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MULTIPLE SOLUTIONS OF A p(x)-LAPLACIAN EQUATION INVOLVING
CRITICAL NONLINEARITIES

Yuan Liang, Xianbin Wu*, Qihu Zhang* and Chunshan Zhao

Abstract. In this paper, we consider the existence of multiple solutions for the
following p(x)-Laplacian equations with critical Sobolev growth conditions{

−div(|∇u|p(x)−2 ∇u) + |u|p(x)−2
u = f(x, u) in Ω,

u = 0 on ∂Ω.

We show the existence of infinitely many pairs of solutions by applying the
Fountain Theorem and the Dual Fountain Theorem respectively. We also present
a variant of the concentration-compactness principle, which is of independent
interest.

1. INTRODUCTION

In recent years, there are a lot of interest in the study of various mathematical
problems with variable exponent (see [2-6, 13, 14, 16-25, 30-34, 36-39, 42, 44-51, 54-
58] and references therein). We refer readers to [17, 51] for an overview of this research
area and [2, 13, 49, 58] for the background of these problems. Recently, people are
also interested in the applications of variable exponent analysis to image restoration [29,
30, 34, 38]. The most typical differential equation with variable exponent is the p(x)-
Laplacian equation, which is a generalization of the usual p-Laplacian equation with the
constant exponent p being replaced by a variable exponent p(x). For Sobolev spaces
with variable exponent which have been used to study the p(x)-Laplacian equations,
we refer readers to [16, 19, 37]. On the existence of solutions of elliptic equations
with variable exponent and subcritical growth conditions, we refer readers to [5, 6, 21,
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23, 31, 54]. However, to the best of our knowledge, results on elliptic equations with
variable exponent and critical growth condition are rare (see [24, 25]).
In this paper, we consider the existence of multiple solutions of the following

equations with critical Sobolev growth conditions

(P)

{
−div(|∇u|p(x)−2∇u) + |u|p(x)−2 u = f(x, u) in Ω,

u = 0 on ∂Ω,

where �p(x)u := div(|∇u|p(x)−2 ∇u) is called the p(x)-Laplacian; Ω ⊂ R
N is an

open bounded dommain, p(x) ∈ C(Ω) is Lipschitz continuous and 1 < inf
x∈Ω

p(x) ≤
sup
x∈Ω

p(x) < N ; f satisfies the following condition.

|f(x, t)| ≤ C(1 + |t|p∗(x)−1), ∀(x, t) ∈ Ω× R,

where p∗(x) =

{
Np(x)/(N − p(x)), p(x) < N,

∞, p(x) ≥ N.
Because of its non-homogeneity, the p(x)-Laplacian possesses more complicated

nonlinearity than the p-Laplacian. Many results for p-Laplacian problems do not hold
for p(x)-Laplacian problems anymore. For examples,
(10) If Ω ⊂ R

N is an open bounded domain, the Rayleigh quotient

λp(x) = inf
u∈W

1,p(·)
0 (Ω)\{0}

∫
Ω

1
p(x)

|∇u|p(x) dx∫
Ω

1
p(x)

|u|p(x) dx

is zero in general. Only under some special conditions, we have λp(x) > 0. For
example, λp(x) > 0 if and only if p(x) is monotone in one dimensional case (i.e.
N = 1) (see [22]). It is well known that the fact that λp > 0 is very important in the
study of p-Laplacian problems.
(20) The norm in Lp(·)(Ω) is of Luxemburg type (we will explain later in the second

section). It is easy to see that
∫
Ω |u|p(x) dx = |u|p(ξ)

p(·) for some ξ ∈ Ω. Hence the integral
and the norm can not keep the constant exponent relationship. It implies that we will
have more difficulties in the study of p(x)-Laplacian problems. For example, it is very
difficult to get the best Sobolev imbedding constant when we deal with the critical
Sobolev exponent problems. Even if the best Sobolev imbedding constant could be
obtained, it is also hard to be applied to study the critical exponent problems.
In [8], Brézis and Nirenberg initially studied the equations involving critical Sobolev

exponents. In [40, 41], Lions discovered the concentration-compactness principles
which have been proved to be very effective in variational problems involving critical
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Sobolev growth conditions. These principles are currently named as the first and second
concentration-compactness principles (CCP1, CCP2). The proof of these concentration-
compactness principles can also be found in [52, 53]. In [11], Chabrowski formulated
a variant of these two principles, namely, the concentration-compactness principle at
infinity (CCP∞) for both critical and subcritical cases. As to p-Laplacian problems
with critical growth conditions, there are many results (see [1, 7-10, 15-18, 26-28, 35,
43-47] and the references therein). But results on the p(x)-Laplacian problems with
critical growth conditions are rare.
In [24], Fu gave the concentration-compactness principle in Lp(·)(Ω) space, and

discussed the existence of at least one nontrivial solution. Our aim here is to deal
with the existence of multiple solutions for p(x)-Laplacian problems involving critical
growth conditions. We obtain the existence of infinitely many pairs of solutions by
the Fountain Theorem and the Dual Fountain Theorem. Especially, we give a variant
of concentration-compactness principle. These results are extension of results of p-
Laplacian problems.
This paper is organized as follows. In Section 2, we introduce some basic properties

of the variable exponent Sobolev spaces, and also present a variant of concentration-
compactness principle. In Section 3, several important properties of p(x)-Laplacian are
presented. Finally, we give the main results and the proofs in Section 4.

2. WEIGHTED VARIABLE EXPONENT LEBESGUE AND SOBOLEV SPACES

In order to discuss the problem (P), we need the functional spaceW 1,p(·)(Ω) which
is called variable exponent Sobolev space. To deal with critical nonlinearities, we also
need a variant of the concentration-compactness principle. Let S(Ω) be the set of all
measurable real valued functions defined on Ω. Denote

h+ = ess sup
x∈Ω

h(x), h− = ess inf
x∈Ω

h(x), for any h ∈ S(Ω),

C+(Ω) =
{
h
∣∣h ∈ C(Ω), h− ≥ 1 for x ∈ Ω

}
,

Lp(·)(Ω) =
{
u | u ∈ S(Ω),

∫
Ω |u(x)|p(x) dx < ∞

}
.

The Luxemburg norm on Lp(·)(Ω) is defined by

|u|p(·) = inf

{
λ > 0

∣∣∣∣∣
∫

Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Under the norm as above (Lp(·)(Ω), |·|p(·)) becomes a Banach space, which is called
variable exponent Lebesgue space.
The space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) =
{
u ∈ Lp(·) (Ω)

∣∣∣|∇u| ∈ Lp(·) (Ω)
}

,



2058 Yuan Liang, Xianbin Wu, Qihu Zhang and Chunshan Zhao

in which the norm is defined by

‖u‖p(·) = |u|p(·) + |∇u|p(·) , ∀u ∈ W 1,p(·) (Ω) .

Let r0(·) be the conjugate function of r(·), namely r0(x) =

{
r(x)

r(x)−1 , r ∈ C(Ω)
1, r = ∞ .

Proposition 2.1 . (see [19]).

(i) If q ∈ L∞(Ω), 1 < q− ≤ q+ < ∞, then the space (Lq(·)(Ω), |·|q(·)) is a
separable, uniformly convex Banach space, and it’s conjugate space is Lq0(·)(Ω)
where 1

q(x)
+ 1

q0(x)
≡ 1. For any u ∈ Lq(·)(Ω) and v ∈ Lq0(·)(Ω), we have∣∣∣∣∫

Ω
uvdx

∣∣∣∣ ≤ (
1
q−

+
1

(q0)−
) |u|q(·) |v|q0(·) .

(ii) If Ω ⊂ R
N is open bounded, 1 ≤ p1, p2 ∈ C(Ω), p1(x) ≤ p2(x) for any x ∈ Ω,

then Lp2(·)(Ω) ⊂ Lp1(·)(Ω), and the imbedding is continuous.

Proposition 2.2. (see [19]). If we denote

ρ(u) =
∫

Ω
|u|p(x) dx, ∀u ∈ Lp(·)(Ω),

then

(i) |u|p(·) < 1(= 1; > 1) ⇐⇒ ρ(u) < 1(= 1; > 1);

(ii) |u|p(·) > 1=⇒|u|p−p(·) ≤ ρ(u) ≤ |u|p+

p(·) ; |u|p(·) < 1=⇒|u|p−p(·) ≥ ρ(u) ≥ |u|p+

p(·) ;

(iii) |u|p(·) → 0 ⇐⇒ ρ(u) → 0; |u|p(·) → ∞ ⇐⇒ ρ(u) → ∞.

Proposition 2.3. (see [19]). If u, un ∈ Lp(·)(Ω), n = 1, 2, · · · , then the following
statements are equivalent to each other:

(1) lim
k→∞

|uk − u|p(·) = 0;

(2) lim
k→∞

ρ (uk − u) = 0;

(3) uk → u in measure in Ω and lim
k→∞

ρ (uk) = ρ(u).

Proposition 2.4. (see [19]).

(i) W 1,p(·)(Ω) is a separable reflexive Banach space;
(ii) If 1 ≤ q ∈ C

(
Ω
)
and q(x) < p∗(x) for any x ∈ Ω, then the imbedding from

W 1,p(·)(Ω) to Lq(·) (Ω) is compact;
(iii) If p is Lipschitz continuous, q is measurable and satisfies 1 ≤ q(x) ≤ p∗(x) for

any x ∈ Ω, then the imbedding from W 1,p(·)(Ω) to Lq(·) (Ω) is continuous.



Multiple Solutions of a p(x)-Laplacian Equation Involving Critical Nonlinearities 2059

Proposition 2.5. (see [19]). If Ω is an open subset of R
N , f : Ω × R → R is a

Carathéodory function and satisfies

|f(x, s)| ≤ a(x) + b |s|p1(x)/p2(x) for any x ∈ Ω, s ∈ R,

where 1 ≤ p1, p2 ∈ C(Ω) , a(·) ∈ Lp2(·)(Ω), a(x) ≥ 0, b ≥ 0 is a constant, then the
Nemytsky operator from Lp1(·)(Ω) to Lp2(·)(Ω) defined by (Nfu)(x) = f(x, u(x)) is
a continuous and bounded operator.

Denote ‖u‖′p(·) = inf{λ > 0 | ∫Ω ∣∣∇u
λ

∣∣p(x)
dx +

∫
Ω

∣∣u
λ

∣∣p(x)
dx ≤ 1}, then it is easy

to see that ‖·‖′p(·) is an equivalence norm of ‖·‖p(·) on W 1,p(·) (Ω). In the following,
we will use ‖·‖′p(·) instead of ‖·‖p(·) on W 1,p(·) (Ω).
Let M(Ω) denote the class of nonnegative Borel measures of finite total mass, and

με
∗
⇀ μ in M(Ω) is defined by

∫
Ω ηdμε →

∫
Ω ηdμ for every test function η ∈ C(Ω).

Proposition 2.6. (see [24]). Assume Ω is an open bounded domain in R
N , p is

Lipschitz continuous on Ω and satisfy 1 < p(x) < N . Let {ωε} be a sequence in
W

1,p(·)
0 (Ω) of norm ‖∇ωε‖p(·) ≤ 1 such that

ωε ⇀ ω in W
1,p(·)
0 (Ω) , |∇ωε|p(x) ∗

⇀ μ in M(Ω), |ωε|p
∗(x) ∗

⇀ υ in M(Ω).

Denote

C∗ = sup{
∫

Ω
|ωε|p

∗(x) dx
∣∣∣ωε ∈ W

1,p(·)
0 (Ω) , |∇ωε|p(·) ≤ 1}

and then 0 < C∗ < +∞. The limit measures are of the form

μ = |∇ω|p(x) +
∑
j∈J

μjδxj + μ̃, μ(Ω) ≤ 1, υ = |ω|p∗(x) +
∑
j∈J

υjδxj , υ(Ω) ≤ C∗,

where xj ∈ Ω, J is a countable set, μ̃ ∈ M(Ω) is a nonatomic positive measure. The
atoms and the regular part satisfy the generalized Sobolev inequality

υ(Ω) ≤ C∗ max{μ(Ω)
p∗+
p− , μ(Ω)

p∗−
p+ }, υj ≤ C∗ max{μ

p∗+
p−

j , μ
p∗−
p+

j }.
We have the following version of the concentration-compactness principle:

Theorem 2.7. Assume Ω is an open bounded domain in R
N , p is Lipschitz con-

tinuous on Ω satisfying 1 < p(x) < N , 1 < q(x) ≤ p∗(x), εn → 0+ as n → +∞. Let
{ωn} be a sequence in W

1,p(·)
0 (Ω) of norm ‖∇ωn‖p(·) ≤ 1 such that

ωn ⇀ ω in W
1,p(·)
0 (Ω) , |∇ωn|p(x) ∗

⇀ μ in M(Ω), |ωn|q(x)−εn ∗
⇀ υ# in M(Ω).
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Denote

C∗
q = sup{|ω|q+

q(·) + 1
∣∣∣ω ∈ W

1,p(·)
0 (Ω) , |∇ωε|p(·) ≤ 1},

and then 0 < C∗
q < +∞. The limit measures are of the form

μ = |∇ω|p(x) +
∑
j∈J

μjδxj + μ̃, μ(Ω) ≤ 1,

υ# = |ω|q(x) +
∑
j∈J

υ#
j δxj , υ

#(Ω) ≤ C∗
q + 1,

υ#({x}) ≤ υ({x}), ∀x ∈ Ω,

where xj ∈ Ω, J is a countable set, and μ̃ ∈ M(Ω) is a non-atomic positive measure.
The atoms and the regular part satisfy the generalized Sobolev inequality

υ#(Ω) ≤ C∗
q max{μ(Ω)

q+

p− , μ(Ω)
q−
p+ }, υ#

j ≤ C∗
q max{μ

q+

p−
j , μ

q−
p+

j }.
In order to prove the Theorem 2.7, we need the following Lemma.

Lemma 2.8. Assume Ω is an open bounded domain in R
N , {fn} is bounded in

Lp(·)(Ω) and fn → f ∈ Lp(·)(Ω) a.e. on Ω. If 1 < p(x) < N , and εn → 0+ as
n → +∞, then

lim
n→∞{

∫
Ω
|fn|p(x)−εn dx −

∫
Ω
|fn − f |p(x)−εn dx} =

∫
Ω
|f |p(x) dx.

Proof. Without loss of generality, we may assume that εn ≤ 1
2 , n = 1, 2, · · · . It is

easy to see that

lim
n→∞

∫
Ω

|f |p(x)−εn dx =
∫

Ω

|f |p(x) dx.

Now it suffices to show that

(1) lim
n→∞{

∫
Ω
|fn|p(x)−εn dx −

∫
Ω
|fn − f |p(x)−εn dx −

∫
Ω
|f |p(x)−εn dx} = 0.

Denote

Wε,n(x) =
[∣∣∣|fn|p(x)−εn − |fn − f |p(x)−εn − |f |p(x)−εn

∣∣∣ − ε |fn − f |p(x)−εn

]
+

,

where [a]+ = max{a, 0}. Obviously, Wε,n(x) → 0 a.e. on Ω, as n → ∞.
Similarly to the proof of Lemma 2.1 of [24], we have∣∣∣|fn|p(x)−εn − |fn − f |p(x)−εn − |f |p(x)−εn

∣∣∣ ≤ ε |fn − f |p(x)−εn + C(ε) |f |p(x)−εn ,
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where ε and C(ε) are independent of n.
Therefore,Wε,n(x) ≤ C(ε) |f |p(x)−εn ≤ C(ε)(|f |p(x)+1) ∈ L1(Ω). By Lebesgue’s

Dominated Convergence Theorem, we have
∫
Ω Wε,n(x)dx → 0, as n → ∞. Similarly

to the proof of Lemma 2.1 of [24], we can see that (1) holds.

Proof of Theorem 2.7. There exists a subsequence of {un}( for simplicity we still
denote it as {un}) such that un(x) → u(x) a.e. on Ω. By Lemma 2.8, we have

lim inf
n→∞

∫
Ω′

|un|q(x)−εn dx −
∫

Ω′
|u|q(x) dx = lim inf

n→∞

∫
Ω′

|un − u|q(x)−εn dx,

lim inf
n→∞

∫
Ω
|un|q(x)−εn ηdx−

∫
Ω
|u|q(x) ηdx = lim inf

n→∞

∫
Ω
|un − u|q(x)−εn ηdx,

for every sub-domain Ω′ ⊂ Ω and η ∈ C(Ω). Thus

υ# = υ# − |u|q(x) =
∑
j∈J

υ#
j δxj + υ̃#,

with non-atomics υ̃# ∈ M(Ω). Similarly to the proof of Theorem 3.1 of [24], we can
see that υ̃# = 0. Thus υ# = |ω|q(x) +

∑
j∈J

υ
#
j δxj .

For any x0 ∈ Ω and ∀ε > 0, let φε ∈ C(RN ) with φε(x) ≥ 0, φε(x0) = 1,
φε(x) = 0 when |x − x0| ≥ ε. We have

υ#({x0}) ≤
∫

Ω
φε(x)υ#dx = lim

n→∞

∫
Ω

φε(x) |un|q(x)−εn dx

≤ lim
n→∞

∫
Ω

φε(x){|un|q(x) + 1}dx ≤
∫

Ω
φε(x)υdx + CεN .

Letting ε → 0, we have υ#({x0}) ≤ υ({x0}).

3. PROPERTIES OF OPERATORS AND VARIATIONAL PRINCIPLE

In the following, we will discuss the properties of the p(x)-Laplacian operator and
Nemytsky operator. Also, we will present several variational principles.
From now on, the letters c, ci, C, Ci, i = 1, 2, ..., denote positive constants which

may vary from line to line but are independent of the terms which take part in any
limit process. Denote X := W

1,p(·)
0 (Ω). We Consider the following functional

J(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx, u ∈ X.

Obviously (see [12]), J ∈ C1(X, R) and it is weak lower semi-continuous. Denote
L = J ′ : X → X∗, then we have
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(L(u), v) =
∫

Ω
|∇u|p(x)−2 ∇u∇vdx +

∫
Ω
|u|p(x)−2 uvdx, ∀u, v ∈ X.

Proposition 3.1. (see [21]).

(i) L : X → X∗ is continuous, bounded and strictly monotone;
(ii) L is a mapping of type (S+) , i.e. if un ⇀ u inX and lim

n→∞ (L(un)−L(u), un−
u) ≤ 0, then un → u in X;

(iii) L : X → X∗ is a homeomorphism.

Denote F (x, u) =
∫ u
0 f(x, t)dt,Ψ(u) =

∫
Ω F (x, u)dx, (Ψ′(u), v) =

∫
Ω f(x, u)vdx.

The corresponding functional of (P) is

ϕ(u) = J(u) − Ψ(u), ∀u ∈ X.

Then we have the following theorem.

Theorem 3.2.

(i) Ψ ∈ C1(X, R);
(ii) If f(x, u)/ |u|p∗(x)−1 → 0 as |u| → ∞, then Ψ and Ψ′ are weak-strong contin-

uous, i.e., un ⇀ u implies Ψ(un) → Ψ(u) and Ψ′(un) → Ψ′(u).

Proof.

(i) From the continuity of the Nemytsky operator, we can see that both Ψ and Ψ′

are continuous.
(ii) Since un ⇀ u, we have |un − u|p(·) → 0 and un → u a.e. on Ω. Thus,

F (x, un(x)) → F (x, u(x)) a.e. on Ω. Clearly,∫
U
|F (x, un)| dx ≤

∫
U
[ε |un|p

∗(x) + C(ε)]dx, ∀U ⊂ Ω,

then {|F (x, un)|} is uniformly integrable, and then{|F (x, un) − F (x, u)|} is
uniformly integrable. Noticing the boundedness of the domain Ω, we have

lim
n→∞

∫
Ω
|F (x, un) − F (x, u)| dx =

∫
Ω

lim
n→∞ |F (x, un) − F (x, u)|dx = 0.

Similarly, we can get the weak-strong continuity of Ψ′.

Since X is a reflexive and separable Banach space, there are sequences {ej} ⊂ X

and
{

e∗j
}
⊂ X∗ such that

X = span{ej , j = 1, 2, · · ·}, X∗ = spanw∗{e∗j , j = 1, 2, · · ·},
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and < e∗j , ei >=
{

1, i = j,

0, i �= j.
For convenience, we write

(2) Xj = span{ej}, Yk =
k⊕

j=1
Xj , Zk =

∞⊕
j=k

Xj.

Definition 3.3. (i) We say ϕ satisfies (PS) condition in X , if any sequence
{un} ⊂ X such that {ϕ(un)} is bounded and ‖ϕ′(un)‖X∗ → 0 as n → ∞, has a
convergent subsequence; (ii) We say ϕ satisfies (PS)∗c condition in X , if any sequence
{unj}⊂ X such that nj → ∞, unj ∈ Ynj , ϕ(unj) → c and (ϕ|Ynj

)′(unj) → 0,
contains a subsequence converging to a critical point of ϕ.
Let f(x, t) = g(x, t) + h(x, t). Denote

G(x, t) =
∫ t

0
g(x, s)ds, H(x, t) =

∫ t

0
h(x, s)ds.

We assume
(B1). There exist a positive constant M and a function θ(·) ∈ C1(Ω) satisfying

p(x) < θ(x) ≤ p∗(x), ∀x ∈ Ω,

such that h satisfies

0 < H(x, s) ≤ s

θ(x)
h(x, s), ∀x ∈ Ω, |s| ≥ M.

(B2). For the function θ(·) in (B1), there exists a small positive constant δ such
that g satisfies

|g(x, s)| ≤ |s| θ(x)
1+δ

−1 , ∀x ∈ Ω, |s| ≥ M.

Lemma 3.4. If (B1) and (B2) are satisfied, then every (PS) sequence of ϕ in X
is bounded.

Proof.. The conditions (B1) and (B2) together imply that

H(x, s) ≥ |s|θ(x) , ∀x ∈ Ω, when |s| is large enough,

|G(x, s)|+ |sg(x, s)| ≤ (1 + θ(x)) |s| θ(x)
1+δ + C, ∀(x, s) ∈ Ω× R.

Denote
l1 = min

x∈Ω
(

1
p(x)

− 1 + δ

θ(x)
),

where the positive constant δ is small enough such that l1 > 0.
Let {un} be a (PS) sequence. Since θ ∈ C1(Ω), we have



2064 Yuan Liang, Xianbin Wu, Qihu Zhang and Chunshan Zhao

c + ‖un‖p(·)

≥ ϕ(un) − (ϕ′(un),
1 + δ

θ(x)
un)

=
∫

Ω

1
p(x)

(|∇un|p(x) + |un|p(x))dx−
∫

Ω
F (x, un)dx

−
∫

Ω

1 + δ

θ(x)
(|∇un|p(x) + |un|p(x))dx

+
∫

Ω

1 + δ

θ(x)
unf(x, un)dx +

∫
Ω

1 + δ

θ2(x)
un |∇un|p(x)−2 ∇un∇θ(x)dx

≥
∫

Ω
(

1
p(x)

− 1 + δ

θ(x)
)(|∇un|p(x) + |un|p(x))dx +

∫
Ω

δ

θ(x)
H(x, un)dx

−
∫

Ω

(1 + δ) |∇θ(x)|
θ2(x)

|un| |∇un|p(x)−1 dx −
∫

Ω
C1 |un|

θ(x)
1+δ dx− C2

≥ l1

∫
Ω
(|∇un|p(x) + |un|p(x))dx +

∫
Ω

δ

θ(x)
H(x, un)dx

−
∫

Ω

(1 + δ) |∇θ(x)|
θ2(x)

|un| |∇un|p(x)−1 dx −
∫

Ω
C1 |un|

θ(x)
1+δ dx− C2.

Since θ ∈ C(Ω) it follows that

(1 + δ) |∇θ(x)|
θ2(x)

|un| |∇un|p(x)−1

≤ C4
1

p(x)
(

1
ε1

|un|)p(x) + C4
p(x) − 1

p(x)
(ε1 |∇un|p(x)−1)

p(x)
p(x)−1

= C4
1

p(x)
1

ε
p(x)
1

|un|p(x) + C4
p(x)− 1

p(x)
ε

p(x)
p(x)−1

1 |∇un|p(x) .

It is not hard to see that∫
Ω

C1 |un|
θ(x)
1+δ dx ≤

∫
Ω
{ δ

1 + δ
(
C1

ε1
)

1+δ
δ +

1
1 + δ

(ε1 |un|
θ(x)
1+δ )1+δ}dx

= C5 +
∫

Ω

ε1

1 + δ
|un|θ(x) dx.

When the positive constants ε1 is small enough, we have

c + ‖un‖p(·) ≥ ϕ(un) − (ϕ′(un),
1 + δ

θ(x)
un)

≥ 2l1
3

∫
Ω
(|∇un|p(x) + |un|p(x))dx− C6.
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Thus {‖un‖p(·)} is bounded.
Lemma 3.5. If (B1) and (B2) are satisfied, {un} is a bounded (PS) sequence of

ϕ, then there exists a small enough positive constant C0 such that, if f satisfies

|f(x, s)| ≤ C + C0 |s|p
∗(x)−1 , ∀x ∈ Ω,

then {un} has a convergent subsequence in X .

Proof. Let {un} be a (PS) sequence of ϕ, i.e.

ϕ(un) → c, ϕ′(un) → 0 as n −→ ∞.

Since {un} is bounded, there exists a u ∈ X , such that un ⇀ u in X . By
Proposition 2.6, we may assume that there exist μ, ν ∈ M(Ω) and sequence {xj}j∈J

in Ω such that

un ⇀ u in W
1,p(·)
0 (Ω) ,

|∇un|p(x) ∗
⇀ μ = |∇u|p(x) +

∑
j∈J

μjδxj + μ̃, in M(Ω),

|un|p
∗(x) ∗

⇀ υ = |u|p∗(x) +
∑
j∈J

υjδxj , in M(Ω),

υj ≤ C∗
p∗ max{μ

p+∗
p−

j , μ
p−∗
p+

j },

where
C∗

p∗ = sup{|ω|p∗+
p∗(·) + 1

∣∣∣ω ∈ W
1,p(x)
0 (Ω) , |∇ω|p(·) ≤ 1}

and 0 < C∗
p∗ < +∞.

Next we will complete the proof of this Theorem in three steps.

Step 1. We claim that μ({xj}) = υ({xj}) = 0 for all j = 1, 2, · · · .
Obviously, there exists rn > 0 such that

p−(xn) : = inf
y∈Br(xn)∩Ω

p(y) ≤ p+(xn) := sup
y∈Br(xn)∩Ω

p(y)

< p∗−(xn) := inf
y∈Br(xn)∩Ω

p∗(y) ≤ p∗+(xn) := sup
y∈Br(xn)∩Ω

p∗(y), ∀r ∈ (0, rn].

For every ε > 0, we set φε(x) = φ(x−x1
ε ), x ∈ Ω, where φ ∈ C∞

0 (RN), 0 ≤ φ ≤ 1,
φ ≡ 1 in B1{0} and φ ≡ 0 in R

N\B2{0} and |∇φ| ≤ 2. Noting that ϕ′(un) → 0 in
X∗ as n −→ ∞ and {un} is bounded, we have



2066 Yuan Liang, Xianbin Wu, Qihu Zhang and Chunshan Zhao

∫
Ω
|∇un|p(x)−2 ∇un · ∇(φεun)dx +

∫
Ω
|un|p(x)−2 unφεundx

=
∫

Ω

f(x, un)φεundx + o(1)

≤
∫

Ω
(C |un|+ C0 |un|p

∗(x))φεdx + o(1).

Therefore,

(3)

∫
Ω

φε |∇un|p(x) dx +
∫

Ω

|un|p(x) φεdx +
∫

Ω

un |∇un|p(x)−2 ∇un∇φεdx

≤
∫

Ω
(C |un|+ C0 |un|p

∗(x))φεdx + o(1).

Due to the bounded-ness of {un} in X , we may assume

|∇un|p(x)−2 ∇un ⇀ T ∈ (Lp0(·)(Ω))N , f(x, un) ⇀ g(x) ∈ L(p∗(·))0(Ω).

Noting ϕ′(un) → 0 in X∗ as n −→ ∞, we also have∫
Ω
|∇un|p(x)−2∇un ·∇(φεu)dx+

∫
Ω
|un|p(x)−2 unφεudx =

∫
Ω

f(x, un)φεudx+o(1).

Thus,

(4)
∫

Ω
T · ∇(φεu)dx +

∫
Ω
|u|p(x) φεdx =

∫
Ω

f(x, u)uφεdx.

We claim

(5)
∫

Ω

un |∇un|p(x)−2 ∇un∇φεdx →
∫

Ω

uT∇φεdx as n → ∞.

In fact, ∫
Ω
{un |∇un|p(x)−2 ∇un∇φε − uT∇φε}dx

=
∫

Ω
(un − u) |∇un|p(x)−2 ∇un∇φεdx

+
∫

Ω
u∇φε{|∇un|p(x)−2∇un − T}dx → 0 as n → ∞.

From (3), (4) and (5) it follows that
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∫
Ω

φεdμ +
∫

Ω
|u|p(x) φεdx

≤
∫

Ω

C |u|φεdx +
∫

Ω

C0φεdυ −
∫

Ω

uT∇φεdx

=
∫

Ω
C |u|φεdx +

∫
Ω

C0φεdυ

−{
∫

Ω
f(x, u)uφεdx −

∫
Ω
|u|p(x) φεdx −

∫
Ω

φεT · ∇udx}.

Letting ε → 0, we get μ({x1}) ≤ C0υ({x1}) or μ1 ≤ C0υ1.

Similarly, μ({xj}) ≤ C0υ({xj}) or μj ≤ C0υj, j = 2, 3, · · · .
Suppose that μ({xj}) > 0 for some j. Since {un} is bounded in W

1,p(·)
0 (Ω), there

is a constant M∗ such that
∫
Ω |un|p

∗(x) dx ≤ M∗ < 0 for all n. If μ({xj}) ≥ 1, then

υj ≥ 1
C0

∣∣∣ υj

C∗
p∗

∣∣∣ p−(xj )

p∗+(xj) . It can be rewrited as

υj ≥
∣∣∣∣∣C0(C∗

p∗)
p−(xj)

p∗+(xj )

∣∣∣∣∣
−1

1− p−(xj)

p∗+(xj ) .

Similarly, if μ({xj}) < 1 then υj ≥ 1
C0

∣∣∣ υj

C∗
p∗

∣∣∣ p+(xj )

p∗−(xj ) and

υj ≥
∣∣∣∣∣C0(C∗

p∗)
p+(xj)

p∗−(xj )

∣∣∣∣∣
−1

1− p+(xj)

p∗−(xj ) .

Due to the definition of M∗, we also have∑
μ({xj})≥1

υj +
∑

μ({xj})<1

υj ≤ M∗.

Noting thatM∗ is a constant which is only dependent on {un}. When C0 (depend-
ing on M∗) is small enough, we reach a contradiction. Step 1 is completed.

Step 2. We claim that un → u strongly in Lp∗(x)(Ω) as n → ∞.
Since |un|p∗(x) ∗

⇀ ν = |u|p∗(x), we have

lim
n→∞

∫
Ω
|un|p

∗(x) dx =
∫

Ω
|u|p∗(x) dx,

which together with |un|p∗(x) → |u|p∗(x) in measure implies that {|un|p∗(x)} is uni-
formly integrable.
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Obviously,
|un − u|p∗(x) ≤ 2p∗(x)(|un|p∗(x) + |u|p∗(x)).

Thus {|un − u|p∗(x)} is uniformly integrable. Therefore

lim
n→∞

∫
Ω
|un − u|p∗(x) dx =

∫
Ω

lim
n→∞ |un − u|p∗(x) dx = 0.

Step 3. We claim that un → u strongly in X as n → ∞.
Since ϕ′(un) = J ′(un) − Ψ′(un) → 0 and un → u strong in Lp∗(x)(Ω) as n →

∞, we have Ψ′(un) → Ψ′(u) and J ′(un) → Ψ′(u) as n → ∞. As L = J ′ is a
homeomorphism, we have un → L−1(Ψ′(u)) in X as n → ∞.
Lemma 3.6. Assume Θ : X → R is weakly-strongly continuous and Θ(0) = 0,

γ > 0 is a fixed number. Let

(6) βk = βk(γ) = sup {Θ(u) | ‖u‖ ≤ γ, u ∈ Zk} ,

then βk → 0 as k → ∞.

Lemma 3.7. (see [23]). If |u(·)|q(·) ∈ Ls(·)/q(·)(Ω), where s(·), q(·) ∈ L∞
+ (Ω),

q(x) ≤ s(x), then u ∈ Ls(·)(Ω) and there is a number q ∈ [q−, q+] such that∣∣∣|u(·)|q(·)
∣∣∣
s(·)/q(·)

= (|u|s(·))q.

Proposition 3.8. (Fountain theorem, see [52, 53]). Assume X is a Banach space,
ϕ ∈ C1(X, R) is an even functional and satisfies (PS) condition, the subspaceXk, Yk

and Zk are defined by (2). If for each k = 1, 2, · · · , there exist ρk > γk > 0 such that

(A1) αk := inf {ϕ(u) | u ∈ Zk, ‖u‖ = γk} → ∞ (k → ∞);

(A2) βk := max {ϕ(u)| u ∈ Yk, ‖u‖ = ρk} ≤ 0.

then ϕ has a sequence of critical values tending to +∞.
Proposition 3.9. (Dual Fountain theorem, see [53]) Assume X is a Banach space,

ϕ ∈ C1(X, R) is an even functional, the subspace Xk, Yk and Zk are defined by (2),
and there is a k0 > 0 such that, for each k ≥ k0, there exists ρk > γk > 0 such that

(D1) inf {ϕ(u) | u ∈ Zk, ‖u‖ = ρk} ≥ 0,

(D2) ζk := max {ϕ(u)| u ∈ Yk, ‖u‖ = γk} < 0,

(D3) ηk := inf {ϕ(u) | u ∈ Zk, ‖u‖ ≤ ρk} → 0 (k → ∞),

(D4) ϕ satisfies (PS)∗c condition for every c ∈ [ηk0, 0),

then ϕ has a sequence of critical values ck tending to 0. Moreover, ck ∈ [ηk, ζk].
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4. MAIN RESULTS AND PROOFS

In this section, we study the existence of infinitely many pairs of solutions via
Fountain Theorem and the dual Fountain Theorem stated before, respectively.

Definition 4.1 . We say u ∈ X is a weak solution of (P) provided∫
Ω

|∇u|p(x)−2∇u · ∇vdx +
∫

Ω

|u|p(x)−2 u · vdx =
∫

Ω

f(x, u)vdx, ∀v ∈ X.

It is easy to see that the critical points of ϕ correspond to the weak solutions of
(P).
Remark 1. Regarding the p-Laplacian equations with the critical Sobolev growth

conditions, there are many results showing that c is a critical value of ϕ, when the
value c is less than some real number c∞ which dependents on the best imbedding
constant

Sp := inf{
∫

Ω
|∇u|p dx|

∫
Ω
|u|p∗ dx = 1} =

(
inf

u∈W 1,p(Ω)\{0}
|∇u|p
|u|p∗

)p

.

Due to the non-homogeneity in problems involving p(x)-Laplacian, we could only get

the best imbedding constantC = inf
u∈X\{0}

|∇u|p(·)
|u|p∗(·)

. We can see that
(

inf
u∈X\{0}

|∇u|p(·)
|u|p∗(·)

)p(x)

is a function dependent on the variable x. It is difficult to get the similar results.
As an application of Theorem 2.7, we show the existence of infinitely many pairs

of solutions by a perturbation argument.

Theorem 4.2. If f(x, t) = μ |t|α(x)−2 t + λ |t|q(x)−2 t, ∀(x, t) ∈ Ω × R, satisfying
1 < q(x) ≤ p∗(x), α+ < p− and

(7) q− > p+,

and the positive parameters λ and μ satisfy one of the following conditions
(10) λ is fixed, and μ is small enough;
(20) q+

q+−p− > q−
q−−α+ , μ is fixed and λ is small enough;

(30) q+

q+−p− < q−
q−−α+ , λ → 0+ and μ → +∞ such that ( 1

λ)
q−

q−−α+− q+

q+−p− μ
q−

q−−α+

is small enough;

(40) λ → 0+ and μ → 0+ such that ( 1
λ)

q−
q−−α+− q+

q+−p− μ
q+

q+−α− is small enough;

(50) λ → +∞ and μ → 0+ such that ( 1
λ)

q+

q+−α−− q−
q−−p+ μ

q+

q+−α− is small enough;
then (P) has a sequence of pairs of solutions {±un} such that ϕ(±un) < 0 and

ϕ(±un) → 0.
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Proof. Let’s consider a sequence of perturbation problems as follows.

(Pn)
{ −div(|∇u|p(x)−2 ∇u) + |u|p(x)−2 u = fn(x, u) in Ω,

u = 0 on ∂Ω,

where
fn(x, t) = μ |t|α(x)−2 t + λ |t|q(x)−2−εn t, ∀(x, t) ∈ Ω × R,

where εn is decreasing, ε1 < q− − p+ and εn → 0+. The corresponding functional of
(Pn) is

ϕn (u) =
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω
Fn(x, u)dx,

where Fn(x, u) =
∫ u
0 fn(x, t)dt.

For the functionals ϕn, we will check the conditions of Proposition 3.9 item by
item.
Assume ρk = 1 and k is large enough. For any u ∈ Zk with ‖u‖p(·) = ρk, it

follows from q− > p+, Theorem 3.2 and Lemma 3.6 that

ϕn (u) ≥ Ck > 0.

Hence (D1) is satisfied.
Assume γk < ρk is small enough. For any u ∈ Yk with ‖u‖p(·) = γk, we have

ϕn (u) ≤
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω

μ |u|α(x)

α(x)
dx



= bk < 0.

So (D2) is satisfied.
When ‖ u ‖p(·) is small enough, by direct computations, we have

ϕn (u) =
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx

−
∫

Ω

μ |u|α(x)

α(x)
dx−

∫
Ω

λ

q(x) − εn
|u|q(x)−εn dx

≥
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx

−
∫

Ω

μ |u|α(x)

α(x)
dx− λ

∣∣∣∣ 1
q(x)− εn

∣∣∣∣
q(x)
εn

|u|q(ζ)−εn

q(·)

≥
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx

−
∫

Ω

μ |u|α(x)

α(x)
dx− Cλ‖u‖q(ζ)−εn

p(·)
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≥
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx

−
∫

Ω

μ |u|α(x)

α(x)
dx− Cλ‖u‖q(ζ)−ε1

p(·) .

Noting that q− > p+, when k is large enough and ρk = 1, ∀u ∈ Zk, ‖u‖p(·) ≤ ρk,
we have

ϕn (u) ≥−
∫

Ω

μ |u|α(x)

α(x)
dx≥−2Cμ‖u‖p(·)βk(1)≥−2Cμβk(1)



= dk → 0 as k → ∞,

where βk(1) is defined in (6) with Θ(u) =
∫
Ω

|u|α(x)

α(x) dx. Hence (D3) is satisfied.
Similarly to the proof of Lemma 3.4, we see that every (PS)∗c sequence is bounded.

Similarly to the proof of the Theorem 4.6 of [55], we see that (D4) is satisfied.
For any n = 1, 2, · · · , from Proposition 3.9, we see that ϕn has a sequence of

critical values ck
n ∈ [dk, bk], and for every ck

n, ϕn has a related critical point uk
n.

If uk
n → uk ∈ X as n → +∞, then it is easy to see that uk is a critical point of

ϕ, and the critical value of ϕ(uk) = ck = lim
n→∞ck

n ∈ [dk, bk]. Thus uk is a nontrivial
solution to (P). Since dk → 0− as k → +∞, we can see that ϕ has infinitely many
solutions uk such that ϕ(uk) → 0− as k → +∞.
It only remains to prove that uk

n → uk as n → ∞ when k is large enough.
We only need to prove that uk0

n → ω in X and the rest is completely similar.
Since uk0

n is a critical point of ϕn, we have

(8) ck0
n = J(uk0

n ) −
∫

Ω

1
q(x) − εn

λ
∣∣∣uk0

n

∣∣∣q(x)−εn

dx −
∫

Ω

1
α(x)

μ
∣∣∣uk0

n

∣∣∣α(x)
dx,

and

(9)
∫

Ω

∣∣∣∇uk0
n

∣∣∣p(x)
dx +

∫
Ω

∣∣∣uk0
n

∣∣∣p(x)
dx =

∫
Ω

λ
∣∣∣uk0

n

∣∣∣q(x)−εn

dx +
∫

Ω

μ
∣∣∣uk0

n

∣∣∣α(x)
dx.

It follows from (8) and (9) that

ck0
n = (

1
p(ξ1)

− 1
q(ξ2) − εn

)λ
∫

Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx + (
1

p(ξ1)
− 1

α(ξ3)
)μ
∫

Ω

∣∣∣uk0
n

∣∣∣α(x)
dx,

and then

(
1

p(ξ1)
− 1

q(ξ2) − εn
)λ
∣∣∣uk0

n

∣∣∣q(ξ4)−εn

q(·)−εn

= (
1

p(ξ1)
− 1

q(ξ2) − εn
)λ
∫

Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx

= ck0
n + (

1
α(ξ3)

− 1
p(ξ1)

)μ
∫

Ω

∣∣∣uk0
n

∣∣∣α(x)
dx

≤ ck0
n + (

1
α(ξ3)

− 1
p(ξ1)

)μc1

∣∣∣uk0
n

∣∣∣α(ξ5)

q(·)−εn

,
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where ξi ∈ Ω, i = 1, · · · , 5, c1 = 2sup
n

|1| q(·)−εn
q(·)−εn−α(·)

< +∞. Thus

(
1

p(ξ1)
− 1

q(ξ2) − εn
)λ
∣∣∣uk0

n

∣∣∣q(ξ4)−εn

q(·)−εn

≤ (
1

α(ξ3)
− 1

p(ξ1)
)μc1

∣∣∣uk0
n

∣∣∣α(ξ5)

q(·)−εn

when n is large enough.

Therefore

(10)
∣∣∣uk0

n

∣∣∣
q(·)−εn

≤
[ μ( 1

α(ξ3)
− 1

p(ξ1)
)c1

λ( 1
p(ξ1)

− 1
q(ξ2)−εn

)

] 1
q(ξ4)−α(ξ5)−εn ,

which implies that

(
1

p(ξ1)
− 1

q(ξ2) − εn
)λ
∫

Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx = (
1

p(ξ1)
− 1

q(ξ2) − εn
)λ
∣∣∣uk0

n

∣∣∣q(ξ4)−εn

q(·)−εn

≤ (
1

p(ξ1)
− 1

q(ξ2)−εn
)
[( 1

α(ξ3)
− 1

p(ξ1)
)c1

1
p(ξ1)

− 1
q(ξ2)−εn

] q(ξ4)−εn
q(ξ4)−εn−α(ξ5) (

1
λ

)
α(ξ5)

q(ξ4)−εn−α(ξ5) μ
q(ξ4)−εn

q(ξ4)−εn−α(ξ5) .

Thus,

ck0
n + (

1
α(ξ3)

− 1
p(ξ1)

)μ
∫

Ω

∣∣∣uk0
n

∣∣∣α(x)
dx

= (
1

p(ξ1)
− 1

q(ξ2) − εn
)λ
∫

Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx

≤ (
1

p(ξ1)
− 1

q(ξ2)−εn
)
[( 1

α(ξ3)
− 1

p(ξ1)
)c1

1
p(ξ1)

− 1
q(ξ2)−εn

] q(ξ4)−εn
q(ξ4)−εn−α(ξ5) (

1
λ

)
α(ξ5)

q(ξ4)−εn−α(ξ5) μ
q(ξ4)−εn

q(ξ4)−εn−α(ξ5) .

Then we have

Jn(uk0
n ) = ck0

n +
∫

Ω

1
q(x) − εn

λ
∣∣∣uk0

n

∣∣∣q(x)−εn

dx +
∫

Ω

μ

α(x)

∣∣∣uk0
n

∣∣∣α(x)
dx

≤ C{2(
1

p(ξ1)
− 1

q(ξ2)
)
[( 1

α(ξ3)
− 1

p(ξ1)
)c1

1
p(ξ1)

− 1
q(ξ2)−εn

] q(ξ4)−εn
q(ξ4)−εn−α(ξ5)

(
1
λ

)
α(ξ5)

q(ξ4)−εn−α(ξ5) μ
q(ξ4)−εn

q(ξ4)−εn−α(ξ5) + |dk0 |}.

It implies that {uk0
n } is bounded.

From Theorem 2.7, we have

uk0
n ⇀ ω in W

1,p(·)
0 (Ω) ,

∣∣∣∇uk0
n

∣∣∣p(x) ∗
⇀ μ in M(Ω),

∣∣∣uk0
n

∣∣∣q(x)−εn ∗
⇀ υ# in M(Ω).
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Set
C∗

q = sup{|ωε|q+q(·) + 1
∣∣∣ωε ∈ W

1,p(·)
0 (Ω) , |∇ωε|p(·) ≤ 1}

and 0 < C∗
q < +∞. The limit measures are of the form

μ = |∇ω|p(x) +
∑
j∈J

μjδxj + μ̃, μ(Ω) ≤ 1,

υ# = |ω|p∗(x) +
∑
j∈J

υ#
j δxj , υ

#(Ω) ≤ C∗
q + |Ω| ,

where xj ∈ Ω, J is a countable set, μ̃ ∈ M(Ω) is a nonatomic measure.
Similarly to the proof of Lemma 3.5, we have

μj ≤ λυ#
j ≤ λυj ≤ λC∗

q max{μ
q+

p−
j , μ

q−
p+

j },
and then

υ#
j ≥

∣∣∣∣λ(C∗
q )

p−
q+

∣∣∣∣
−1

1− p−
q+ , when μ({xj}) ≥ 1,

υ#
j ≥

∣∣∣∣λ(C∗
q )

p+

q−
∣∣∣∣

−1

1− p+

q− , when 0 < μ({xj}) < 1,

which implies that there exist only finite υ#
j �= 0. Without loss of generality, we may

assume that υ#
j > 0 for exact j = 1, · · · , k, and then∑

j∈J

υ#
j =

∑
μ({xj})≥1

υ#
j +

∑
0<μ({xj})<1

υ#
j ≥

∑
μ({xj})≥1

a(
1
λ

)
q+

q+−p− +
∑

0<μ({xj})<1

a(
1
λ

)
q−

q−−p+ .

Therefore

(11)
∑
j∈J

υ#
j ≥

⎧⎨⎩ b( 1
λ)

q+

q+−p− , λ < 1

b( 1
λ)

q−
q−−p+ , λ ≥ 1

,

where b is a constant which is independent on (n, λ, μ).
On the other hand,∫

Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx=
∣∣∣uk0

n

∣∣∣q(ξ4)−εn

q(·)−εn

≤
[ ( 1

α(ξ3)
− 1

p(ξ1)
)c1

λ( 1
p(ξ1)

− 1
q(ξ2)−εn

)

] q(ξ4)−εn
q(ξ4)−εn−α(ξ5)

μ
q(ξ4)−εn

q(ξ4)−εn−α(ξ5) ,

which implies that

(12)
k∑

j=1

υ#
j ≤ lim

n→∞

∫
Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx ≤ c#(
1
λ

)
q(ξ4)

q(ξ4)−α(ξ5) μ
q(ξ4)

q(ξ4)−α(ξ5) ,
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where c# is a constant independent on (λ, μ, n).
From (11) and (12), we have

b( 1
λ)

q+

q+−p− , λ < 1

b( 1
λ)

q−
q−−p+ , λ ≥ 1

⎫⎬⎭ ≤
k∑

j=1

υ#
j ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c#( 1
λ)

q−
q−−α+ μ

q+

q+−α− , λ < 1, μ < 1,

c#( 1
λ)

q−
q−−α+ μ

q−
q−−α+ , λ < 1, μ ≥ 1,

c#( 1
λ)

q+

q+−α− μ
q+

q+−α− , λ ≥ 1, μ < 1,

c#( 1
λ)

q+

q+−α− μ
q−

q−−α+ , λ ≥ 1, μ ≥ 1,

.

Under one of the conditions of (10)-(50), we get a contradiction.
Thus υ#

j = μj = 0 for j = 1, 2, · · · . Therefore

lim
n→∞

∫
Ω

∣∣∣uk0
n

∣∣∣q(x)−εn

dx =
∫

Ω
|ω|q(x) dx.

Obviously,
∣∣uk0

n

∣∣q(x)−εn → |ω|q(x) a.e. on Ω. Thus {|un|q(x)−εn} is uniformly
integrable. It is easy to see that∣∣∣uk0

n

∣∣∣q(x)− q(x)
q(x)−1

εn ≤ 1 +
∣∣∣uk0

n

∣∣∣q(x)−εn

.

Then {∣∣uk0
n

∣∣q(x)− q(x)
q(x)−1

εn} is uniformly integrable. Obviously, ∣∣uk0
n

∣∣q(x)−εn−2
uk0

n →
|ω|q(x)−2 ω a.e. on Ω, then

lim
n→∞

∫
Ω

∣∣∣∣∣∣∣uk0
n

∣∣∣q(x)−εn−2
uk0

n − |ω|q(x)−2 ω

∣∣∣∣
q(x)

q(x)−1

dx = 0.

It means that Ψ′
n(uk0

n ) → Ψ′(ω) in X∗, where Ψn(uk0
n ) =

∫
Ω Fn(x, uk0

n )dx. Thus
uk0

n → L−1(Ψ′(ω)).

Remark 2. In [10], Cao and Yan dealt with the existence of infinitely many
solutions of the following Laplacian equation Dirichlet problems involving critical
nonlinearities and Hardy potential

(I)

{
−� u − μ

|x|2 u = |u|2∗−2 u + au in Ω,

u = 0, on ∂Ω,

by considering the following perturbed problem which is of subcritical growth,

(In)

{
−� u − μ

|x|2 u = |u|2∗−2−εn u + au in Ω,

u = 0, on ∂Ω.



Multiple Solutions of a p(x)-Laplacian Equation Involving Critical Nonlinearities 2075

By applying a local Pohozaev identity, Cao and Yan proved that the solution {un} of
(In) converges to a solution u of (I). Because of the nonhomogeneity of p(x)-Laplacian,
the Pohozaev identity cann’t be obtained by the usual methods. So the method in [10]
is very hard to be directly used in dealing with the p(x)-Laplacian problems.
Assume that

(13) f(x, t) = g(x, t) + h(x) |t|p∗(x)−2 t, ∀(x, t) ∈ Ω × R.

Denote

Φ(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω
G(x, u)dx.

where G(x, t) =
∫ t
0 g(x, s)ds.

Theorem 4.3. Assume that (13) is satisfied, and (P) satisfies the following condi-
tions (F1)-(F5):

(F1) Ω is a radially symmetric domain with respect to the origin, 1 < p < N and
the function p is radial, i.e.

p(x) = p(|x|) for any x ∈ Ω,

(F2) g and h are radial with respect to the space variable x, i.e.
g(x, t) = g(|x| , t) and h(x) = h(|x|) for any (x, t) ∈ Ω × R,

(F3) f(x,−t) = −f(x, t) for any (x, t) ∈ Ω × R,

(F4) |g(x, t)| ≤ C(1 + |t|θ(x)−1) for any (x, t) ∈ Ω × R, where the function
θ(·) ∈ C1(Ω) satisfies p(x) < θ(x) < p∗(x),

(F5) h(0) = 0, h ∈ C(Ω) and [h(·)]
−θ(·)

p∗(·)−θ(·) ∈ L1(Ω).
Then (P) has a sequence of radial solutions {±um} such that ϕ(±um) → +∞.
Proof. First, we will prove that ϕ satisfies the (PS) condition.
Let {un} be a (PS) sequence. We claim that {un} is bounded. Similarly to the

proof of Lemma 3.4, we have

c + ‖un‖p(·)

≥ ϕ(un) − (ϕ′(un),
1

θ(x)
un)

=
∫

Ω

1
p(x)

(|∇un|p(x) + |un|p(x))dx

−
∫

Ω

F (x, un)dx −
∫

Ω

1
θ(x)

(|∇un|p(x) + |un|p(x))dx

+
∫

Ω

1
θ(x)

unf(x, un)dx +
∫

Ω

1
θ2(x)

un |∇un|p(x)−2 ∇un∇θ(x)dx
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≥
∫

Ω
(

1
p(x)

− 1
θ(x)

)(|∇un|p(x)+|un|p(x))dx+
∫
Ω
(

1
θ(x)

− 1
p∗(x)

)h(x) |un|p
∗(x) dx

−
∫

Ω

|∇θ(x)|
θ2(x)

|un| |∇un|p(x)−1 dx − 2C1

∫
Ω
|un|θ(x) dx − C2

≥ l1

∫
Ω
(|∇un|p(x) + |un|p(x))dx +

∫
Ω
(

1
θ(x)

− 1
p∗(x)

)h(x) |un|p
∗(x) dx

−
∫

Ω

|∇θ(x)|
θ2(x)

|un| |∇un|p(x)−1 dx − 2C1

∫
Ω
|un|θ(x) dx − C2,

where l1 = inf
x∈Ω

( 1
p(x) − 1

θ(x)).

Since [h(·)]
−θ(·)

p∗(·)−θ(·) ∈ L1(Ω) and θ ∈ C1(Ω), similarly to the proof of Lemma 3.4,
we have

|∇θ(x)|
θ2(x)

|un| |∇un|p(x)−1

≤ C3
1

p(x)
1

ε
p(x)
1

{p∗(x)−p(x)
p∗(x)

ε
−p∗(x)p(x)
p∗(x)−p(x)

1 [h(x)]
−p(x)

p∗(x)−p(x) +
p(x)
p∗(x)

ε
p∗(x)
1 h(x) |un|p

∗(x)}

+C3
p(x)− 1

p(x)
ε

p(x)
p(x)−1

1 |∇un|p(x) ,

and

|un|θ(x) ≤ p∗(x)−θ(x)
p∗(x)

{ 1
ε1

[h(x)]
−θ(x)
p∗(x) }

p∗(x)
p∗(x)−θ(x) +

θ(x)
p∗(x)

{ε1[h(x)]
θ(x)

p∗(x) |un|θ(x)}
p∗(x)
θ(x)

=
p∗(x)−θ(x)

p∗(x)
(

1
ε1

)
p∗(x)

p∗(x)−θ(x) [h(x)]
−θ(x)

p∗(x)−θ(x) +
θ(x)
p∗(x)

(ε1)
p∗(x)
θ(x) h(x) |un|p

∗(x) .

Noting that θ(x)
p∗(x)−θ(x) > p(x)

p∗(x)−p(x) , when positive constants ε1 is small enough,
we have

c + ‖un‖p(·) ≥ ϕ(un) − (ϕ′(un),
1

θ(x)
un) ≥ 2l1

3

∫
Ω
(|∇un|p(x) + |un|p(x))dx− C4.

Thus {un} is bounded. Consequently,

un ⇀ u in W
1,p(·)
0 (Ω) , |∇un|p(x) ∗

⇀ μ in M(Ω), |un|p
∗(x) ∗

⇀ υ in M(Ω).

Set
C∗

p∗ = sup{|ωε|p
∗+

p∗(·) + 1
∣∣∣ωε ∈ W

1,p(·)
0 (Ω) , |∇ωε|p(·) ≤ 1}
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and 0 < C∗
p∗ < +∞. According to Proposition 2.6, the limit measures are of the form

μ = |∇u|p(x) +
∑
j∈J

μjδxj + μ̃, μ(Ω) ≤ 1,

υ = |u|p∗(x) +
∑
j∈J

υjδxj , υ(Ω) ≤ C∗,

where xj ∈ Ω, and J is a countable set, and μ̃ ∈ M(Ω) is a nonatomic positive
measure.
Similarly to the proof of Lemma 3.5, we may assume that μj > 0 for j = 1, · · · , k,

and the rest are zero.
If xk �= 0, since (P) is radial, it is easy to see that for any x ∈ Ω such that |x| = |xk|

and x /∈ {x1, · · · , xk}, we have μ(x) = μ(xk). It is a contradiction. Thus μ(x) = 0
for any x �= 0.
For every ε > 0, we set φε(x) = φ(x

ε ), x ∈ Ω, where φ ∈ C∞
0 (RN), 0 ≤ φ ≤ 1,

φ ≡ 1 in B1{0} and φ ≡ 0 in R
N\B2{0} and |∇φ| ≤ 2. Since ϕ′(un) → 0 in X∗ as

n −→ ∞ and {un} is bounded, we have (ϕ′(un), φεun) → 0, and then

(ϕ′(un), φεun) =
∫

Ω

|∇un|p(x)−2 ∇un · ∇(φεun)dx

+
∫

Ω
|un|p(x)−2 unφεundx −

∫
Ω

f(x, un)φεundx

=
∫

Ω
|∇un|p(x) φεdx +

∫
Ω
|un|p(x) φεdx

+
∫

Ω

un |∇un|p(x)−2 ∇un · ∇φεdx −
∫

Ω

f(x, un)φεundx → 0.

Without loss of generality, we may assume that un ⇀ u in W
1,p(·)
0 (Ω). From (5),

we have

(14)
∫

Ω
φεdμ+

∫
Ω
|u|p(x) φεdx+

∫
Ω

uT ·∇φεdx−
∫

Ω
g(x, u)φεudx−

∫
Ω

h(x)φεdυ=0.

It is easy to see that∣∣∣∣∫
Ω

uT · ∇φεdx

∣∣∣∣ ≤ |T | p(·)
p(·)−1

|u∇φε|p(·) ,

∫
Ω

∣∣∣|∇φε|p(x)
∣∣∣( p∗(x)

p(x)
)0

dx =
∫

B(0,2ε)
|∇φε|N dx ≤ (

2
ε
)NmeasB(0, 2ε) =

4N

N
�N ,

where �N is the Hausdorff measure of the unit ball of R
N , and∫

Ω
|u∇φε|p(x) dx =

∫
B(0,2ε)

|u∇φε|p(x) dx ≤ 2
∣∣∣|∇φε|p(x)

∣∣∣
( p∗(·)

p(·) )0

∣∣∣|u|p(x)
∣∣∣

p∗(·)
p(·) ,B(0,2ε)

.
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Then, we have

(15)
∣∣∣∣∫

Ω
uT · ∇φεdx

∣∣∣∣→ 0 as ε → 0.

It follows from (14) and (15) that

(16) μ(0) − h(0)υ(0) = 0.

Combining (F2), (F5) and (16), we have μ(0) = 0. Thus μ(x) = 0 for any x ∈ Ω.
Proposition 2.6 guaranties that υ(x) = 0 for any x ∈ Ω. Thus υj = μj = 0 for
j = 1, 2, · · · . Thus

lim
n→∞

∫
Ω

|un|p∗(x) dx =
∫

Ω

|u|p∗(x) dx.

Noting that we also have un → u a.e. in Ω, we conclude that {|un|p
∗(·)} is

uniformly integrable. Thus {|un − u|p∗(·)} is uniformly integrable. According to the
Vitally Theorem, we have

lim
n→∞

∫
Ω

|un − u|p∗(x) dx =
∫

Ω

lim
n→∞ |un − u|p∗(x) dx = 0.

It means that Ψ′(un) → Ψ′(u) in X∗. Then un → u∗
1 := L−1(Ψ′(u)). Therefore,

un → u in W
1,p(·)
0 (Ω). So ϕ satisfies the (PS) condition.

Next, we will prove that Ψ(·) is weak-strong continuous.
If un ⇀ u, we only need to prove

(17) lim
n→∞

∫
Ω

h(x) |un|p∗(x) dx =
∫

Ω
h(x) |u|p∗(x) dx.

Obviously, {un} is bounded in X . From the above proof, we see that υ{x} = 0
when x �= 0. Therefore, for any δ > 0, we have∫

Ω\B(0,δ)

∣∣∣h(x) |un|p
∗(x) − h(x) |u|p∗(x)

∣∣∣ dx → 0 as n → ∞.

For any ε > 0, it follows from the boundedness of {un} that∫
Ω

∣∣∣h(x) |un|p∗(x) − h(x) |u|p∗(x)
∣∣∣dx

=
∫

Ω\B(0,δ)

∣∣∣h(x) |un|p
∗(x)−h(x) |u|p∗(x)

∣∣∣ dx+
∫

B(0,δ)

∣∣∣h(x) |un|p
∗(x)−h(x) |u|p∗(x)

∣∣∣ dx

≤ max
x∈B(0,δ)

|h(x)|
∫

Ω
(|un|p

∗(x) + |u|p∗(x))dx+
ε

2
≤ ε,

when δ is small enough and n is large enough. Thus (17) is valid.
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Similarly to the proof of Theorem 4.3 in [55], we see that the conditions (A1)
and (A2) of Proposition 3.8 (Fountain Theorem) are satisfied. So ϕ has a sequence of
critical points {±um} in W

1,p(·)
0,r (Ω) such that ϕ(±um) → +∞, where

W
1,p(·)
0,r (Ω) =

{
u ∈ W

1,p(·)
0 (Ω) |u is radial

}
,

and it is easy to see that {±um} are radial solutions of (P).
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