > 0. It

follows from (M4) that for ||u|| small enough

Ji(u) = M̂
( ∫

Ω

|∂xiu|pi(x)

pi(x)
dx

)
≥ M̂

( 1
P+

+

|∂xiu|
P+

+

pi(x)

)
≥ C(|∂xiu|pi(x))

βiP
+
+ ≥ C(|∂xiu|pi(x))

r−1 −ε,

and hence,

J(u) =
N∑

i=1

Ji(u) ≥
N∑

i=1

C(|∂xiu|pi(x))
r−1 −ε ≥ C||u||r−1 −ε.

It follows from (F0) and (F4) that for sufficiently small ||u||,
|φ(u)| ≤ C′||u||r−1 .

Thus, for sufficiently small ||u||, E(u) ≥ C||u||r−1 −ε −C′||u||r−1 . From this we obtain
the assertion of Lemma 4.3.

By the famous Mountain pass lemma [1], from Lemmas 4.1-4.3 we have the fol-
lowing:
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Theorem 4.4. Let all hypotheses of Lemmas 4.1-4.3 hold. Then (1.1) has a non-
trivial solution with positive energy.

5. THE CASE OF CONCAVE-CONVEX NONLINEARITY

In this section, we will obtain much better results with f in a special form. We
have the following theorem:

Theorem 5.1. Let f(x, t) = a(x)|u|α(x)−2u+ b(x)|u|q(x)−2u, where

α, q ∈ C+(Ω), 1 < α− ≤ α+ < P−
− ≤ P+

+ < q−, P+
+ < q(x) < P ∗

−(x),

a(x) > 0, a ∈ L∞(Ω) ∩ Lr1(.)(Ω),
1

r1(x)
+
α(x)
s1(x)

= 1,

b(x) > 0, b ∈ L∞(Ω) ∩ Lr2(.)(Ω),
1

r2(x)
+
α(x)
s2(x)

= 1,

p(x) ≤ s1(x) ≤ P ∗
−(x), p(x) ≤ s2(x) ≤ P ∗

−(x).

Then, we have
(i) If (M0), (M1)′, (M3), (H3) hold and we also assume that α+ < γiP

−
− < q+

and 1 < λiP
+
+ < q−, then problem (1.1) has solutions {±uk}∞k=1 such that

E(±uk) → +∞ as k → +∞.
(ii) If (M0), (M1)′, (M3), (M4) hold and also assume that α− < βiP

+
+ and

α+ < λiP
−
− , then problem (1.1) has solutions {±vk}∞k=1 such that E(±vk) <

0, E(±vk) → 0 as k → ∞.

We will use the following Fountain theorem and the Dual Fountain theorem to
prove Theorem 5.1.

Lemma 5.2. (Fountain Theorem, see [16]). Let

(A1) E ∈ C1(X,R) be an even functional, where (X, ||.||) is a separable and reflexive
Banach space, the subspaces Xk, Yk and Zk are defined by (3.1).
If for each k ∈ N, there exist ρk > rk > 0 such that

(A2) inf{E(u) : u ∈ Zk, ||u|| = rk} → +∞ as k → +∞.

(A3) max{E(u) : u ∈ Yk, ||u|| = ρk} ≤ 0.

(A4) E satisfies the (PS) condition for every c > 0.

Then E has an unbounded sequence of critical values tending to +∞.

Lemma 5.3. (Dual Fountain Theorem, see [16]). Assume (A1) is satisfied and
there is k0 > 0 so that, for each k ≥ k0, there exist ρk > rk > 0 such that
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(B1) ak = inf{E(u) : u ∈ Zk, ||u|| = ρk} ≥ 0.
(B2) bk = max{E(u) : u ∈ Yk, ||u|| = rk} < 0.
(B3) dk = inf{E(u) : u ∈ Zk, ||u|| ≤ ρk} → 0 as k → +∞.
(B4) E satisfies the (PS)∗c condition for every c ∈ [dk0, 0).

Then E has a sequence of negative critical values converging to 0.

Definition 5.4. We say that E satisfies the (PS)∗c condition (with respect to (Yn)),
if any sequence {unj} ⊂ X such that nj → +∞, unj ∈ Ynj , E(unj) → c and
(E|Ynj

)′(unj ) → 0, contains a subsequence converging to a critical point of E .

Lemma 5.5. Assume that the conditions in Theorem 5.1 hold, then J satisfies the
(PS)∗c condition.

Proof. Suppose {unj} ⊂ X such that nj → +∞, unj ∈ Ynj , E(unj) → c and
(E|Ynj

)′(unj ) → 0. Similar to the method in Lemma 4.1, we have that

(μ− ε)c+ 1 + ||unj ||
≥ (μ− ε)E(unj) − E ′(unj )unj

≥ (μ− ε)
N∑

i=1

Ji(unj) −
N∑

i=1

J ′
i(unj)unj + φ′(unj )unj − (μ− ε)φ(unj )

≥
N∑

i=1

(
(μ− ε) − λiP

+
+

)
Ji(unj) − c− Cε

≥ eJ(unj ) − c− Cε

≥ c′||unj ||d −C,

hence, we can get that {||unj ||} is bounded. Going if necessary to a subsequence, we
can assume unj ⇀ u in X . As X = ∪njYnj , we can choose vnj ∈ Ynj such that
vnj → u. Hence

lim
nj→+∞〈E ′(unj ), unj−u〉 = lim

nj→+∞〈E ′(unj ), unj−vnj〉+ lim
nj→+∞〈E ′(unj), vnj−u〉

= lim
nj→+∞

〈
(E|Ynj

)′(unj), unj − vnj

〉
= 0.

As E ′ is of (S+) type, we conclude unj → u, furthermore we have E ′(unj) → E ′(u).
Let us prove E ′(u) = 0 below. Taking ωk ∈ Yk , notice that when nj ≥ k we have

〈E ′(u), ωk〉 = 〈E ′(u) −E ′(unj), ωk〉 + 〈E ′(unj), ωk〉
= 〈E ′(u) −E ′(unj), ωk〉 +

〈
(E|Ynj

)′(unj), ωk

〉
.
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Going to the limit on the right side of the above equation reaches

〈E ′(u), ωk〉 = 0, ∀ωk ∈ Yk,

so E ′(u) = 0, this show that E satisfies the (PS)∗c condition for every c ∈ R.

5.1. Proof of Theorem 5.1

(i) We will prove that if k is large enough, then there exist ρk > rk > 0 such that
(A2) and (A3) are satisfied.
(A2) For k = 1, 2, . . . , denote

θk = sup
v∈Zk,||v||≤1

∫
Ω

a(x)
α(x)

|v|α(x)dx, βk = sup
v∈Zk,||v||≤1

∫
Ω

b(x)
q(x)

|v|q(x)dx,

then θk > 0, βk > 0 and θk → 0, βk → 0, as k → ∞. When u ∈ Zk, ||u|| ≥M ,

E(u) ≥ 1
P+

+

||u||d − θk||u||α+ − βk||u||q+
,

where d is defined in Lemma 4.1. For sufficiently large k, we have θk < 1
2P+

+

. As

α+ < γiP
−
− for i = 1, . . . , N , it follows α+ < d, we get

E(u) ≥ 1
2P+

+

||u||d − βk||u||q+
.

At this stage, we fix rk as follows:

rk = (2P+
+βkq

+)
1

d−q+ → +∞ as k → +∞.

Consequently, if ||u|| = rk then

E(u) ≥
(
1− 1

q+

) rd
k

2P+
+

− C → +∞ as k → +∞.

(A3) From (M3), it is easy to obtain that for t large enough M̂i(t) ≤ Ctλi . For
k = 1, 2, . . . , denote

ek = inf
v∈Yk ,||v||=1

∫
Ω

b(x)
q(x)

|v|q(x)dx.

Then ek > 0. Setting d′
= max{λiP

+
+ : i = 1, . . . , N}, then 1 < d

′
< q−. For any

v ∈ Yk with ||v|| = 1 and t large enough, since dimYk < ∞, all norms are equivalent
in Yk , we have

E(tv) ≤ c

P−
−

N∑
i=1

tλiP
+
+ − ekt

q−

≤ N
c

P−
−
td

′
− ekt

q− .
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As d′
< q−, there exists ρk > rk such that t = ρk concludes E(tv) ≤ 0 and then

max
u∈Yk,||u||=ρk

E(u) ≤ 0,

so (A3) is satisfied.

(ii) We use the Dual Fountain theorem to prove conclusion (ii), and now it remains
for us to prove that there exist ρk > rk > 0 such that if k is large enough (B1), (B2)
and (B3) are satisfied.
(B1) Let θk and βk be defined as above. Setting d′′

= max{βiP
+
+ : i = 1, . . . , N},

then α− < d
′′ . When v ∈ Zk, ||v|| = 1 and t small enough, we have

E(tv) ≥ 1
P+

+

N∑
i=1

tβiP
+
+ − θkt

α− − βkt
q−

≥ N

P+
+

td
′′
− θkt

α− − βkt
P+

+ .

For sufficiently large k we have βk <
1

2P+
+

, thus

E(tv) ≥ N

P+
+

td
′′
− θkt

α−
.

Choose ρk =
(

2P+
+ θk

N

) 1

d
′′−α− , then for sufficiently large k, ρk < 1. When t = ρk, v ∈

Zk with ||v|| = 1, we have

E(tv) ≥
(2P+

+

N

) α−
d
′′−α−

θ
α−

d
′′−α−

k −
(2P+

+

N

) α−
d
′′−α−

θ
α−

d
′′−α−

k = 0.

Since d′′
> α−, θk → 0, we know that ρk → 0 as k → +∞, so (B1) is satisfied.

(B2) For k = 1, 2, . . . , denote

δk = inf
v∈Yk ,||v||=1

∫
Ω

a(x)
α(x)

|v|α(x)dx,

then δk > 0. Setting d0 = min{λiP
−
− : i = 1, . . . , N}, then α+ < d0. Using (M3),

for v ∈ Yk, ||v|| = 1 and t small enough, we have

E(tv) ≤ 1
P−
−

N∑
i=1

tλiP
−
− − δkt

α+

≤ N

P−
−
td0 − θkt

α+
.

Since dimYk = k, condition α+ < d0 implies that there exists a rk ∈ (0, ρk) such that
E(u) < 0 when ||u|| = rk. Hence bk = max{E(u) : u ∈ Yk, ||u|| = rk} < 0, hence
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(B2) is satisfied.
(B3) From the proof above and Yk ∩ Zk �= ∅, we have

dk = inf{E(u) : u ∈ Zk, ||u||�p(x) ≤ ρk} ≤ bk

= max{E(u) : u ∈ Yk, ||u||�p(x) = rk} < 0.

For v ∈ Zk, ||v|| = 1 and u = tv small enough, we have

E(u) = E(tv) ≥ N

2P+
+

td
′′
− θkt

α−

≥ −θktα− ≥ −θkρα−
k ≥ −θk,

hence dk → 0, so (B3) is satisfied.
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