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SOLVABILITY FOR A COUPLED SYSTEM OF FRACTIONAL
DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY

CONDITIONS

Chuanxi Zhu, Xiaozhi Zhang* and Zhaoqi Wu

Abstract. This article is concerned with the coupled system of fractional differ-
ential equations with nonlocal integral boundary conditions. The existence results
are obtained by applying some standard fixed point theorems. Finally, an example
is also provided to illustrate the availability of our main results.

1. INTRODUCTION

The fractional calculus, an active branch of mathematical analysis, is as old as
the classical calculus which we know today. In recent years, fractional differential
equations have been studied by many researchers, ranging from the theoretical aspects
of existence and uniqueness to the numerical methods for finding solutions. It is well
known that fractional differential equations provide an excellent tool for the description
of memory and hereditary properties of various materials and processes. With these
advantages, the fractional models become more practical and realistic than the classical
integer-order ones, such effects in the latter are not taken into account. As a result,
the subject of fractional differential equations is gaining more and more attention and
importance. For more details on this branch of differential equations, please refer to
the recent monographs of Miller and Ross [18], Kilbas et al. [13], Lakshmikantham
[15], Podlubny[19] , Hilfer [9], and the papers of [1-3, 5-7, 11, 16, 17, 27, 28, 30].
Recently, many researchers paid much attention to the coupled system of fractional

differential equations due to its applications in different fields, for instance, see [10,
22-26, 29] and references therein. Wang, Ahmad, et al. [23] discussed a coupled
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system of nonlinear fractional differential equations with m-point boundary conditions
on an unbounded domain.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dpu(t) + f(t, v(t)) = 0, Dqv(t) + g(t, u(t)) = 0, 2 < p, q < 3,

u(0) = u′(0) = 0, Dp−1u(+∞) =
m−2∑
i=1

βiu(ξi),

v(0) = v′(0) = 0, Dq−1v(+∞) =
m−2∑
i=1

γiv(ξi),

where t ∈ J = [0,+∞), f, g ∈ C(J × R,R), 0 < ξ1 < ξ2 < · · · < ξm−2 <
+∞, Dp and Dq denote the Riemann-Liouville fractional derivatives of order p and
q, respectively.
Yang [25] considered the boundary value problem (BVP) for a coupled system of

nonlinear fractional differential equations as follows:⎧⎨
⎩

Dαu(t) + a(t)f(t, v(t)) = 0, Dβv(t) + b(t)g(t, u(t)) = 0, 0 < t < 1,

u(0) = v(0) = 0, u(1) =
∫ 1

0
φ(t)u(t)dt, v(1) =

∫ 1

0
ψ(t)v(t)dt,

where 1 < α, β < 2, a, b ∈ C((0, 1), [0,+∞)), φ, ψ ∈ L1[0, 1] are nonnegative and
f, g ∈ C([0, 1] × [0,+∞), [0,+∞)). D is the standard Riemann-Liouville fractional
derivative.
However, in these above works, the existence results of boundary value problem

for nonlinear fractional differential equations were all obtained under the condition
that the nonlinear terms f, g were independent of the fractional derivative of unknown
functions v, u, respectively. But the opposite case is more complicated and difficult. To
the best of our knowledge, only few papers can be found to study these coupled systems
currently where the fractional derivatives of the unknown functions were involved in
the nonlinear terms explicitly ([4, 12, 22]). In the present work, we attempt to discuss
the coupled system where the nonlinear terms contain the fractional derivatives of the
unknown functions. More precisely, this paper deals with the following coupled system
of fractional differential equations involving integral boundary conditions:

(1.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDα
0+u(t)=f(t, v(t),cDp

0+v(t)),cD
β
0+v(t)=g(t, u(t),cDq

0+u(t)), 0<t<1,

au′(0) + u(η1) =
∫ 1

0
φ(s, v(s))ds, u(η2) + bu′(1) =

∫ 1

0
ψ(s, v(s))ds,

cv′(0) + v(ξ1) =
∫ 1

0
ϕ(s, u(s))ds, v(ξ2) + dv′(1) =

∫ 1

0
ρ(s, u(s))ds,

where 1 < α, β < 2, 0 < p, q < 1 and α− p− 1 ≥ 0, β − q − 1 ≥ 0. 0 ≤ η1 < η2 ≤
1, 0 ≤ ξ1 < ξ2 ≤ 1. f, g, φ, ψ, ϕ, ρ are given functions satisfying some assumptions
that will be specified later. The coupled system of Yang ([25]) can be recovered by
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choosing a = b = c = d = 0, η1 = ξ1 = 0, η2 = ξ2 = 1, and consequently, this result
is a generalization of [25].
It is worthwhile to mention that u(t) and v(t) always equal to zero at t = 0 if the

derivative is in the Riemann-Liouville sense ([22, 23, 25]). And many applied problems
require the definitions of fractional derivative which physically interpret the initial or
boundary value conditions. At this point, the fraction derivative in the sense of Caputo
satisfies this requirement. On the other hand, integral boundary conditions come up as
the values of functions on the boundary are connected to their values inside the domain,
and they have physical significations such as blood flow problems, underground water
flow, population dynamics, etc.. Sometimes, it is better to impose integral conditions
for more precise measures than the local conditions. And the boundary conditions in
(1.1) arise in the study of heat flow problems.
The rest of this paper is organized as follows. In Section 2, some preliminary

definitions, notations, and lemmas are listed that will be used in the sequel. In Section
3, the existence results of solutions for the coupled system (1.1) are obtained bymeans of
standard fixed point theorems. Finally, an example is given to illustrate the effectiveness
of the main results.

2. PRELIMINARIES

In this section, we present some basic knowledge and definitions about fractional
calculus theory, which can be found in [13, 18, 20].

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R

is defined by

Iα0+y(t) =
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds,

provided the right-hand side is point-wise defined on (0,∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a function
y : (0,∞) → R is defined by

(cDα
0+y)(t) =

1
Γ(n− α)

∫ t

0

(t− s)n−α−1y(n)(s)ds,

where n = −[−α].

Definition 2.3. The Riemann-Liouville fractional derivative of order α > 0 of a
function y : (0,∞) → R is defined by

Dα
0+y(t) =

1
Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1y(s)ds,

where n = −[−α], provided the right-hand side is point-wise defined on (0,∞).
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Lemma 2.1. ([15]). For α > 0, the general solution of the fractional differential
equation cDα

0+x(t) = 0 is given by

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1(n = −[−α]).

In view of Lemma 2.1, it turns out that

(2.1) Iα c
0+ Dα

0+x(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1(n = −[−α]).

Lemma 2.2. For given x, y ∈ C[0, 1], δ, σ, γ, κ ∈ C[0, 1], the unique solution of
the following boundary value problem

(2.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDα
0+u(t) = x(t), cDβ

0+v(t) = y(t), 0 < t < 1,

au′(0) + u(η1) =
∫ 1

0

δ(t)dt, u(η2) + bu′(1) =
∫ 1

0

σ(t)dt,

cv′(0) + v(ξ1) =
∫ 1

0
γ(t)dt, v(ξ2) + dv′(1) =

∫ 1

0
κ(t)dt,

is given by

(2.3)

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds+
b+ η2 − t

b− a+ η2 − η1

[∫ 1

0

δ(t)dt− 1
Γ(α)∫ η1

0

(η1 − s)α−1x(s)ds
]
− a+ η1 − t

b− a+ η2 − η1

[∫ 1

0

σ(t)dt− 1
Γ(α)∫ η2

0
(η2 − s)α−1x(s)ds− b

Γ(α− 1)

∫ 1

0
(1− s)α−2x(s)ds

]

and

(2.4)

v(t) =
1

Γ(β)

∫ t

0
(t− s)β−1y(s)ds+

d+ ξ2 − t

d− c+ ξ2 − ξ1

[∫ 1

0
γ(t)dt− 1

Γ(β)∫ ξ1

0

(ξ1 − s)β−1y(s)ds
]
− c+ ξ1 − t

d− c+ ξ2 − ξ1

[∫ 1

0

κ(t)dt− 1
Γ(β)∫ ξ2

0
(ξ2 − s)β−1y(s)ds− d

Γ(β − 1)

∫ 1

0
(1− s)β−2y(s)ds

]
.

Proof. Since (u, v) satisfies the BVP(2.2), we can see, from (2.1), that

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds+ c0 + c1t,(2.5)
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v(t) =
1

Γ(β)

∫ t

0
(t− s)β−1y(s)ds+ c′0 + c′1t,(2.6)

then the first order derivatives of u and v are given by

u′(t) =
1

Γ(α− 1)

∫ t

0
(t− s)α−2x(s)ds+ c1,

v′(t) =
1

Γ(β − 1)

∫ t

0
(t− s)β−1y(s)ds+ c′1.

Substituting the boundary value conditions into the above expressions yields that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ac1 +
1

Γ(α)

∫ η1

0
(η1 − s)α−1x(s)ds+ c0 + c1η1 =

∫ 1

0
δ(t)dt,

bc1 +
1

Γ(α)

∫ η2

0
(η2 − s)α−1x(s)ds+ c0 + c1η2

+
b

Γ(α − 1)

∫ 1

0

(1 − s)α−2x(s)ds =
∫ 1

0

σ(t)dt

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cc′1 +
1

Γ(β)

∫ ξ1

0

(ξ1 − s)β−1y(s)ds+ c′0 + c′1ξ1 =
∫ 1

0

γ(t)dt,

dc′1 +
1

Γ(β)

∫ ξ2

0
(ξ2 − s)β−1y(s)ds+ c′0 + c′1ξ2

+
d

Γ(β − 1)

∫ 1

0

(1 − s)β−2y(s)ds =
∫ 1

0

κ(t)dt.

Solving the above two equations , we have

c0 =
b+ η2

b− a+ η2 − η1

[∫ 1

0
δ(t)dt− 1

Γ(α)

∫ η1

0
(η1 − s)α−1x(s)ds

]

− a+ η1

b− a+ η2 − η1

[∫ 1

0

σ(t)dt− 1
Γ(α)

∫ η2

0

(η2 − s)α−1x(s)ds

− b

Γ(α− 1)

∫ 1

0

(1 − s)α−2x(s)ds
]
,

c′0 =
d+ ξ2

d− c+ ξ2 − ξ1

[∫ 1

0
γ(t)dt− 1

Γ(β)

∫ ξ1

0
(ξ1 − s)β−1y(s)ds

]

− c+ ξ1
d− c+ ξ2 − ξ1

[∫ 1

0
κ(t)dt− 1

Γ(β)

∫ ξ2

0
(ξ2 − s)β−1y(s)ds

− d

Γ(β − 1)

∫ 1

0
(1 − s)β−2y(s)ds

]
.
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c1 =
1

b− a + η2 − η1

[∫ 1

0
σ(t)dt−

∫ 1

0
δ(t)dt+

1
Γ(α)

∫ η1

0
(η1 − s)α−1x(s)ds

− 1
Γ(α)

∫ η2

0
(η2 − s)α−1x(s)ds− b

Γ(α − 1)

∫ 1

0
(1 − s)α−2x(s)ds

]
,

c′1 =
1

d− c+ ξ2 − ξ1

[∫ 1

0
κ(t)dt−

∫ 1

0
γ(t)dt+

1
Γ(β)

∫ ξ1

0
(ξ1 − s)β−1y(s)ds

− 1
Γ(β)

∫ ξ2

0
(ξ2 − s)β−1y(s)ds− d

Γ(β − 1)

∫ 1

0
(1− s)β−2y(s)ds

]
.

Substituting the values of c0, c1, c′0, c′1 into (2.5) and (2.6), we can obtain the solu-
tion of BVP (2.2) given by (2.3) and (2.4). �

Denote I = [0, 1]. Let X1 = {u|u ∈ C[0, 1],cDqu ∈ C[0, 1]} endowed with the
norm ||u||X1 = max

t∈I
|u(t)| + max

t∈I
|cDqu(t)|. Then X1 is a Banach space. Also

define the Banach space X2 = {v|v ∈ C[0, 1],cDpv ∈ C[0, 1]} with the norm
||v||X2 = max

t∈I
|v(t)|+ max

t∈I
|cDpv(t)|. For (u, v) ∈ X1 ×X2 � X , let ||(u, v)||X =

||(u, v)||X1×X2 = max{||u||X1, ||v||X2}. Clearly, {X, || · ||X} is a Banach space.
Now we define an operator T : X1 × X2 → X2 × X1 by T (u, v) = (T1v, T2u),

where

(2.7)

T1v(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, v(s),cDpv(s))ds

+
b+ η2 − t

b− a + η2 − η1

[∫ 1

0
φ(s, v(s))dt

− 1
Γ(α)

∫ η1

0

(η1 − s)α−1f(s, v(s),cDpv(s))ds
]

− a+ η1 − t

b− a + η2 − η1

[∫ 1

0

ψ(s, v(s))dt

− 1
Γ(α)

∫ η2

0
(η2 − s)α−1f(s, v(s),cDpv(s))ds

− b

Γ(α − 1)

∫ 1

0
(1 − s)α−2f(s, v(s),cDpv(s))ds

]
,

(2.8)

T2u(t) =
1

Γ(β)

∫ t

0
(t− s)β−1g(s, u(s),cDqu(s))ds

+
d+ ξ2 − t

d− c+ ξ2 − ξ1

[∫ 1

0

ϕ(s, u(s))ds

− 1
Γ(β)

∫ ξ1

0
(ξ1 − s)β−1g(s, u(s),cDqu(s))ds

]
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− c+ ξ1 − t

d− c+ ξ2 − ξ1

[∫ 1

0
ρ(s, u(s))ds

− 1
Γ(β)

∫ ξ2

0
(ξ2 − s)β−1g(s, u(s),cDqu(s))ds

− d

Γ(β − 1)

∫ 1

0

(1− s)β−2g(s, u(s),cDqu(s))ds
]
.

Thus, the existence of the BVP(1.1) has been translated into the fixed point problem
of the operator T . So in the next section, we shall discuss the fixed point of T .

3. MAIN RESULTS

In this section, we shall obtain the existence results of the BVP(1.1). To this end,
we need the following hypotheses:

(H1) There exist positive functions li(i = 1, 2, . . . , 8) such that

|f(t, x1, y1) − f(t, x2, y2)| ≤ l1(t)|x1 − x2|+ l2(t)|y1 − y2|,
|g(t, x1, y1) − g(t, x2, y2)| ≤ l3(t)|x1 − x2|+ l4(t)|y1 − y2|,

|φ(t, v1) − φ(t, v2)| ≤ l5(t)|v1 − v2|, |ψ(t, v1) − ψ(t, v2)| ≤ l6(t)|v1 − v2|,

|ϕ(t, u1) − ϕ(t, u2)| ≤ l7(t)|u1 − u2|, |ρ(t, u1) − ρ(t, u2)| ≤ l8(t)|u1 − u2|.

(H2) Assume that � = max{�1,�2} satisfies 0 < � < 1 with �1 = �11 +
�12,�2 = �21 + �22, where

�11 = max{Iαl1(1) + λ1I
αl1(η1) + λ2I

αl1(η2) + |b|λ2I
α−1l1(1) + λ1I

1l5(1)

+λ2I
1l6(1), Iαl2(1) + λ1I

αl2(η1) + λ2I
αl2(η2) + |b|λ2I

α−1l2(1)},

�12 = max{Iα−pl1(1) + λ3(Iαl1(η1) + Iαl1(η2) + |b|Iα−1l1(1) + I1l5(1)

+I1l6(1)), Iα−pl2(1) + λ3(Iαl2(η1) + Iαl2(η2) + |b|Iα−1l2(1))},

�21 = max{Iβl3(1) + λ4I
βl3(ξ1) + λ5I

βl3(ξ2) + |d|λ5I
β−1l3(1) + λ4I

1l7(1)

+λ5I
1l8(1), Iβl4(1) + λ4I

βl4(ξ1) + λ5I
βl4(ξ2) + |d|λ5I

β−1l4(1)},

�22 = max{Iβ−ql3(1) + λ6(Iβl3(ξ1) + Iβl3(ξ2) + |d|Iβ−1l3(1) + I1l7(1)

+I1l8(1)), Iβ−ql4(1) + λ6(Iβl4(ξ1) + Iβl4(ξ2) + |d|Iβ−1l4(1))}.
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λ1 = sup
t∈I

∣∣∣ b+ η2 − t

b− a + η2 − η1

∣∣∣, λ2 = sup
t∈I

∣∣∣ a+ η1 − t

b− a+ η2 − η1

∣∣∣,
λ3 = sup

t∈I

∣∣∣ t1−p

Γ(2 − p)(b− a+ η2 − η1)

∣∣∣, λ4 = sup
t∈I

∣∣∣ d+ ξ2 − t

d− c+ ξ2 − ξ1

∣∣∣,
λ5 = sup

t∈I

∣∣∣ c+ ξ1 − t

d− c+ ξ2 − ξ1

∣∣∣, λ6 = sup
t∈I

∣∣∣ t1−q

Γ(2 − q)(d− c+ ξ2 − ξ1)

∣∣∣,
(H3) Assume that there exist functionsMφ(t),Mψ(t),Mϕ(t),Mρ(t) such that

|φ(t, v)| ≤Mφ(t), |ψ(t, v)| ≤Mψ(t), |ϕ(t, u)|
≤Mϕ(t), |ρ(t, u)| ≤Mρ(t), for t ∈ I, (u, v) ∈ X

Theorem 3.1. Suppose that f, g are continuous functions satisfying the assumption
(H1), and the condition (H1)-(H3) holds. Then the BVP (1.1) has a unique solution.

Proof. Since f, g are continuous, there exist Mf ,Mg such that |f(t, x, y)| ≤
Mf , |g(t, x, y)| ≤Mg. Choosing

r11 =
Mf

Γ(α + 1)
(1 + λ1η

α
1 + λ2η

α
2 + |b|αλ2) + (λ1Mφ + λ2Mψ),

r12 = Mf

[
1

Γ(α− p+ 1)
+
λ3(ηα1 + ηα2 + |b|α)

Γ(α+ 1)

]
+ λ3(Mφ +Mψ),

r21 =
Mg

Γ(β + 1)
(1 + λ4ξ

β
1 + λ5ξ

β
2 + |d|βλ5) + (λ4Mϕ + λ5Mρ),

r22 = Mg

[
1

Γ(β − q + 1)
+
λ6(ξ

β
1 + ξβ2 + |d|β)
Γ(β + 1)

]
+ λ6(Mϕ +Mρ),

where Mτ =
∫ 1
0 Mτ (t)dt, τ ∈ {φ, ψ, ϕ, ρ}.

Let Ωr = {(u, v)|(u, v) ∈ X, ||(u, v)||X ≤ r}, where r = max{r1, r2} and r1 =
r11 + r12, r2 = r21 + r22. We shall show that TΩr ⊂ Ωr.

For (u, v) ∈ Ωr, we have

|T1v(t)| ≤ Mf

Γ(α)

∫ t

0
(t− s)α−1ds+ λ1

[∫ 1

0
Mφ(s)ds+

Mf

Γ(α)

∫ η1

0
(η1 − s)α−1ds

]

+λ2

[∫ 1

0
Mψ(s)ds+

Mf

Γ(α)

∫ η2

0
(η2−s)α−1ds+

|b|Mf

Γ(α− 1)

∫ 1

0
(1−s)α−2ds

]

≤ Mf

Γ(α+ 1)
(1 + λ1η

α
1 + λ2η

α
2 + |b|αλ2) + (λ1Mφ + λ2Mψ) = r11
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and

|cDpT1v(t)| ≤ Mf

Γ(α − p)

∫ t

0
(t− s)α−p−1ds

+λ3

[∫ 1

0
Mφ(s)ds+

Mf

Γ(α)

∫ η1

0
(η1 − s)α−1ds

]

+λ3

[∫ 1

0

Mψ(s)ds+
Mf

Γ(α)

∫ η2

0

(η2 − s)α−1ds

+
|b|Mf

Γ(α − 1)

∫ 1

0

(1− s)α−2ds

]

≤ Mf

[
1

Γ(α− p+ 1)
+
λ3(ηα1 + ηα2 + |b|α)

Γ(α + 1)

]
+ λ3(Mφ +Mψ) = r12.

Then, we can see that ||T1v||X2 = max
t∈I

|T1v(t)|+ max
t∈I

|cDpT1v(t)| ≤ r11 + r12 = r1.

In the same way, one can obtain that ||T2u||X1 = max
t∈I

|T2u(t)|+ max
t∈I

|cDqT2u(t)| ≤
r21 + r22 = r2, then ||T (u, v)|| ≤ r.
Next, we show that the operator T is a contraction mapping on Ωr. For (u, v) ∈ Ωr,

on one hand,

|T1v2(t) − T1v1(t)|
≤ 1

Γ(α)

∫ t

0
(t− s)α−1

[
l1(s)|v2(s) − v1(s)| + l2(s)|cDpv2(s)−c Dpv1(s)|

]
ds

+λ1

[∫ 1

0
l5(s)|v2(s) − v1(s)|ds+

1
Γ(α)

∫ η1

0
(η1 − s)α−1

[
l1(s)|v2(s)

−v1(s)|+ l2(s)|cDpv2(s) −c Dpv1(s)|
]
ds

]

+λ2

[∫ 1

0
l6(s)|v2(s) − v1(s)|ds+

1
Γ(α)

∫ η2

0
(η2 − s)α−1[l1(s)|v2(s)

−v1(s)|+ l2(s)|cDpv2(s) −c Dpv1(s)|]ds+
|b|

Γ(α− 1)

∫ 1

0
(1− s)α−2[l1(s)|v2(s)

−v1(s)|+ l2(s)|cDpv2(s) −c Dpv1(s)|]ds
]

≤ [λ1I
αl1(η1) + λ2I

αl1(η2) + Iαl1(1) + |b|λ2I
α−1l1(1) + I1(λ1l5(1)

+λ2l6(1))] max
t∈I

|v2(t) − v1(t)| + [λ1I
αl2(η1) + λ2I

αl2(η2) + Iαl2(1)

+|b|λ2I
α−1l2(1)] max

t∈I
|cDpv2(t) −c Dpv1(t)|

≤ �11||v2 − v1||X2.
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On the other hand,

|cDpT1v2(t) −c DpT1v1(t)|
≤ 1

Γ(α − p)

∫ t

0
(t− s)α−p−1 [l1(s)|v2(s)− v1(s)|+ l2(s)|cDpv2(s)

−cDpv1(s)|] ds+ λ3

∫ 1

0

(l5(s) + l6(s))|v2(s) − v1(s)|ds

+
λ3

Γ(α)

∫ η1

0

(η1 − s)α−1[l1(s)|v2(s) − v1(s)|+ l2(s)|cDpv2(s)

−cDpv1(s)|]ds+
λ3

Γ(α)

∫ η2

0

(η2 − s)α−1[l1(s)|v2(s) − v1(s)|

+l2(s)|cDpv2(s) −c Dpv1(s)|]ds+
|b|λ3

Γ(α − 1)

∫ 1

0
(1 − s)α−2[l1(s)|v2(s)

−v1(s)| + l2(s)|cDpv2(s) −c Dpv1(s)|]ds
≤ [Iα−pl1(1) + λ3(Iαl1(η1) + Iαl1(η2) + |b|Iα−1l1(1) + I1(l5(1)

+l6(1)))] max
t∈I

|v2(t) − v1(t)| + [Iα−pl2(1) + λ3(Iαl2(η1) + Iαl2(η2)

+|b|Iα−1l2(1))] max
t∈I

|cDpv2(t)−c Dpv1(t)|
≤ �12||v2 − v1||X2.

Then we have ||T1v2−T1v1||X2 ≤ �1||v2−v1||X2. Similarly, we can see that ||T2u2−
T2u1||X2 ≤ �2||u2−u1||X1 . So ||T (u2, v2)−T (u1, v1)||X ≤ �||(u2, v2)−(u1, v1)||X.
Thus we can see, by means of the condition (H2), that the operator T is a contraction
mapping. Using the contraction mapping principle (Banach fixed point theorem), T
has a unique fixed point. That is, the BVP (1.1) has a unique solution.

In the sequel, we shall continue to study the existence results of the BVP(1.1)
in terms of the following Krasnoselskii fixed point theorem and Schaefer fixed point
theorem (see, e.g.[8, 14, 21, 31, 32]), respectively.

Lemma 3.1. (Krasnoselskii fixed point theorem). Let M be a closed convex and
nonempty subset of a Banach space X . Let A,B be the operators such that (i)
Ax + By ∈ M , wherever x, y ∈ M ; (ii) A is compact and continuous; (iii) B is a
contraction mapping. Then, there exists z ∈M such that z = Az + Bz.

Lemma 3.2. (Schaefer fixed point theorem). Let E be a Banach space. Assume
that T : E → E be a completely continuous operator and the set V = {x ∈ E|x =
μTx, 0 < μ < 1} be bounded. Then, T has a fixed point in E .
Denote T = Θ1 + Θ2, where Θ1(u, v) = (Θ11v,Θ12u), Θ2(u, v) = (Θ21v,Θ22u)
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and
Θ11v =

1
Γ(α)

∫ t

0

(t− s)α−1f(s, v(s),cDpv(s))ds,

Θ12u =
1

Γ(β)

∫ t

0
(t− s)β−1g(s, u(s),cDqu(s))ds,

Θ21v =
b+ η2 − t

b− a+ η2 − η1

[∫ 1

0

φ(s, v(s))dt − 1
Γ(α)

∫ η1

0

(η1 − s)α−1f(s, v(s),c Dpv(s))ds
]

− a+ η1 − t

b − a+ η2 − η1

[∫ 1

0

ψ(s, v(s))dt − 1
Γ(α)

∫ η2

0

(η2 − s)α−1f(s, v(s),c Dpv(s))ds

− b

Γ(α − 1)

∫ 1

0

(1 − s)α−2f(s, v(s),c Dpv(s))ds
]
,

Θ22u =
d+ ξ2 − t

d− c+ ξ2 − ξ1

[∫ 1

0

ϕ(s, u(s))ds− 1
Γ(β)

∫ ξ1

0

(ξ1 − s)β−1g(s, u(s),cDqu(s))ds
]

− c+ ξ1 − t

d − c+ ξ2 − ξ1

[∫ 1

0

ρ(s, u(s))ds− 1
Γ(β)

∫ ξ2

0

(ξ2 − s)β−1g(s, u(s),cDqu(s))ds

− d

Γ(β − 1)

∫ 1

0

(1 − s)β−2g(s, u(s),cDqu(s))ds
]
.

Theorem 3.2. Assume that f, g are continuous functions satisfying the assumption
(H1), and the condition (H1) holds. Then the BVP (1.1) has at least one solution
provided that 0 < �′ < 1, where �′ = max{�′

1,�′
2}, �′

1 = �′
11 + �′

12,�′
2 =

�′
21 + �′

22 and

�′
11 = max{λ1I

αl1(η1) + λ2I
αl1(η2) + |b|λ2I

α−1l1(1) + λ1I
1l5(1) + λ2I

1l6(1),

λ1I
αl2(η1) + λ2I

αl2(η2) + |b|λ2I
α−1l2(1)},

�′
12 = max{λ3(Iαl1(η1) + Iαl1(η2) + |b|Iα−1l1(1) + I1l5(1) + I1l6(1)),

λ3(Iαl2(η1) + Iαl2(η2) + |b|Iα−1l2(1))},

�′
21 = max{λ4I

βl3(ξ1) + λ5I
βl3(ξ2) + |d|λ5I

β−1l3(1) + λ4I
1l7(1) + λ5I

1l8(1),

λ4I
β l4(ξ1) + λ5I

βl2(η2) + |d|λ5I
β−1l4(1)},

�′
22 = max{λ6(Iβl3(ξ1) + Iβl3(ξ2) + |d|Iβ−1l3(1) + I1l7(1) + I1l8(1)),

λ6(Iβl4(ξ1) + Iβl4(ξ2) + |d|Iβ−1l4(1))}.



2050 Chuanxi Zhu, Xiaozhi Zhang and Zhaoqi Wu

Proof. Choosing r = max{r1, r2}, where r1, r2 are the same as the ones in the
proof of Theorem 3.1. LetW = {(u, v) ∈ X |||(u, v)||X ≤ r}. For (u, v), (x, y) ∈W ,
we shall show that Θ1(u, v)+Θ2(x, y) = (Θ11v+Θ21y,Θ12u+Θ22x) ∈W . In fact,
noting that

|Θ11v(t) + Θ21y(t)|
≤ Mf

Γ(α)

∫ t

0
(t− s)α−1ds+ λ1

[∫ 1

0
Mφ(s)ds+

Mf

Γ(α)

∫ η1

0
(η1 − s)α−1ds

]

+λ2

[∫ 1

0
Mψ(s)ds+

Mf

Γ(α)

∫ η2

0
(η2 − s)α−1ds+

|b|Mf

Γ(α − 1)

∫ 1

0
(1− s)α−2ds

]

≤ Mf

Γ(α+ 1)
(1 + λ1η

α
1 + λ2η

α
2 + |b|αλ2) + (λ1Mφ + λ2Mψ) = r11

and

|DpΘ11v(t) +DpΘ21y(t)|
≤ Mf

Γ(α− p)

∫ t

0
(t− s)α−p−1ds+ λ3

[∫ 1

0
Mφ(s)ds+

Mf

Γ(α)

∫ η1

0
(η1 − s)α−1ds

]

+λ3

[∫ 1

0
Mψ(s)ds+

Mf

Γ(α)

∫ η2

0
(η2 − s)α−1ds+

|b|Mf

Γ(α − 1)

∫ 1

0
(1− s)α−2ds

]

≤ Mf

[
1

Γ(α − p+ 1)
+
λ3(ηα1 + ηα2 + |b|α)

Γ(α + 1)

]
+ λ3(Mφ +Mψ) = r12.

Then ||Θ11v + Θ21y||X2 ≤ r1 = r11 + r12. Similarly, ||Θ12u + Θ22x||X1 ≤ r2 =
r11+r12. So we obtain ||Θ1(u, v)+Θ2(x, y)||X ≤ r = max{r1, r2}, that is, Θ1(u, v)+
Θ2(x, y) ∈W .
The continuity of f and g implies that the operator Θ1 is continuous. Meanwhile,

it is obvious that Θ1 is uniformly bounded.
On the other hand, for 0 ≤ t1 ≤ t2 ≤ 1, we have

|Θ11v(t2) − Θ11v(t1)|
=

1
Γ(α)

|
∫ t2

0

(t2−s)α−1f(s, v(s), Dpv(s))ds−
∫ t1

0

(t1−s)α−1f(s, v(s), Dpv(s))ds|

≤ 1
Γ(α)

[∫ t2

t1

|(t2 − s)α−1f(s, v(s), Dpv(s))|ds+
∫ t1

0

∣∣((t2 − s)α−1 − (t1 − s)α−1)

f(s, v(s), Dpv(s))
∣∣ds]

≤ Mf

Γ(α+ 1)
(tα2 − tα1 )

and
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|DpΘ11v(t2) −DpΘ11v(t1)|
=

1
Γ(α− p)

∣∣∣∣
∫ t2

0
(t2 − s)α−p−1f(s, v(s), Dpv(s))ds

−
∫ t1

0
(t1 − s)α−p−1f(s, v(s), Dpv(s))ds

∣∣∣∣
≤ 1

Γ(α− p)

[∫ t2

t1

|(t2 − s)α−p−1f(s, v(s), Dpv(s))|ds

+
∫ t1

0
|((t2 − s)α−p−1 − (t1 − s)α−p−1)f(s, v(s), Dpv(s))|ds

]

≤ Mf

Γ(α− p+ 1)
(tα−p2 − t

α−p
1 ),

which are dependent of v and tend to zero as t2 → t1, thus, Θ11 is equicontinuous.
Similarly, Θ21 is equicontinuous. Then Θ1 is equicontinuous. By using Ascoli-Arzela
theorem, Θ1 is a compact operator on W . Hence, Θ1 is completely continuous on W .
Finally we can see, by the analogous argument to the proof of Theorem 3.1, that

Θ2 is a contraction mapping for 0 < �′ < 1. The detailed proof is omitted here. Thus
all the assumption of Lemma 3.1 are satisfied, which implies that the BVP(1.1) has at
least one solution on I = [0, 1].

Theorem 3.3. Suppose that the functions f, g, φ, ψ, ϕ, ρ are continuous, then the
BVP (1.1) has at least one solution on I = [0, 1].

Proof. Since the functions f, g, φ, ψ, ϕ, ρ are continuous, there exist constants
Mf ,Mg,Mφ,Mψ, Mϕ,Mρ such that

|f(t, v(t), Dpv(t))| ≤Mf , |g(t, u(t), Dqu(t))| ≤Mg, |φ(t, v(t))| ≤Mφ,

|ψ(t, v(t))| ≤Mψ , |ϕ(t, u(t))| ≤Mϕ, |ρ(t, v(t))| ≤Mρ, ∀t ∈ [0, 1], (u, v) ∈ X1×X2.

The operator Θ1 in Theorem 3.2 is completely continuous from the proof of The-
orem 3.2. On the other hand, the operator Θ2 is also completely continuous provided
that f, g, φ, ψ, ϕ, ρ are continuous. As a result, the operator T here is completely
continuous.
We consider the set P = {(u, v) ∈ X |(u, v) = λT (u, v), 0 < λ < 1} and show

that it is bounded. Let (u, v) ∈ P , then u = λT1v, v = λT2u, which means that

|u(t)| ≤ |T1v(t)|, |Dpu(t)| ≤ |DpT1v(t)|,
|v(t)| ≤ |T2u(t)|, |Dqv(t)| ≤ |DqT1u(t)|.

We can see, from the proof of Theorem 3.1, that ||u||X1, ||v||X2 are bounded. That
is, P is a bounded set. Hence, by using Lemma 3.2, the BVP(1.1) has at least one
solution.
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4. AN EXAMPLE

Example 4.1. Consider the following boundary value problem of coupled systems

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD
7
4u(t) =

t2

1 + t
v(t) +

t2

1 + t

c

D
2
3 v(t), cD

7
4 v(t)

=
t2

1 + t
u(t) +

t2

1 + t

c

D
2
3u(t), 0 < t < 1;

1
200

u′(0) + u(
1
3
) =

1
20

∫ 1

0
t3 sin v(t)dt, u(

2
3
) +

1
100

u′(1)

=
1
20

∫ 1

0

t3 sin v(t)dt,

1
120

v′(0) + v(
1
4
) =

1
30

∫ 1

0
t3 cosu(t)dt, v(

1
2
) +

1
60
v′(1)

=
1
30

∫ 1

0
t3 cosu(t)dt,

Here α = β = 7
4 , p = q = 2

3 ; η1 = 1
3 , η2 = 2

3 , ξ1 = 1
4 , ξ2 = 1

2 ; a = 1
200 , b =

1
100 , c = 1

120 , d = 1
60 with

λ1 = 2, λ2 =
397
203

, λ3 =
600

203Γ( 4
3)
, λ4 = 2, λ5 =

89
31
, λ6 =

120
31Γ( 4

3 )
.

Direct calculation shows that

�1 = �11 + �12 = 0.188181 + 0.503581 = 0.691762,

�2 = �21 + �22 = 0.194627 + 0.584286 = 0.778913,

then � = max{�1,�2} = 0.778913< 1. That is , the condition (H2) holds. On the
other hand, it is obviously that f, g are continuous, and

|φ(t, v)| = |ψ(t, v)| ≤ 1
20
t3, |ϕ(t, u)| = |ρ(t, u)| ≤ 1

30
t3,

with

li =
t2

1 + t
, i = {1, 2, 3, 4}, lj =

1
20
t3, j = {5, 6}, lk =

1
30
t3, k = {7, 8}.

Hence, all the conditions of Theorem 3.1 are satisfied. Therefore, the boundary value
problem of coupled system (4.1) has a unique solution.

Remark 4.1. We note that the fractional derivatives of the nonlinear terms are
included in the BVP(4.1) explicitly. The earlier methods for existence of BVP, to the
best of our knowledge, cannot efficiently be applied to solve this present problem. It
turns out that our results extend the previous works, such as [25].
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