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SOME GENERALIZED LACUNARY POWER SERIES WITH ALGEBRAIC
COEFFICIENTS FOR MAHLER’S U−NUMBER ARGUMENTS

Gülcan Kekeç

Abstract. In this work, we show that under certain conditions the values of
some generalized lacunary power series with algebraic coefficients for Mahler’s
Um−number arguments belong to either a certain algebraic number field or⋃t

i=1 Ui in Mahler’s classification of the complex numbers, where t denotes a
positive rational integer dependent on the coefficients of the given series and on
the argument. Moreover, the obtained results are adapted to the field Qp of p−adic
numbers.

1. INTRODUCTION

A power series

F (z) =
∞∑

h=0

chzh (ch ∈ C for h = 0, 1, 2, . . . or ch ∈ Qp for h = 0, 1, 2, . . .)

with a positive radius of convergence, satisfying the following conditions⎧⎪⎪⎨
⎪⎪⎩

ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch �= 0, h = rn (n = 1, 2, 3, . . .),

ch �= 0, h = sn (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of non-negative rational integers
with

0 ≤ s0 ≤ r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ . . . and lim
n→∞

sn

rn
= ∞,

is called a generalized lacunary power series.
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In [7] and [8], Kekeç shows that under certain conditions the values of some
generalized lacunary power series with algebraic coefficients from a certain algebraic
number field K of degree m for Liouville number arguments belong to either the
algebraic number field K or

⋃m
i=1 Ui in Mahler’s classification of the complex num-

bers. In the present work, the results given in [7] and [8] are extended to Mahler’s
Um−number arguments. Namely, Theorem 3.1 and Theorem 3.2 are the extensions
of Theorem 3.1 in [8] to Mahler’s Um−number arguments and Theorem 3.1 in [7] to
Mahler’s Um−number arguments, respectively. Then the obtained results are adapted
to the field Qp of p−adic numbers on the light of the idea given in the paper Zeren
[20]. Namely, Theorem 3.3 and Theorem 3.4 are the p−adic versions of Theorem 3.1
and Theorem 3.2, respectively. The readers are also recommended to refer to Mahler
[14], Braune [1], Zeren [21], Yilmaz [18, 19], Gürses [4], Bugeaud [2], Çalşkan [3],
and Kekeç [6] for a literature survey.

The main purpose of this work is to give new methods for obtaining U−numbers in
Mahler’s classification of the complex transcendental numbers and p−adic U− numbers
in Mahler’s classification of the p−adic transcendental numbers. Our new results are
stated and proved in Section 3, and the basic concepts concerning the literature and the
lemmas we need to prove the new results of this work are given in Section 2.

2. PRELIMINARIES

The following subsections Subsection 2.1 and Subsection 2.2 are the summary of
the well-known basic concepts in the literature and are also available in the author’s
previous papers Kekeç [8] and Kekeç [9], respectively.

2.1. Mahler’s classification of the complex numbers

Mahler [12], in 1932, divided the complex numbers into four classes and called
numbers in these classes A−numbers, S−numbers, T−numbers, and U−numbers as
follows.

We shall be concerned with polynomials P (x) = anxn + · · ·+ a0 with rational in-
tegral coefficients. The height H(P ) of P is defined by H(P ) = max (|an|, . . . , |a0|),
and we shall denote the degree of P by deg(P ).

Given a complex number ξ and natural numbers n and H (recall that a natural
number means a positive rational integer), Mahler [12] sets

wn(H, ξ) = min{|P (ξ)| : P (x) ∈ Z[x], deg(P ) ≤ n, H(P ) ≤ H, and P (ξ) �= 0}.
The polynomial P (x) ≡ 1 is one of the polynomials which lie in the minimum, and
so we have 0 < wn(H, ξ) ≤ 1. We see that wn(H, ξ) is a non-increasing function of
both n and H . Next, Mahler [12] sets

wn(ξ) = lim sup
H→∞

− log wn(H, ξ)
log H

and w(ξ) = lim sup
n→∞

wn(ξ)
n

.
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Obviously, wn(ξ) is a non-decreasing function of n. Furthermore, the inequalities
0 ≤ wn(ξ) ≤ ∞ and 0 ≤ w(ξ) ≤ ∞ hold. If wn(ξ) = ∞ for some integers n, let
μ(ξ) be the smallest such integer. In this case, we have wn(ξ) < ∞ for n < μ(ξ) and
wn(ξ) = ∞ for n ≥ μ(ξ). If wn(ξ) < ∞ for every n, set μ(ξ) = ∞. Hence, μ(ξ) and
w(ξ) are uniquely determined and are never finite simultaneously. Therefore, there are
the following four possibilities for ξ, and ξ is called

• an A−number if w(ξ) = 0 and μ(ξ) = ∞,
• an S−number if 0 < w(ξ) < ∞ and μ(ξ) = ∞,
• a T−number if w(ξ) = ∞ and μ(ξ) = ∞,
• a U−number if w(ξ) = ∞ and μ(ξ) < ∞.

Every complex number ξ is of precisely one of these four types. A−numbers are
precisely the algebraic numbers (see Schneider [16, pp. 68-69]). Let S, T , and U
denote the set of S−numbers, the set of T−numbers, and the set of U−numbers,
respectively. Then the transcendental numbers are distributed into the three disjoint
classes S, T , and U . Let ξ be a U−number such that μ(ξ) = m, and let Um denote
the set of all such numbers, that is, Um = {ξ ∈ U : μ(ξ) = m}. Obviously, the set
Um (m = 1, 2, 3, . . .) is a subclass of U , and U is the union of all the disjoint sets
Um. An element of Um is called a Um−number. Furthermore, LeVeque [11] showed
that Um is not empty for any natural number m.

Koksma [10], in 1939, set up another classification of the complex numbers. He
divided the complex numbers into four classes A∗, S∗, T ∗, and U∗ as follows.

Suppose that α is an algebraic number. Let P (x) be the minimal defining polyno-
mial of α such that its coefficients are rational integers and relatively prime, and its
highest coefficient is positive. Then the height H(α) of α is defined by H(α) = H(P ),
and the degree deg(α) of α is defined as the degree of P .

Given a complex number ξ and natural numbers n and H , Koksma [10] sets

w∗
n(H, ξ) = min{|ξ − α| : α is algebraic, deg(α) ≤ n, H(α) ≤ H, and α �= ξ},

w∗
n(ξ) = lim sup

H→∞
− log(Hw∗

n(H, ξ))
log H

, and w∗(ξ) = lim sup
n→∞

w∗
n(ξ)
n

.

Obviously, w∗
n(H, ξ) is a non-increasing function of both n and H , and so w∗

n(ξ) is
a non-decreasing function of n. Furthermore, the inequalities 0 ≤ w∗

n(ξ) ≤ ∞ and
0 ≤ w∗(ξ) ≤ ∞ hold. If w∗

n(ξ) = ∞ for some integers n, let μ∗(ξ) be the smallest
such integer. In this case, we have w∗

n(ξ) < ∞ for n < μ∗(ξ) and w∗
n(ξ) = ∞ for

n ≥ μ∗(ξ). If w∗
n(ξ) < ∞ for every n, set μ∗(ξ) = ∞. Hence, μ∗(ξ) and w∗(ξ)

are uniquely determined and are never finite simultaneously. Therefore, there are the
following four possibilities for ξ, and ξ is called

• an A∗−number if w∗(ξ) = 0 and μ∗(ξ) = ∞,
• an S∗−number if 0 < w∗(ξ) < ∞ and μ∗(ξ) = ∞,
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• a T ∗−number if w∗(ξ) = ∞ and μ∗(ξ) = ∞,
• a U∗−number if w∗(ξ) = ∞ and μ∗(ξ) < ∞.

Every complex number ξ is of precisely one of these four types. Let A∗, S∗, T ∗, and U∗

denote the set of A∗−numbers, the set of S∗−numbers, the set of T ∗−numbers, and the
set of U∗−numbers, respectively. Then the complex numbers are distributed into the
four disjoint classes A∗, S∗, T ∗, and U∗. Let ξ be a U∗−number such that μ∗(ξ) = m,
and let U∗

m denote the set of all such numbers, that is, U∗
m = {ξ ∈ U∗ : μ∗(ξ) = m}.

Obviously, the set U∗
m (m = 1, 2, 3, . . .) is a subclass of U∗, and U∗ is the union of

all the disjoint sets U∗
m. An element of U∗

m is called a U∗
m−number.

Koksma’s classification of the complex numbers is equivalent to Mahler’s, that is,
the classes A∗, S∗, T ∗, and U∗ are the same as the classes A, S, T, and U , respectively.
Moreover, Um = U∗

m (m = 1, 2, 3, . . .) holds (see Schneider [16] and Wirsing [17]).

2.2. Mahler’s classification of the p−adic numbers

Let p be a fixed prime number, and let | · |p denote the p−adic absolute value
function on the field Q of rational numbers. We shall denote the unique extension of
| · |p to the field Qp of p−adic numbers, the completion of Q with respect to | · |p, by
the same notation | · |p.

By analogy with his classification of the complex numbers, Mahler [13], in 1934,
proposed a classification of the p−adic numbers. Given a p−adic number ξ and natural
numbers n and H , define the quantity (see Bugeaud [2])

wn(H, ξ) = min{|P (ξ)|p : P (x) ∈ Z[x], deg(P ) ≤ n, H(P ) ≤ H, and P (ξ) �= 0}

and set

wn(ξ) = lim sup
H→∞

− log(Hwn(H, ξ))
log H

and w(ξ) = lim sup
n→∞

wn(ξ)
n

.

The inequalities 0 ≤ wn(ξ) ≤ ∞ and 0 ≤ w(ξ) ≤ ∞ hold. If wn(ξ) = ∞ for some
integers n, then μ(ξ) is defined as the smallest such integer. If wn(ξ) < ∞ for every
n, set μ(ξ) = ∞. Hence, μ(ξ) and w(ξ) are uniquely determined and are never finite
simultaneously. Therefore, there are the following four possibilities for the p−adic
number ξ, and ξ is called

• a p−adic A−number if w(ξ) = 0 and μ(ξ) = ∞,
• a p−adic S−number if 0 < w(ξ) < ∞ and μ(ξ) = ∞,
• a p−adic T−number if w(ξ) = ∞ and μ(ξ) = ∞,
• a p−adic U−number if w(ξ) = ∞ and μ(ξ) < ∞.

Every p−adic number ξ is of precisely one of these four types. The p−adic A−numbers
are precisely the p−adic algebraic numbers. Let S, T , and U denote the set of p−adic
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S−numbers, the set of p−adic T−numbers, and the set of p−adic U−numbers, respec-
tively. Then the p−adic transcendental numbers are distributed into the three disjoint
classes S, T , and U . Let ξ be a p−adic U−number such that μ(ξ) = m, and let Um

denote the set of all such numbers, that is, Um = {ξ ∈ U : μ(ξ) = m}. Obviously, the
set Um (m = 1, 2, 3, . . .) is a subclass of U , and U is the union of all the disjoint sets
Um. An element of Um is called a p−adic Um−number (see Bugeaud [2] for more
information about Mahler’s classification in Qp).

Given a p−adic number ξ and natural numbers n and H , by analogy with Koksma’s
classification of the complex numbers, define the quantity (see Bugeaud [2] and Schlick-
ewei [15])

w∗
n(H, ξ) = min{|ξ−α|p : α is algebraic in Qp, deg(α) ≤ n, H(α) ≤ H, and α �= ξ}

and set

w∗
n(ξ) = lim sup

H→∞
− log(Hw∗

n(H, ξ))
log H

and w∗(ξ) = lim sup
n→∞

w∗
n(ξ)
n

.

The inequalities 0 ≤ w∗
n(ξ) ≤ ∞ and 0 ≤ w∗(ξ) ≤ ∞ hold. If w∗

n(ξ) = ∞ for
some integers n, then μ∗(ξ) is defined as the smallest such integer. If w∗

n(ξ) < ∞ for
every n, set μ∗(ξ) = ∞. Hence, μ∗(ξ) and w∗(ξ) are uniquely determined and are
never finite simultaneously. Therefore, there are the following four possibilities for the
p−adic number ξ, and ξ is called

• a p−adic A∗−number if w∗(ξ) = 0 and μ∗(ξ) = ∞,
• a p−adic S∗−number if 0 < w∗(ξ) < ∞ and μ∗(ξ) = ∞,
• a p−adic T ∗−number if w∗(ξ) = ∞ and μ∗(ξ) = ∞,
• a p−adic U∗−number if w∗(ξ) = ∞ and μ∗(ξ) < ∞.

Every p−adic number ξ is of precisely one of these four types. Let A∗, S∗, T ∗,
and U∗ denote the set of p−adic A∗−numbers, the set of p−adic S∗−numbers, the
set of p−adic T ∗−numbers, and the set of p−adic U∗−numbers, respectively. Then
the p−adic numbers are distributed into the four disjoint classes A∗, S∗, T ∗, and U∗.
Let ξ be a p−adic U∗−number such that μ∗(ξ) = m, and let U∗

m denote the set
of all such numbers, that is, U∗

m = {ξ ∈ U∗ : μ∗(ξ) = m}. Obviously, the set
U∗

m (m = 1, 2, 3, . . .) is a subclass of U∗, and U∗ is the union of all the disjoint sets
U∗

m. An element of U∗
m is called a p−adic U∗

m−number.
Both classifications in Qp are equivalent, that is, the classes A, S, T, and U are

the same as the classes A∗, S∗, T ∗, and U∗, respectively. Moreover, Um = U∗
m (m =

1, 2, 3, . . .) holds (see Bugeaud [2] for all references and Schlickewei [15]).

2.3. Lemmas

We need the following two lemmas to prove the new results of this work.
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Lemma 2.1. (İçen [5]). Let α1, . . . , αk (k ≥ 1) be algebraic numbers which
belong to an algebraic number field K of degree m, and let F (y, x1, . . . , xk) be a
polynomial with rational integral coefficients and with degree at least 1 in y. If η is
any algebraic number such that F (η, α1, . . . , αk) = 0, then

deg(η) ≤ dm

and
H(η) ≤ 32dm+(l1+···+lk)mHmH(α1)l1m . . .H(αk)lkm,

where H is the height of the polynomial F , d is the degree of F in y, and li (i =
1, . . . , k) is the degree of F in xi (i = 1, . . . , k).

Lemma 2.2. (LeVeque [11]). Let α be an algebraic number of degree m, and let
α{1} = α, . . . , α{m} be its conjugates. Then

|α| ≤ 2H(α),

where |α| = max
(|α{1}|, . . . , |α{m}|).

3. NEW RESULTS

3.1. Generalized lacunary power series in the field C of complex numbers

Theorem 3.1. Let K = Q(θ) be an algebraic number field of degree g, and let
F (z) =

∑∞
h=0 chzh (ch ∈ K, h = 0, 1, 2, . . .) be a power series which satisfies the

following conditions

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch �= 0, h = rn (n = 1, 2, 3, . . .),

ch �= 0, h = sn (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of non-negative rational inte-
gers with

(3.2) 0 = s0 <r1<s1 ≤ r2 <s2 ≤ r3<s3 ≤ r4<s4 ≤ . . . and lim
n→∞

sn

rn
= ∞.

Suppose that the radius of convergence R of the series
∑∞

h=0 |ch| zh 1 is positive (R
may be finite or infinite) and

(3.3) lim sup
h→∞

logAh

h
<∞ (Ah = [a0, a1, . . . , ah], h = 1, 2, 3, . . .) , 2

1 |ch| denotes the maximum of the absolute values of the conjugates of the algebraic number ch over Q.
2 [a0, a1, . . . , ah] denotes the least common multiple of the rational integers a0, a1, . . . , ah .



Some Generalized Lacunary Power Series 7

where ah (h = 0, 1, 2, . . .) is a suitable natural number such that ahch (h = 0, 1, 2, . . .)
is an algebraic integer. Let L = Q(β) be an algebraic number field of degree m
and αn (n = 1, 2, 3, . . .) be algebraic numbers in L, and let deg(αn) = m (n =
1, 2, 3, . . .). Moreover, assume that ξ is a Um−number such that

(3.4) |ξ − αn| ≤ 1
H(αn)rnωn

(n = 1, 2, 3, . . .),

where H(αn) > 1 (n = 1, 2, 3, . . .) and ωn = sn
rn logH(αn)

(n = 1, 2, 3, . . .) with
limn→∞ ωn = ∞, and

(3.5) |ξ| < R.

Then either F (ξ) is an algebraic number in the algebraic number field Q(θ, β), or
F (ξ) ∈ ⋃t

i=1 Ui, where t is the degree of Q(θ, β) over Q.

Proof. By (3.1), the series F (z) can be written, for the complex numbers z at
which F (z) converges, as

(3.6) F (z) =
∞∑

h=0

chzh =
∞∑

k=0

Pk(z),

where Pk(z) =
∑rk+1

h=sk
chzh (k = 0, 1, 2, . . .). We shall prove the theorem in four

steps.
(1) The radius of convergence of the series F (z) =

∑∞
h=0 chzh is greater than

or equal to R. For since |ch| ≤ |ch| (h = 0, 1, 2, . . .), F (z) converges for all the
complex numbers z for which the series

∑∞
h=0 |ch| zh converges. Then F (z) converges

for z = ξ.
(2) We shall consider the polynomials

(3.7) Fn(z) =
n−1∑
k=0

Pk(z) (n = 1, 2, 3, . . .).

Define the algebraic numbers

(3.8) ηn = Fn(αn) =
rn∑

h=s0

chαh
n ∈ Q(θ, β) (n = 1, 2, 3, . . .).

Since ηn ∈ Q(θ, β) (n = 1, 2, 3, . . .), we have deg(ηn) ≤ t (n = 1, 2, 3, . . .),
where t is the degree of Q(θ, β) over Q. By multiplying both sides of the equality

ηn =
rn∑

h=s0

chαh
n (n = 1, 2, 3, . . .)

by Arn , we obtain
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(3.9) Arnηn −
rn∑

h=s0

Arnchαh
n = 0.

Arnch (h = s0, s0 + 1, . . . , rn) is an algebraic integer in the algebraic number field
K = Q(θ). Moreover, we can assume that the algebraic number θ ∈ K given in the
hypothesis of the theorem is an algebraic integer and shall do so. Then we have

(3.10) Arnch =
ζ
(h)
0

D
+

ζ
(h)
1

D
θ + · · ·+ ζ

(h)
g−1

D
θg−1 (h = s0, s0 + 1, . . . , rn) ,

where ζ
(h)
0 , ζ

(h)
1 , . . . , ζ

(h)
g−1, and D =

∣∣Δ2(1, θ, . . . , θg−1)
∣∣ > 0 are rational integers.

Here,

Δ = Δ(1, θ, . . . , θg−1) =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
θ{1} θ{2} . . . θ{g}

...
...

...
...

(θg−1){1} (θg−1){2} . . . (θg−1){g}

∣∣∣∣∣∣∣∣∣
,

where (θi){1}, . . . , (θi){g} (i = 1, 2, . . . , g − 1) denote the field conjugates of θi (i =
1, 2, . . . , g − 1) for K = Q(θ). Obviously, Δ and D depend only on θ and the
conjugates of θ. We obtain from (3.9) and (3.10)

(3.11) DArnηn −
rn∑

h=s0

g−1∑
μ=0

ζ(h)
μ θμαh

n = 0.

Then we have

(3.12) T (ηn, θ, αn) = 0,

where

(3.13) T (y, x1, x2) = DArny −
rn∑

h=s0

g−1∑
μ=0

ζ(h)
μ xμ

1xh
2

is a polynomial in y, x1, x2 with rational integral coefficients. Since DArn �= 0, the
polynomial T (y, x1, x2) is of degree 1 in y. The degree of T (y, x1, x2) in x1 is less
than or equal to g − 1, and the degree of T (y, x1, x2) in x2 is rn. Denote the height
of the polynomial T (y, x1, x2) by H . Then, by Lemma 2.1, we get

(3.14) H(ηn) ≤ 32t+(g−1+rn)tH tH(θ)(g−1)tH(αn)rnt (n = 1, 2, 3, . . .).

Now let us determine an upper bound for the height H of the polynomial T (y, x1, x2).
It follows from (3.13) that

(3.15) H = max
h=s0,...,rn
μ=0,...,g−1

(
DArn , |ζ(h)

μ |
)

.
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Now we shall determine an upper bound for |ζ(h)
μ | (μ = 0, 1, . . . , g− 1; h = s0, s0 +

1, . . . , rn). Put

(3.16) δ = DArnch.

Since Arnch is an algebraic integer in K and D is a natural number, δ is an algebraic
integer in K. By (3.10) and (3.16), we have

(3.17) δ = ζ
(h)
0 + ζ

(h)
1 θ + · · ·+ ζ

(h)
g−1θ

g−1 (h = s0, s0 + 1, . . . , rn) .

By using the field conjugates of θ for K in (3.17), we obtain the system of linear
equations

(3.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ{1} = ζ
(h)
0 + ζ

(h)
1 θ{1} + · · ·+ ζ

(h)
g−1(θ

g−1){1}

δ{2} = ζ
(h)
0 + ζ

(h)
1 θ{2} + · · ·+ ζ

(h)
g−1(θ

g−1){2}

...

δ{g} = ζ
(h)
0 + ζ

(h)
1 θ{g} + · · ·+ ζ

(h)
g−1(θ

g−1){g}

in the unknowns ζ
(h)
0 , ζ

(h)
1 , . . . , ζ

(h)
g−1. Since Δ2(1, θ, . . . , θg−1) �= 0, the coefficient

matrix of (3.18) is different from zero. Thus, the system of linear equations (3.18) has
a unique solution which is

(3.19) ζ(h)
μ =

g∑
j=1

Δμj

Δ
δ{j} (μ = 0, 1, . . . , g − 1),

where Δμj (μ = 0, 1, . . . , g−1; j = 1, 2, . . . , g) are complex constants which depend
only on θ and the conjugates of θ. It follows from (3.19) that

(3.20) |ζ(h)
μ | ≤

g∑
j=1

|Δμj|
|Δ| |δ{j}| ≤

g∑
j=1

|Δμj|
|Δ| |δ| ≤ |δ|

g−1∑
μ=0

g∑
j=1

|Δμj|
|Δ| .

We infer from (3.16) that

(3.21) |δ| ≤ DArn |ch|.
By (3.20) and (3.21), we get

(3.22) |ζ(h)
μ | ≤ C(K)Arn|ch| (μ = 0, 1, . . . , g − 1; h = s0, . . . , rn),

where C(K) = D
∑g−1

μ=0

∑g
j=1

|Δμj |
|Δ| is a positive real number which depends only on

θ and the conjugates of θ. It follows from (3.15) and (3.22) that

(3.23) H ≤ max
h=s0,...,rn

(
DArn , C(K)Arn|ch|

) ≤ C(K)Arn max
h=s0,...,rn

(1, |ch|) ,



10 Gülcan Kekeç

where C(K) = max
(
D, C(K)

) ≥ 1 is a real constant which depends only on θ and
the conjugates of θ. Let us choose a real number ρ satisfying the inequality

(3.24) 0 < |ξ| < ρ < R

(If R = ∞, then ρ is chosen as ρ > |ξ|). By (3.24), the series
∑∞

h=0 |ch| ρh is
convergent. Thus, we have limh→∞

(|ch| ρh
)

= 0, so the sequence
{|ch| ρh

}∞
h=0

is
bounded, and therefore there is a real number M > 0 such that

(3.25) |ch| ≤ M

ρh
(h = 0, 1, 2, . . .).

By (3.25), we have

(3.26) max
h=s0 ,...,rn

(1, |ch|) ≤ max
h=s0,...,rn

(
1,

M

ρh

)
≤ M1

(
max

(
1,

1
ρ

))rn

,

where M1 = max (1, M) ≥ 1. We deduce from (3.3) that the sequence
{

log Ah
h

}∞
h=1

is bounded above. So there exists a real number σ > 0 such that

(3.27)
logAh

h
≤ σ (h = 1, 2, 3, . . .).

We obtain from (3.27)

(3.28) Arn ≤ eσrn (n = 1, 2, 3, . . .).

By (3.14), (3.23), (3.26), and (3.28), we get

(3.29) H(ηn) ≤ ernt
1 H(αn)rnt (n = 1, 2, 3, . . .),

where e1 = 3g+2C(K)eσM1 max
(
1, 1

ρ

)
H(θ)g−1 > 1 is a real constant independent

of n, rn, sn, ηn, αn, and H(αn). On the other hand, by (3.4) and the fact that ξ is
a Um−number, we can assume that limn→∞ H(αn) = ∞ and shall do so. Thus,
e1 ≤ H(αn) holds for sufficiently large n. Hence, it follows from (3.29) that

(3.30) H(ηn) ≤ H(αn)2rnt

for sufficiently large n.
(3) We have

(3.31) |F (ξ) − ηn| ≤ |F (ξ)− Fn(ξ)|+ |Fn(ξ) − ηn| (n = 1, 2, 3, . . .).

Now we shall determine an upper bound for |F (ξ) − Fn(ξ)| and |Fn(ξ) − ηn|. By
(3.6), (3.7), (3.24), and (3.25), we get

|F (ξ) − Fn(ξ)| ≤
∞∑

h=sn

|ch| |ξ|h ≤ M

( |ξ|
ρ

)sn
(

1 +
|ξ|
ρ

+
( |ξ|

ρ

)2

+ · · ·
)

.
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Thus, we obtain

(3.32) |F (ξ) − Fn(ξ)| ≤ e2

esn
3

(n = 1, 2, 3, . . .),

where e2 = M

1− |ξ|
ρ

> 0 and e3 = ρ
|ξ| > 1 are real constants independent of n, rn, sn, ηn, αn,

and H(αn). By (3.25), we have

(3.33) |ch| ≤ M

ρh
≤ MBh ≤ M1B

h (h = 0, 1, 2, . . .),

where B = max
(
1, 1

ρ

)
≥ 1. It follows from (3.4) that

(3.34) |αn| < |ξ|+ 1 (n = 1, 2, 3, . . .).

From (3.4), (3.7), (3.8), (3.33), (3.34), and the fact that |ξ| < |ξ|+ 1, we obtain

(3.35) |Fn(ξ) − ηn| ≤ 1
H(αn)rnωn

(rn + 1)2 M rn
1 Brn (|ξ| + 1)rn .

Since {rn}∞n=1 is a strictly increasing subsequence of natural numbers, it follows that

limn→∞
rn

√
(rn + 1)2 = 1. Hence, there is a real number e4 > 1 such that

(3.36) (rn + 1)2 ≤ ern
4

for sufficiently large n. By (3.35) and (3.36), we have for sufficiently large n

(3.37) |Fn(ξ) − ηn| ≤ ern
5

H(αn)rnωn
,

where e5 = e4M1B (|ξ| + 1) > 1. From (3.37) and the fact e5 ≤ H(αn) for suffi-
ciently large n, we get

(3.38) |Fn(ξ) − ηn| ≤ 1
H(αn)rn(ωn−1)

for sufficiently large n. Let λ be a real number such that 0 < λ < min (1, loge3).
Then the inequalities

(3.39)
e2

esn
3

≤ 1
H(αn)rn(ωn−1)λ

and

(3.40)
1

H(αn)rn(ωn−1)
≤ 1

H(αn)rn(ωn−1)λ
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hold for sufficiently large n. It follows from (3.31), (3.32), (3.38), (3.39), and (3.40)
that

(3.41) |F (ξ)− ηn| ≤ 2
H(αn)rn(ωn−1)λ

≤ 1
H(αn)rn(ωn−2)λ

for sufficiently large n. We deduce from (3.41) that limn→∞ |F (ξ)− ηn| = 0. Hence,
we get limn→∞ ηn = F (ξ). We infer from (3.30) and (3.41) that

(3.42) |F (ξ)− ηn| ≤ 1
H(ηn)γn

( lim
n→∞ γn = ∞)

for sufficiently large n, where γn = (ωn−2)λ
2t (n = 1, 2, 3, . . .).

(4) There exist the following two cases for the sequence {|F (ξ) − ηn|}:
(a) |F (ξ) − ηn| = 0 from some n onward:
In this case, ηn = F (ξ) from some n onward, that is, {ηn} is a constant sequence.

Since ηn ∈ Q(θ, β) (n = 1, 2, 3, . . .), in case a), we see that F (ξ) is an algebraic
number in Q(θ, β).

(b) |F (ξ)− ηn| �= 0 for infinitely many n:
In this case, F (ξ) is a U∗−number with μ∗(F (ξ)) ≤ t, and therefore we have

F (ξ) ∈ ⋃t
i=1 U∗

i . Hence, in case b), we see that F (ξ) ∈ ⋃t
i=1 Ui since U∗

i is identical
with Ui for any natural number i. This completes the proof of Theorem 3.1.

Theorem 3.2. Let K be an algebraic number field, and let F (z) =
∑∞

h=1 chzh

(ch ∈ K, h = 1, 2, 3, . . .) be a power series which satisfies the following conditions

(3.43)

⎧⎪⎪⎨
⎪⎪⎩

ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch �= 0, h = rn (n = 1, 2, 3, . . .),

ch �= 0, h = sn (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of positive rational integers
with

(3.44) 1 = s0 ≤ r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ . . . and lim
n→∞

sn

rn
= ∞.

Suppose that the radius of convergence R of the series
∑∞

h=1 H(ch)zh is positive,

(3.45) lim sup
h→∞

log H(ch)
h

< ∞, and lim sup
n→∞

(rn+1 − sn) < ∞.

Let L = Q(β) be an algebraic number field of degree m and αn (n = 1, 2, 3, . . .) be
algebraic numbers in L, and let deg(αn) = m (n = 1, 2, 3, . . .). Moreover, assume
that ξ is a Um−number such that

(3.46) |ξ − αn| ≤ 1
H(αn)rnωn

(n = 1, 2, 3, . . .),
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where H(αn) > 1 (n = 1, 2, 3, . . .) and ωn = sn
rn logH(αn)

(n = 1, 2, 3, . . .) with
limn→∞ ωn = ∞, and

(3.47) |ξ| < R.

Then either F (ξ) is an algebraic number in the algebraic number field K(β), or
F (ξ) ∈ ⋃t

i=1 Ui, where t is the degree of K(β) over Q.

Proof. By (3.43), the series F (z) can be written, for the complex numbers z at
which it converges, as

(3.48) F (z) =
∞∑

h=1

chzh =
∞∑

k=0

Pk(z),

where Pk(z) =
∑rk+1

h=sk
chzh (k = 0, 1, 2, . . .). We shall prove the theorem in four

steps.
(1) By Lemma 2.2, the radius of convergence of F (z) is greater than or equal to

R. Then F (z) converges for z = ξ.
(2) We shall consider the polynomials

(3.49) Fn(z) =
n−1∑
k=0

Pk(z) (n = 1, 2, 3, . . .).

Define the algebraic numbers
(3.50)

ηn = Fn(αn) = cs0α
s0
n + cs0+1α

s0+1
n + · · ·+ crnαrn

n ∈ K(β) (n = 1, 2, 3, . . .).

Since ηn ∈ K(β) (n = 1, 2, 3, . . .), we have deg(ηn) ≤ t (n = 1, 2, 3, . . .), where t is
the degree of K(β) over Q. Then we get

(3.51) T (ηn, αn, cs0, cs0+1, . . . , crn) = 0,

where

(3.52) T (y, x, x1, x2, . . . , xrn) = y − x1x
s0 − x2x

s0+1 − · · · − xrnxrn

is a polynomial in y, x, x1, x2, . . . , xrn with rational integral coefficients. The polyno-
mial T (y, x, x1, x2, . . . , xrn) is of degree 1 in each y, x1, x2, . . . , xrn and is of degree
rn in x. The height H(T ) of the polynomial T (y, x, x1, x2, . . . , xrn) is 1. Then, by
Lemma 2.1, we obtain

(3.53) H(ηn) ≤ 34rntH(αn)rnt
(
H(cs0)

t . . .H(cr1)
t
)
. . .
(
H(csn−1)

t . . .H(crn)t
)
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for n = 1, 2, 3, . . .. By the first inequality of (3.45), there exists a real number M∗ > 0
such that log H(ch)

h ≤ M∗ (h = 1, 2, 3, . . .), and hence we have

(3.54) H(ch) ≤ Ah (h = 1, 2, 3, . . .),

where A = eM∗
> 1. By the second inequality of (3.45), there exists a rational integer

σ > 0 such that

(3.55) si + (si + 1) + · · ·+ ri+1 ≤ σri+1 (i = 0, 1, 2, . . .).

It follows from (3.53), (3.54), and (3.55) that

(3.56) H(ηn) ≤ 34rntH(αn)rntA(r1+r2+···+rn)σt

for n = 1, 2, 3, . . .. Since rn ≥ sn−1 (n = 1, 2, 3, . . .) and limn→∞ sn
rn

= ∞, we have
limn→∞ rn

rn−1
= ∞. Thus, there exists a natural number n∗ > 1 such that 2rn−1 < rn

for n ≥ n∗. From this, by induction, we obtain

(3.57) rn∗ + rn∗+1 + · · ·+ rn < 2rn (n ≥ n∗).

We deduce from (3.56) and (3.57) that

(3.58) H(ηn) ≤ ernt
0 H(αn)rnt (n ≥ n∗),

where e0 = 34A(r1+r2+···+rn∗−1)σA2σ > 1 is a real constant independent of n, rn, sn, ηn,
αn, and H(αn). On the other hand, by (3.46) and the fact that ξ is a Um−number, we
can assume that limn→∞ H(αn) = ∞ and shall do so. Thus, e0 ≤ H(αn) holds for
sufficiently large n. Hence, it follows from (3.58) that

(3.59) H(ηn) ≤ H(αn)2rnt

for sufficiently large n.
(3) We have

(3.60) |F (ξ) − ηn| ≤ |F (ξ)− Fn(ξ)|+ |Fn(ξ) − ηn| (n = 1, 2, 3, . . .).

Let us choose a real number ρ satisfying the inequality

(3.61) 0 < |ξ| < ρ < R.

By (3.61), the series F (ρ) =
∑∞

h=1 chρh is convergent, so the sequence {chρ
h}∞h=1 is

bounded, and therefore there is a real number M > 0 such that

(3.62) |ch| ≤ M

ρh
(h = 1, 2, 3, . . .).
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It follows from (3.48), (3.49), (3.61), and (3.62) that

(3.63) |F (ξ) − Fn(ξ)| ≤ e1

esn
2

(n = 1, 2, 3, . . .),

where e1 = M

1− |ξ|
ρ

> 0 and e2 = ρ
|ξ| > 1. By (3.46), we get

(3.64) |αn| < |ξ|+ 1 (n = 1, 2, 3, . . .).

We deduce from (3.46), (3.49), (3.50), (3.62), (3.64), and the fact |ξ| < |ξ|+ 1 that

(3.65) |Fn(ξ) − ηn| ≤ 1
H(αn)rn(ωn−1)

for sufficiently large n. Let λ be a real number satisfying the inequality 0 < λ <

min(1, loge2). Then, for sufficiently large n, the inequalities

(3.66)
e1

esn
2

≤ 1
H(αn)rn(ωn−1)λ

and
1

H(αn)rn(ωn−1)
≤ 1

H(αn)rn(ωn−1)λ

hold. By (3.60), (3.63), (3.65), and (3.66), we have

(3.67) |F (ξ)− ηn| ≤ 2
H(αn)rn(ωn−1)λ

≤ 1
H(αn)rn(ωn−2)λ

for sufficiently large n. It follows from (3.67) that limn→∞ |F (ξ) − ηn| = 0. Hence,
we get limn→∞ ηn = F (ξ). We infer from (3.59) and (3.67) that

(3.68) |F (ξ)− ηn| ≤ 1
H(ηn)γn

( lim
n→∞ γn = ∞)

for sufficiently large n, where γn = (ωn−2)λ
2t (n = 1, 2, 3, . . .).

(4) There exist the following two cases for the sequence {|F (ξ) − ηn|}:
(a) |F (ξ) − ηn| = 0 from some n onward:
In this case, ηn = F (ξ) from some n onward, that is, {ηn} is a constant sequence.

Since ηn ∈ K(β) (n = 1, 2, 3, . . .), in case a), we see that F (ξ) is an algebraic
number in K(β).

(b) |F (ξ)− ηn| �= 0 for infinitely many n:
In this case, F (ξ) is a U∗−number with μ∗(F (ξ)) ≤ t, and therefore we have

F (ξ) ∈ ⋃t
i=1 U∗

i . Hence, in case b), we see that F (ξ) ∈ ⋃t
i=1 Ui since U∗

i is identical
with Ui for any natural number i. This completes the proof of Theorem 3.2.

3.2. Generalized lacunary power series in the field Qp of p−adic numbers

Theorem 3.3. Let K = Q(θ) be a p−adic algebraic number field of degree g

so that θ is a p−adic algebraic integer of degree g, and let F (z) =
∑∞

h=1 chzh

(ch ∈ K, h = 1, 2, 3, . . .) be a power series in Qp satisfying the following conditions

(3.69)

⎧⎨
⎩

ch = 0, rn < h < sn (n = 1, 2, 3, . . .),
ch �= 0, h = rn (n = 1, 2, 3, . . .),
ch �= 0, h = sn (n = 0, 1, 2, . . .),
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where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of positive rational integers
with

(3.70) 1 = s0 <r1 <s1≤r2 <s2≤r3<s3≤r4<s4≤ . . . and lim
n→∞

sn

rn
= ∞.

Suppose that the radius of convergence R of the series F(z) is positive (R may be finite
or infinite),

(3.71) lim sup
h→∞

log H(ch)
h

< ∞,

and

(3.72) lim sup
h→∞

logAh

h
< ∞ (Ah = [a1, a2, . . . , ah], h = 2, 3, 4, . . .) ,

where ah (h = 1, 2, 3, . . .) is a suitable natural number such that ahch (h = 1, 2, 3, . . .)
is a p−adic algebraic integer. Let L = Q(β) be a p−adic algebraic number field
of degree m and αn (n = 1, 2, 3, . . .) be p−adic algebraic numbers in L, and let
deg(αn) = m (n = 1, 2, 3, . . .). Moreover, assume that ξ is a p−adic Um−number
such that

(3.73) |ξ − αn|p ≤ 1
H(αn)rnωn

(n = 1, 2, 3, . . .),

where H(αn) > 1 (n = 1, 2, 3, . . .) and ωn = sn
rn logH(αn)

(n = 1, 2, 3, . . .) with
limn→∞ ωn = ∞, and

(3.74) |ξ|p < R.

Then either F (ξ) is a p−adic algebraic number in the p−adic algebraic number field
Q(θ, β), or F (ξ) ∈ ⋃t

i=1 Ui, where t is the degree of Q(θ, β) over Q.

Proof. By (3.69), the series F (z) can be written, for the p−adic numbers z at
which F (z) converges, as

(3.75) F (z) =
∞∑

h=1

chzh =
∞∑

k=0

Pk(z),

where Pk(z) =
∑rk+1

h=sk
chzh (k = 0, 1, 2, . . .). We shall prove the theorem in three

steps.
(1) We shall consider the polynomials

(3.76) Fn(z) =
n−1∑
k=0

Pk(z) (n = 1, 2, 3, . . .).
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Define the p−adic algebraic numbers

(3.77) ηn = Fn(αn) =
rn∑

h=s0

chαh
n ∈ Q(θ, β) (n = 1, 2, 3, . . .).

Since ηn ∈ Q(θ, β) (n = 1, 2, 3, . . .), we have deg(ηn) ≤ t (n = 1, 2, 3, . . .), where t

is the degree of Q(θ, β) over Q. By multiplying both sides of the equality

ηn =
rn∑

h=s0

chαh
n (n = 1, 2, 3, . . .)

by Arn , we obtain

(3.78) Arnηn −
rn∑

h=s0

Arnchαh
n = 0.

Arnch (h = s0, s0 + 1, . . . , rn) is a p−adic algebraic integer in the p−adic algebraic
number field K = Q(θ). Then we have

(3.79) Arnch =
ζ
(h)
0

D
+

ζ
(h)
1

D
θ + · · ·+ ζ

(h)
g−1

D
θg−1 (h = s0, s0 + 1, . . . , rn) ,

where ζ
(h)
0 , ζ

(h)
1 , . . . , ζ

(h)
g−1, and D =

∣∣Δ2(1, θ, . . . , θg−1)
∣∣ > 0 are rational integers.

Here,

Δ = Δ(1, θ, . . . , θg−1) =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
θ{1} θ{2} . . . θ{g}

...
...

...
...

(θg−1){1} (θg−1){2} . . . (θg−1){g}

∣∣∣∣∣∣∣∣∣
,

where (θi){1}, . . . , (θi){g} (i = 1, 2, . . . , g − 1) denote the field conjugates of θi (i =
1, 2, . . . , g − 1) for K = Q(θ). Obviously, Δ and D depend only on θ and the
conjugates of θ. We obtain from (3.78) and (3.79)

(3.80) DArnηn −
rn∑

h=s0

g−1∑
μ=0

ζ(h)
μ θμαh

n = 0.

Then we have

(3.81) T (ηn, θ, αn) = 0,

where
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(3.82) T (y, x1, x2) = DArny −
rn∑

h=s0

g−1∑
μ=0

ζ(h)
μ xμ

1xh
2

is a polynomial in y, x1, x2 with rational integral coefficients. Since DArn �= 0, the
polynomial T (y, x1, x2) is of degree 1 in y. The degree of T (y, x1, x2) in x1 is less
than or equal to g − 1, and the degree of T (y, x1, x2) in x2 is rn. Denote the height
of the polynomial T (y, x1, x2) by H . Then, by Lemma 2.1, we get
(3.83) H(ηn) ≤ 32t+(g−1+rn)tH tH(θ)(g−1)tH(αn)rnt (n = 1, 2, 3, . . .).

Now let us determine an upper bound for the height H of the polynomial T (y, x1, x2).
It follows from (3.82) that

(3.84) H = max
h=s0,...,rn
μ=0,...,g−1

(
DArn , |ζ(h)

μ |
)

.

Now we shall determine an upper bound for |ζ(h)
μ | (μ = 0, 1, . . . , g− 1; h = s0, s0 +

1, . . . , rn). Put
(3.85) δ = DArnch.

Since Arnch is a p−adic algebraic integer in K and D is a natural number, δ is a
p−adic algebraic integer in K. By (3.79) and (3.85), we have

(3.86) δ = ζ
(h)
0 + ζ

(h)
1 θ + · · ·+ ζ

(h)
g−1θ

g−1 (h = s0, s0 + 1, . . . , rn) .

By using the field conjugates of θ for K in (3.86), we obtain the system of linear
equations

(3.87)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ{1} = ζ
(h)
0 + ζ

(h)
1 θ{1} + · · ·+ ζ

(h)
g−1(θ

g−1){1}

δ{2} = ζ
(h)
0 + ζ

(h)
1 θ{2} + · · ·+ ζ

(h)
g−1(θ

g−1){2}
...
δ{g} = ζ

(h)
0 + ζ

(h)
1 θ{g} + · · ·+ ζ

(h)
g−1(θ

g−1){g}

in the unknowns ζ
(h)
0 , ζ

(h)
1 , . . . , ζ

(h)
g−1. Since Δ2(1, θ, . . . , θg−1) �= 0, the coefficient

matrix of (3.87) is different from zero. Thus, the system of linear equations (3.87) has
a unique solution which is

(3.88) ζ(h)
μ =

g∑
j=1

Δμj

Δ
δ{j} (μ = 0, 1, . . . , g − 1),

where Δμj (μ = 0, 1, . . . , g − 1; j = 1, 2, . . . , g) are constants which depend only
on θ and the conjugates of θ. It follows from (3.88) that

(3.89) |ζ(h)
μ | ≤

g∑
j=1

|Δμj|
|Δ| |δ{j}| ≤

g∑
j=1

|Δμj|
|Δ| |δ| ≤ |δ|

g−1∑
μ=0

g∑
j=1

|Δμj|
|Δ| .
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We infer from (3.85) that

(3.90) |δ| ≤ DArn |ch|.

By (3.89) and (3.90), we get

(3.91) |ζ(h)
μ | ≤ C(K)Arn|ch| (μ = 0, 1, . . . , g − 1; h = s0, . . . , rn),

where C(K) = D
∑g−1

μ=0

∑g
j=1

|Δμj |
|Δ| is a positive real number which depends only on

θ and the conjugates of θ. It follows from (3.84) and (3.91) that

(3.92) H ≤ max
h=s0,...,rn

(
DArn , C(K)Arn|ch|

) ≤ C(K)Arn max
h=s0,...,rn

(1, |ch|) ,

where C(K) = max
(
D, C(K)

) ≥ 1 is a real constant which depends only on θ
and the conjugates of θ. By (3.71), there exists a real number σ1 > 0 such that
logH(ch)

h ≤ σ1 (h = 1, 2, 3, . . .), and hence we have

(3.93) H(ch) ≤ Bh (h = 1, 2, 3, . . .),

where B = eσ1 > 1. By Lemma 2.2,

(3.94) |ch| ≤ 2H(ch) (h = 1, 2, 3, . . .)

holds. We infer from (3.93) and (3.94) that

(3.95) |ch| ≤ Dh (h = 1, 2, 3, . . .),

where D = 2B > 1. It follows from (3.95) that

(3.96) max
h=s0,...,rn

(1, |ch|) ≤ max
h=s0,...,rn

(
1, Dh

)
= Drn .

We deduce from (3.72) that the sequence
{

logAh
h

}∞
h=2

is bounded above. So there
exists a real number σ2 > 0 such that

(3.97)
logAh

h
≤ σ2 (h = 2, 3, 4, . . .).

We obtain from (3.97)

(3.98) Arn ≤ eσ2rn (n = 1, 2, 3, . . .).

By (3.83), (3.92), (3.96), and (3.98), we get

(3.99) H(ηn) ≤ ernt
0 H(αn)rnt (n = 1, 2, 3, . . .),
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where e0 = 3g+2C(K)eσ2DH(θ)g−1 > 1 is a real constant independent of n, rn, sn, ηn,
αn, and H(αn). On the other hand, by (3.73) and the fact that ξ is a p−adic
Um−number, we can assume that limn→∞ H(αn) = ∞ and shall do so. Thus,
e0 ≤ H(αn) holds for sufficiently large n. Hence, it follows from (3.99) that

(3.100) H(ηn) ≤ H(αn)2rnt

for sufficiently large n.
(2) We have

(3.101) |F (ξ) − ηn|p ≤ max (|F (ξ) − Fn(ξ)|p, |Fn(ξ)− ηn|p) (n = 1, 2, 3, . . .).

Now we shall determine an upper bound for |F (ξ) − Fn(ξ)|p and |Fn(ξ) − ηn|p. By
(3.74), there exists a real number ε with 0 < ε < R such that

(3.102) 0 < |ξ|p < R − ε.

Let the radius of convergence R = 1

lim suph→∞ h
√

|ch|p
of the series F (z) be finite.

Then there exists a natural number h0 > 1 such that

(3.103) |ch|p <
1

(R − ε)h
for h ≥ h0.

In fact, there is a real number M1 ≥ 1 such that

(3.104) |ch|p <
M1

(R − ε)h
(h = 1, 2, 3, . . .).

Let the radius of convergence R of the series F (z) be infinite. Then F (z) converges
for every p−adic number z. Let us choose a p−adic number ρ such that

(3.105) |ρ|p > |ξ|p > 0.

The series F (ρ) =
∑∞

h=1 chρh is convergent in Qp. Thus, we have limh→∞ |chρh|p =
0, so the sequence

{|chρ
h|p
}∞

h=1
is bounded, and therefore there is a real number

M2 > 0 such that

(3.106) |ch|p ≤ M2

|ρ|hp
(h = 1, 2, 3, . . .).

Whether the radius of convergence R of the series F (z) is finite or infinite, we
obtain from (3.104) and (3.106)

(3.107) 0 ≤ |ch|p ≤ M

rh
(h = 1, 2, 3, . . .),
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where M = max(M1, M2) ≥ 1 and r = min(R − ε, |ρ|p) > 0, and from (3.102) and
(3.105)

(3.108) 0 <
|ξ|p
r

< 1.

By (3.75), (3.76), (3.107), and (3.108), we get

|F (ξ) − Fn(ξ)|p ≤ M max

(( |ξ|p
r

)sn

,

(|ξ|p
r

)sn+1

, . . .

)
= M

( |ξ|p
r

)sn

.

Thus, we obtain

(3.109) |F (ξ) − Fn(ξ)|p ≤ M

esn
1

(n = 1, 2, 3, . . .),

where e1 = r
|ξ|p > 1. By (3.107), we have

(3.110) 0 ≤ |ch|p ≤ M

rh
≤ MEh (h = 1, 2, 3, . . .),

where E = max
(
1, 1

r

) ≥ 1. It follows from (3.73) that

(3.111) |αn|p < |ξ|p + 1 (n = 1, 2, 3, . . .).

From (3.73), (3.76), (3.77), (3.110), (3.111), and the fact that |ξ|p < |ξ|p+1, we obtain

(3.112) |Fn(ξ) − ηn|p ≤ ern
2

H(αn)rnωn
(n = 1, 2, 3, . . .),

where e2 = ME(|ξ|p +1) > 1. From (3.112) and the fact e2 ≤ H(αn) for sufficiently
large n, we get

(3.113) |Fn(ξ) − ηn|p ≤ 1
H(αn)rn(ωn−1)

for sufficiently large n. Let λ be a real number such that 0 < λ < min (1, loge1).
Then the inequalities

(3.114)
M

esn
1

≤ 1
H(αn)rn(ωn−1)λ

and

(3.115)
1

H(αn)rn(ωn−1)
≤ 1

H(αn)rn(ωn−1)λ

hold for sufficiently large n. It follows from (3.101), (3.109), (3.113), (3.114), and
(3.115) that
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(3.116) |F (ξ) − ηn|p ≤ 1
H(αn)rn(ωn−1)λ

for sufficiently large n. We deduce from (3.116) that limn→∞ |F (ξ)−ηn|p = 0. Hence,
we get limn→∞ ηn = F (ξ). We infer from (3.100) and (3.116) that

(3.117) |F (ξ)− ηn|p ≤ 1
H(ηn)γn

( lim
n→∞ γn = ∞)

for sufficiently large n, where γn = (ωn−1)λ
2t (n = 1, 2, 3, . . .).

(3) There exist the following two cases for the sequence {|F (ξ) − ηn|p}:
(a) |F (ξ) − ηn|p = 0 from some n onward:
In this case, ηn = F (ξ) from some n onward, that is, {ηn} is a constant sequence.

Since ηn ∈ Q(θ, β) (n = 1, 2, 3, . . .), in case a), we see that F (ξ) is a p−adic
algebraic number in Q(θ, β).

(b) |F (ξ)− ηn|p �= 0 for infinitely many n:
In this case, F (ξ) is a p−adic U∗−number with μ∗(F (ξ)) ≤ t, and therefore we

have F (ξ) ∈ ⋃t
i=1 U∗

i . Hence, in case b), we see that F (ξ) ∈ ⋃t
i=1 Ui since U∗

i is
identical with Ui for any natural number i. This completes the proof of Theorem 3.3.

Theorem 3.4. Let K be a p−adic algebraic number field, and let F (z) =
∑∞

h=1 chzh

(ch ∈ K, h = 1, 2, 3, . . .) be a power series in Qp satisfying the following conditions

(3.118)

⎧⎪⎪⎨
⎪⎪⎩

ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch �= 0, h = rn (n = 1, 2, 3, . . .),

ch �= 0, h = sn (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of positive rational integers
with

(3.119) 1 = s0 ≤ r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ . . . and lim
n→∞

sn

rn
= ∞.

Suppose that the radius of convergence R of the series F (z) is positive,

(3.120) lim sup
h→∞

logH(ch)
h

< ∞, and lim sup
n→∞

(rn+1 − sn) < ∞.

Let L = Q(β) be a p−adic algebraic number field of degree m and αn (n =
1, 2, 3, . . .) be p−adic algebraic numbers in L, and let deg(αn) = m (n = 1, 2, 3, . . .).
Moreover, assume that ξ is a p−adic Um−number such that

(3.121) |ξ − αn|p ≤ 1
H(αn)rnωn

(n = 1, 2, 3, . . .),
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where H(αn) > 1 (n = 1, 2, 3, . . .) and ωn = sn
rn logH(αn)

(n = 1, 2, 3, . . .) with
limn→∞ ωn = ∞, and

(3.122) |ξ|p < R.

Then either F (ξ) is a p−adic algebraic number in the p−adic algebraic number field
K(β), or F (ξ) ∈ ⋃t

i=1 Ui, where t is the degree of K(β) over Q.

Proof. It follows the same lines of step 2) of the proof of Theorem 3.2 and of steps
2), 3) of the proof of Theorem 3.3.

3.3. Examples

We will make use of the following lemma, due to Zeren [20, Satz 1], in order to
construct some examples for our results.

Lemma 3.1. (Zeren [20]). Let F (z) =
∑∞

i=0 cniz
ni be a power series, where

cni = bni
ani

, bni ∈ Z\{0}, ani ∈ N (i = 0, 1, 2, . . .), and {ni}∞i=0 is an infinite sequence
of non-negative rational integers with

0 ≤ n0 < n1 < n2 < n3 < . . . and lim
i→∞

ni+1

ni
= ∞.

Suppose that the radius of convergence R of the series F (z) is positive and

lim sup
i→∞

log Ani

ni
< ∞ (Ani = [an0 , an1, . . . , ani ], i = 1, 2, 3, . . .) .

Moreover, assume that α is an algebraic number of degree m with 0 < |α| < R such
that the absolute values of its conjugates are pairwise different. Then F (α) ∈ Um.

We give the following example for our result Theorem 3.1.

Example 3.1. Let K be the algebraic number field Q( g
√

p) of degree g, where
p is a prime number and g ≥ 2 is a rational integer, and let F (z) =

∑∞
h=0 chzh

(ch ∈ K, h = 0, 1, 2, . . .) be a power series with{
ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch = g
√

p, sn ≤ h ≤ rn+1 (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of non-negative rational inte-
gers, determined by

s0 = 0, sn = ((n + 2)!)(n+2)! and rn = 2 ((n + 1)!)(n+1)! (n = 1, 2, 3, . . .).

Suppose that α is an algebraic number of degree m with 0 < |α| ≤ e−1 < 1 such that
the absolute values of its conjugates are pairwise different. Then the series F (z) =
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∑∞
h=0 chzh and the Mahler’s Um−number ξ =

∑∞
ν=1 αrν , ξ is a Um−number by

Lemma 3.1, satisfy the conditions of Theorem 3.1. (The algebraic numbers αn (n =
1, 2, 3, . . .) in the hypothesis of Theorem 3.1 may be taken as αn =

∑n
ν=1 αrν ∈ L :=

Q(α) (n = 1, 2, 3, . . .). By the proof of Satz 1 in Zeren [20, pp. 93-101], deg(αn) = m
from some n onward and the sequence {H(αn)}∞n=1 is not bounded above. Hence, we
can assume that deg(αn) = m (n = 1, 2, 3, . . .) and H(αn) > 1 (n = 1, 2, 3, . . .) by
working with an appropriate subsequence of {αn}∞n=1 if necessary. It is also remarkable
to notice that H(αn) ≤ arn (n = 1, 2, 3, . . .), where a > 1 is a real constant, by
Lemma 2.1.) Then either F (ξ) is an algebraic number in the algebraic number field
K(α) = Q( g

√
p, α), or F (ξ) ∈ ⋃t

i=1 Ui, where t is the degree of Q( g
√

p, α) over Q.

Example 3.2. In Example 3.1, if we take the sequences {sn}∞n=0 and {rn}∞n=1 as
s0 = 1, sn = ((n + 1)!)(n+1)! (n = 1, 2, 3, . . .) and rn = (n!)n! + 1 (n = 1, 2, 3, . . .),
then this yields an example for Theorem 3.2.

We may also try to adapt Example 3.1 and Example 3.2 to the field Qp of p−adic
numbers in order to obtain examples for Theorem 3.3 and Theorem 3.4.
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59 (2000), 59-88.
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6. G. Kekeç, On Some Lacunary Power Series with Algebraic Coefficients for Liouville
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10. J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die
Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys., 48
(1939), 176-189.

11. W. J. LeVeque, On Mahler’s U -numbers, J. London Math. Soc., 28 (1953), 220-229.

12. K. Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus. I, II, J.
Reine Angew. Math., 166 (1932), 118-150.
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20. B. M. Zeren, Über einige komplexe und p-adische Lückenreihen mit Werten aus den
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