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SOLVING SYSTEMS OF MONOTONE INCLUSIONS VIA PRIMAL-DUAL
SPLITTING TECHNIQUES

Radu Ioan Boţ1, Ernö Robert Csetnek2 and Erika Nagy3

Abstract. In this paper we propose an algorithm for solving systems of cou-
pled monotone inclusions in Hilbert spaces. The operators arising in each of the
inclusions of the system are processed in each iteration separately, namely, the
single-valued are evaluated explicitly (forward steps), while the set-valued ones
via their resolvents (backward steps). In addition, most of the steps in the iterative
scheme can be executed simultaneously, this making the method applicable to a
variety of convex minimization problems. The numerical performances of the
proposed splitting algorithm are emphasized through applications in average con-
sensus on colored networks and image classification via support vector machines.

1. INTRODUCTION AND PROBLEM FORMULATION

In recent years several splitting algorithms have emerged for solving monotone
inclusion problems involving parallel sums and compositions with linear continuous
operators, which eventually are reduced to finding the zeros of the sum of a maximally
monotone operator and a cocoercive or a monotone and Lipschitz continuous operator.
The later problems were solved by employing in an appropriate product space forward-
backward or forward-backward-forward algorithms, respectively, and gave rise to so-
called primal-dual splitting methods (see [11, 17, 14, 29] and the references therein).
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Recently, one can remark the interest of researchers in solving systems of monotone
inclusion problems [1, 4, 16]. This is motivated by the fact that convex optimization
problems arising, for instance, in areas like image processing [9], multifacility location
problems [12, 21], average consensus in network coloring [22, 23] and support vector
machines classification [19] are to be solved with respect to multiple variables, very
often linked in different manners, for instance, by linear equations.
The present research is motivated by the investigations made in [1]. The authors

propose there an algorithm for solving coupled monotone inclusion problems, where the
variables are linked by some operators which satisfy jointly a cocoercivity property. The
iterative scheme in [1] relies on a forward-backward algorithm applied in an appropriate
product space and it is employed in the solving of a class of convex optimization
problems with multiple variables where some of the functions involved need to be
differentiable. Our aim is to overcome the necessity of having differentiability for
some of the functions occurring in the objective of the convex optimization problems
in [1]. To this end we consider first a more general system of monotone inclusions, for
which the coupling operator satisfies a Lipschitz continuity property, along with its dual
system of monotone inclusions in an extended sense of the Attouch-Théra duality (see
[2] ). The simultaneous solving of the primal and dual system of monotone inclusions
is reduced to the problem of finding the zeros of the sum of a maximally monotone
operator and a monotone and Lipschitz continuous operator in an appropriate product
space. The latter problem is solved by a forward-backward-forward algorithm, fact that
allows us to provide for the resulting iterative scheme, which proves to have a high
parallelizable formulation, both weak and strong convergence assertions.
The problem under consideration is as follows.

Problem 1.1. Let m ≥ 1 be a positive integer, (Hi)1≤i≤m be real Hilbert spaces
and for i = 1, ..., m let Bi : H1 × . . . × Hm → Hi be a μi-Lipschitz continuous
operator with μi ∈ R++ jointly satisfying the monotonicity property

(∀(x1, . . . , xm) ∈ H1 × . . .×Hm)(∀(y1, . . . , ym) ∈ H1 × . . .×Hm)
m∑

i=1

〈xi − yi|Bi(x1, . . . , xm) − Bi(y1, . . . , ym)〉Hi
≥ 0.(1.1)

For every i = 1, . . . , m, let Gi be a real Hilbert space, Ai : Gi → 2Gi a maximally
monotone operator, Ci : Gi → 2Gi a monotone operator such that C−1

i is νi-Lipschitz
continuous with νi ∈ R+ and Li : Hi → Gi a linear continuous operator. The problem
is to solve the system of coupled inclusions (see (2.4) for the definition of the parallel
sum of two operators)
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(1.2)

find x1 ∈ H1, . . . , xm ∈ Hm such that⎧⎪⎨
⎪⎩

0 ∈ L∗
1(A1 �C1)(L1x1) + B1(x1, . . . , xm)

...
0 ∈ L∗

m(Am �Cm)(Lmxm) + Bm(x1, . . . , xm)

together with its dual system

find v1 ∈ G1, . . . , vm ∈ Gm such that
(∃x1 ∈ H1, . . . , ∃xm ∈ Hm)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = L∗
1v1 + B1(x1, . . . , xm)

...
0 = L∗

mvm + Bm(x1, . . . , xm)
v1 ∈ (A1 �C1)(L1x1)
...
vm ∈ (Am �Cm)(Lmxm)

.(1.3)

We say that (x1, . . . , xm, v1, . . . , vm) ∈ H1 × . . .×Hm ×G1 . . .×Gm is a primal-
dual solution to Problem 1.1, if

(1.4) 0 = L∗
i vi + Bi(x1, . . . , xm) and vi ∈ (Ai �Ci)(Lixi), i = 1, . . . , m.

If (x1, . . . , xm, v1, . . . , vm) ∈ H1 × . . .×Hm × G1 . . .× Gm is a primal-dual solution
to Problem 1.1, then (x1, . . . , xm) is a solution to (1.2) and (v1, . . . , vm) is a solution
to (1.3). Notice also that

(x1, . . . , xm) solves (1.2)⇔0∈L∗
i (Ai �Ci)(Lixi)+Bi(x1, . . . , xm), i=1, . . . , m ⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that
{

0 = L∗
i vi + Bi(x1, . . . , xm), i = 1, . . . , m

vi ∈ (Ai �Ci)(Lixi), i = 1, . . . , m.
.

Thus, if (x1, . . . , xm) is a solution to (1.2), then there exists (v1, . . . , vm) ∈ G1×. . .Gm

such that (x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem 1.1 and, if
(v1, . . . , vm) ∈ G1 × . . .Gm is a solution to (1.3), then there exists (x1, . . . , xm) ∈
H1× . . .×Hm such that (x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem
1.1.
The paper is organized as follows. In the next section we give some necessary

notations and preliminary results in order to facilitate the reading of the manuscript.
In Section 3 we formulate the primal-dual splitting algorithm for solving Problem 1.1
and investigate its convergence behaviour, while in Section 4 applications to solving
primal-dual pairs of convex optimization problems are presented. Finally, in Section 5,
we present two applications of the proposed algorithm addressing the average consen-
sus problem on colored networks and the classification of images via support vector
machines.
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2. NOTATIONS AND PRELIMINARIES

Let us recall some elements of convex analysis and monotone operator theory which
are needed in the sequel (see [3, 5, 6, 20, 30, 25]).
For every real Hilbert space occurring in the paper we generically denote its inner

product with 〈·|·〉 and the associated norm with ‖·‖ =
√〈·|·〉. In order to avoid

confusion, when needed, appropriate indices for the inner product and norm are used.
The symbols ⇀ and → denote weak and strong convergence, respectively. Further,
R+ denotes the set of nonnegative real numbers, R++ the set of strictly positive real
numbers and R = R ∪ {±∞} the extended real-line.
Let H be a real Hilbert space. The indicator function δC : H → R of a set C ⊆ H

is defined by δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise. If C is convex, we
denote by sqriC := {x ∈ C : ∪λ>0λ(C − x) is a closed linear subspace of H} its
strong quasi-relative interior. Notice that we always have int C ⊆ sqriC (in general
this inclusion may be strict). If H is finite-dimensional, then sqriC coincides with
ri C, the relative interior of C, which is the interior of C with respect to its affine
hull.
For a function f : H → R we denote by dom f := {x ∈ H : f(x) < +∞} its

effective domain and call f proper if dom f �= ∅ and f(x) > −∞ for all x ∈ H. We
denote by Γ(H) the set of proper, convex and lower semicontinuous functions f : H →
R. The conjugate function of f is f∗ : H → R, f∗(u) = sup {〈u, x〉 − f(x) : x ∈ H}
for all u ∈ H and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The function f is said to be
γ-strongly convex with γ > 0, if f−γ/2‖·‖2 is convex. The (convex) subdifferential of
the function f at x ∈ H is the set ∂f(x) = {u ∈ H | (∀y ∈ H) 〈y − x | u〉 + f(x) ≤
f(y)

}
, if f(x) ∈ R, and is taken to be the empty set, otherwise. The infimal con

volution of two proper functions f, g : H → R is defined by

f � g : H → R, f � g(x) = inf
y∈H

{f(y) + g(x− y)} .

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by Prox γf (x) the
proximal point of parameter γ of f at x, which is the unique optimal solution of the
optimization problem

(2.1) inf
y∈H

{
f(y) +

1
2γ

‖y − x‖2

}
.

We have Moreau’s decomposition formula

(2.2) Prox γf + γProx (1/γ)f∗ ◦ γ−1Id = Id ,

where operator Id denotes the identity on the underlying Hilbert space.
Let 2H be the power set of H, M : H → 2H a set-valued operator and γ >

0. We denote by zer M = {x ∈ H : 0 ∈ Mx} the set of zeros of M and by
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gra M = {(x, u) ∈ H × H : u ∈ Mx} the graph of M . We say that the operator
M is monotone if 〈x − y|u− v〉 ≥ 0 for all (x, u), (y, v) ∈ gra M and it is said to
be maximally monotone if there exists no monotone operator N : H → 2H such that
gra N properly contains gra M . The operator M is said to be uniformly monotone
with modulus φM : R+ → R+ ∪ {+∞}, if φM is increasing, vanishes only at 0,
and 〈x − y|u− v〉 ≥ φM (‖x− y‖) for all (x, u), (y, v) ∈ gra M . A prominent
representative of the class of uniformly monotone operators are the strongly monotone
operators. We say that M is γ-strongly monotone, if 〈x − y, u − v〉 ≥ γ‖x− y‖2 for
all (x, u), (y, v) ∈ gra M .
The inverse of M is M−1 : H → 2H, u �→ {x ∈ H : u ∈ Mx}. The resolvent

of an operator M : H → 2H is JM : H → 2H, JM = (Id + M)−1. If M is
maximally monotone, then JM : H → H is single-valued and maximally monotone (cf.
[3, Proposition 23.7 and Corollary 23.10]). We have (see [3, Proposition 23.18])

(2.3) JγM + γJγ−1M−1 ◦ γ−1Id = Id .

A single-valued operator M : H → H is said to be γ-cocoercive, if 〈x− y, Mx−
My〉 ≥ γ‖Mx−My‖2 for all (x, y) ∈ H×H, whileM is γ-Lipschitz continuous (here
we allow also γ = 0 in order to comprise also the zero operator), if ‖Mx − My‖ ≤
γ‖x− y‖ for all (x, y) ∈ H×H. Obviously, every γ-cocoercive operator is monotone
and γ−1-Lipschitz continuous.
The parallel sum of two set-valued operators M, N : H → 2H is defined as

(2.4) M �N : H → 2H, M �N =
(
M−1 + N−1

)−1
.

If f ∈ Γ(H), then ∂f : H → 2H is a maximally monotone operator and (∂f)−1 = ∂f∗.
Moreover, Jγ∂f = (Id H + γ∂f)−1 = Prox γf .
Finally, we notice that for f = δC , where C ⊆ H is a nonempty convex and closed

set, it holds

(2.5) J∂δC
= Prox δC

= PC ,

where PC : H → C denotes the projection operator on C (see [3, Example 23.3 and
Example 23.4]).
When G is a another real Hilbert space and L : H → G is a linear continuous

operator, then the norm of L is defined as ‖L‖ = sup{‖Lx‖ : x ∈ H, ‖x‖ ≤ 1}, while
L∗ : G → H, defined by 〈Lx|y〉 = 〈x|L∗y〉 for all (x, y) ∈ H×G, denotes the adjoint
operator of L.

3. THE PRIMAL-DUAL SPLITTING ALGORITHM

The aim of this section is to provide an algorithm for solving Problem 1.1 and to
furnish weak and strong convergence results for the sequences generated by it. The
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proposed iterative scheme has the property that each single-valued operator is processed
explicitly, while each set-valued operator is evaluated via its resolvent. Absolutely
summable sequences make the algorithm error-tolerant.

Algorithm 3.1. For every i = 1, . . . , m let (a1,i,n)n≥0, (b1,i,n)n≥0, (c1,i,n)n≥0

be absolutely summable sequences in Hi and (a2,i,n)n≥0, (b2,i,n)n≥0, (c2,i,n)n≥0 ab-
solutely summable sequences in Gi. Furthermore, set

(3.1) β = max

⎧⎨
⎩
√√√√ m∑

i=1

μ2
i , ν1, . . . , νm

⎫⎬
⎭+ max

i=1,...,m
‖Li‖ ,

let ε ∈]0, 1/(β+1)[ and (γn)n≥0 be a sequence in [ε, (1−ε)/β]. For every i = 1, . . . , m
let the initial points xi,0 ∈ Hi and vi,0 ∈ Gi be chosen arbitrary and set

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For i = 1, . . . , m
yi,n = xi,n − γn(L∗

i vi,n + Bi(x1,n, . . . , xm,n) + a1,i,n)
wi,n = vi,n − γn(C−1

i vi,n − Lixi,n + a2,i,n)
pi,n = yi,n + b1,i,n

ri,n = JγnA−1
i

wi,n + b2,i,n

qi,n = pi,n − γn(L∗
i ri,n + Bi(p1,n, . . . , pm,n) + c1,i,n)

si,n = ri,n − γn(C−1
i ri,n − Lipi,n + c2,i,n)

xi,n+1 = xi,n − yi,n + qi,n

vi,n+1 = vi,n − wi,n + si,n.

The following theorem establishes the convergence of Algorithm 3.1 by showing
that its iterative scheme can be reduced to the error-tolerant version of the forward-
backward-forward algorithm of Tseng (see [28]) recently provided in [11].

Theorem 3.1. Suppose that Problem 1.1 has a primal-dual solution. For the
sequences generated by Algorithm 3.1 the following statements are true:

(i) (∀i ∈ {1, . . . , m}) ∑
n≥0

‖xi,n − pi,n‖2
Hi

<+∞ and
∑
n≥0

‖vi,n − ri,n‖2
Gi

<+∞.
(ii) There exists a primal-dual solution (x1, . . . , xm, v1, . . . , vm) to Problem 1.1 such

that:
(a) (∀i ∈ {1, . . . , m}) xi,n ⇀ xi, pi,n ⇀ xi, vi,n ⇀ vi and ri,n ⇀ vi as

n → +∞.
(b) if C−1

i , i = 1, ..., m, is uniformly monotone and there exists an increasing
function φB : R+ → R+ ∪ {+∞} vanishing only at 0 and fulfilling

(3.2)

(∀(x1, . . . , xm) ∈ H1 × . . .×Hm)(∀(y1, . . . , ym) ∈ H1 × . . .×Hm)
m∑

i=1

〈xi − yi|Bi(x1, . . . , xm) − Bi(y1, . . . , ym)〉Hi

≥ φB

(
‖(x1, . . . , xm) − (y1, . . . , ym)‖

)
,



Solving Systems of Monotone Inclusions via Primal-Dual Splitting Techniques 1989

then (∀i ∈ {1, . . . , m}) xi,n → xi, pi,n → xi, vi,n → vi and ri,n → vi as
n → +∞.

Proof. We introduce the real Hilbert spaceH = H1×. . .×Hm endowed with the
inner product and associated norm defined for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈
H as

〈x|y〉H =
m∑

i=1

〈xi|yi〉Hi
and ‖x‖H =

√√√√ m∑
i=1

‖xi‖2
Hi

,(3.3)

respectively. Furthermore, we consider the real Hilbert space G = G1 × . . . × Gm

endowed with inner product and associated norm defined for v = (v1, . . . , vm), w =
(w1, . . . , wm) ∈ G as

〈v|w〉G =
m∑

i=1

〈vi|wi〉Gi
and ‖v‖G =

√√√√ m∑
i=1

‖vi‖2
Gi

,(3.4)

respectively. Let us now consider the Hilbert space K = H × G endowed with the
inner product and associated norm defined, for (x, v), (y,w) ∈ K, as

〈(x, v)|(y,w)〉K = 〈x|y〉H + 〈v|w〉G and ‖(x, v)‖K =
√

‖x‖2
H + ‖v‖2

G,(3.5)

respectively. Consider the set-valued operator

A : K → 2K,

(x1, . . . , xm, v1, . . . , vm) �→ (0, . . . , 0, A−1
1 v1, . . . , A

−1
m vm)

and the single-valued operator

B : K → K,

(x1, . . . , xm, v1, . . . , vm) �→ (L∗
1v1 + B1(x1, . . . , xm), . . . , L∗

mvm + Bm(x1, . . . , xm),

C−1
1 v1 − L1x1, . . . , C

−1
m vm − Lmxm)

We set

x = (x1, . . . , xm, v1, . . . , vm).(3.6)

Then
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x ∈ zer(A + B) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = L∗
1v1 + B1(x1, . . . , xm)

...
0 = L∗

mvm + Bm(x1, . . . , xm)
0 ∈ A−1

1 v1 + C−1
1 v1 − L1x1

...
0 ∈ A−1

m vm + C−1
m vm − Lmxm

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = L∗
1v1 + B1(x1, . . . , xm)

...
0 = L∗

mvm + Bm(x1, . . . , xm)
v1 ∈ (A−1

1 + C−1
1 )−1(L1x1)

...
vm ∈ (A−1

m + C−1
m )−1(Lmxm)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = L∗
1v1 + B1(x1, . . . , xm)

...
0 = L∗

mvm + Bm(x1, . . . , xm)
v1 ∈ (A1 �C1)(L1x1)
...
vm ∈ (Am �Cm)(Lmxm)

.

Consequently, x = (x1, . . . , xm, v1, . . . , vm) is a zero of the sum A+B if and only if
(x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem 1.1. As already noticed,
in this case, (x1, . . . , xm) solves the primal system (1.2) and (v1, . . . , vm) solves its
dual system (1.3). Therefore, in order to determine a primal-dual solution to Problem
1.1, it is enough to find a zero of A + B.
Further, we will determine the nature of the operatorsA andB. Since the operators

Ai, i = 1, ..., m, are maximally monotone, A is maximally monotone, too (cf. [3,
Proposition 20.22 and Proposition 20.23]). Furthermore, by [3, Proposition 23.16], for
all γ ∈ R++ and all (x1, . . . , xm, v1, . . . , vm) ∈ K we have

JγA(x1, . . . , xm, v1, . . . , vm) = (x1, . . . , xm, JγA−1
1

v1, . . . , JγA−1
m

vm).(3.7)

Coming now toB, let us prove first that this operator is monotone. Let (x1, . . . , xm,
v1, . . . , vm) and (y1, . . . , ym, w1, . . . , wm) be two points in K. Using (1.1) and the
monotonicity of C−1

i , i = 1, . . . , m, we obtain
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(3.8)

〈(x1, . . . , xm, v1, . . . , vm) − (y1, . . . , ym, w1, . . . , wm)|
B(x1, . . . , xm, v1, . . . , vm)− B(y1, . . . , ym, w1, . . . , wm)〉K

= 〈(x1 − y1, . . . , xm − ym, v1 − w1, . . . , vm − wm)|(
B1(x1, . . . , xm) − B1(y1, . . . , ym) + L∗

1(v1 − w1), . . . ,

Bm(x1, . . . , xm)− Bm(y1, . . . , ym) + L∗
m(vm − wm),

C−1
1 v1−C−1

1 w1−L1(x1−y1), . . . , C−1
m vm−C−1

m wm−Lm(xm−ym)
)〉K

=
m∑

i=1

〈xi−yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi

+
m∑

i=1

〈
vi−wi|C−1

i vi − C−1
i wi

〉
Gi

+
m∑

i=1

(
〈xi − yi|L∗

i (vi − wi)〉 − 〈vi − wi|Li(xi − yi)〉Hi

)
=

m∑
i=1

〈xi−yi|Bi(x1, . . . , xm)Hi−Bi(y1, . . . , ym)〉Hi

+
m∑

i=1

〈
vi−wi|C−1

i vi−C−1
i wi

〉
Gi

≥ 0.

Further, we show that B is a Lipschitz continuous operator and consider to this
end (x1, . . . , xm, v1, . . . , vm), (y1, . . . , ym, w1, . . . , wm) ∈ K. It holds

∥∥∥B(x1, . . . , xm, v1, . . . , vm) − B(y1, . . . , ym, w1, . . . , wm)
∥∥∥

K
=
∥∥∥((B1(x1, . . . , xm) − B1(y1, . . . , ym), . . . , Bm(x1, . . . , xm) − Bm(y1, . . . , ym),

C−1
1 v1 − C−1

1 w1, . . . , C
−1
m vm − C−1

m wm

)
(3.9) +

(
L∗

1(v1 − w1), . . . , L∗
m(vm − wm),−L1(x1 − y1), . . . ,−Lm(xm − ym)

)∥∥∥
K

≤
∥∥∥((B1(x1, . . . , xm) − B1(y1, . . . , ym), . . . , Bm(x1, . . . , xm) − Bm(y1, . . . , ym),

C−1
1 v1 − C−1

1 w1, . . . , C
−1
m vm − C−1

m wm

)∥∥∥
K

+
∥∥∥L∗

1(v1 − w1), . . . , L∗
m(vm − wm),−L1(x1 − y1), . . . ,−Lm(xm − ym)

∥∥∥
K

=

√√√√ m∑
i=1

‖Bi(x1, . . . , xm) − Bi(y1, . . . , ym)‖2
Hi

+
m∑

i=1

∥∥C−1
i vi − C−1

i wi

∥∥2

Gi
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+

√√√√ m∑
i=1

‖L∗
i (vi − wi)‖2

Hi
+

m∑
i=1

‖Li(xi − yi)‖2
Gi

≤
√√√√ m∑

i=1

(
μ2

i

m∑
j=1

‖xj − yj‖2
Hj

)
+

m∑
i=1

ν2
i ‖vi − wi‖2

Gi

+

√√√√ m∑
i=1

‖Li‖2 ‖vi − wi‖2
Gi

+
m∑

i=1

‖Li‖2 ‖xi − yi‖2
Hi

≤
√√√√( m∑

i=1

μ2
i

)( m∑
i=1

‖xi − yi‖2
Hi

)
+ max

i=1,...,m
ν2
i

m∑
i=1

‖vi − wi‖2
Gi

+

√√√√ max
i=1,...,m

‖Li‖2
( m∑

i=1

‖vi − wi‖2
Gi

+
m∑

i=1

‖xi − yi‖2
Hi

)
≤β ‖(x1, . . . , xm, v1, . . . , vm)− (y1, . . . , ym, w1, . . . , wm)‖K ,

hence, B is β-Lipschitz continuous, where β is the constant defined in (3.1).
Setting

(∀n ≥ 0)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn = (x1,n, . . . , xm,n, v1,n, . . . , vm,n)

yn = (y1,n, . . . , ym,n, w1,n, . . . , wm,n)

pn = (p1,n, . . . , pm,n, r1,n, . . . , rm,n)

qn = (q1,n, . . . , qm,n, s1,n, . . . , sm,n)

and

(∀n ≥ 0)

⎧⎪⎨
⎪⎩

an = (a1,1,n, . . . , a1,m,n, a2,1,n, . . . , a2,m,n)
bn = (b1,1,n, . . . , b1,m,n, b2,1,n, . . . , b2,m,n)
cn = (c1,1,n, . . . , c1,m,n, c2,1,n, . . . , c2,m,n)

,

the summability hypotheses imply that∑
n≥0

‖an‖K < +∞,
∑
n≥0

‖bn‖K < +∞ and
∑
n≥0

‖cn‖K < +∞.(3.10)

Furthermore, it follows that the iterative scheme in Algorithm 3.1 can be written as

(∀n ≥ 0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = xn − γn(Bxn + an)
pn = JγnAyn + bn

qn = pn − γn(Bpn + cn)
xn+1 = xn − yn + qn.

(3.11)
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thus, it has the structure of the error-tolerant forward-backward-forward algorithm given
in [11].
(i) It follows from [11, Theorem 2.5(i)] that∑

n≥0

‖xn − pn‖2
K < +∞.(3.12)

This means that

∑
n≥0

‖xn − pn‖2
K =

∑
n≥0

m∑
i=1

(
‖xi,n − pi,n‖2

Hi
+ ‖vi,n − ri,n‖2

Gi

)

=
m∑

i=1

∑
n≥0

‖xi,n − pi,n‖2
Hi

+
m∑

i=1

∑
n≥0

‖vi,n − ri,n‖2
Gi

< +∞.(3.13)

Hence

(∀i ∈ {1, . . . , m})
∑
n≥0

‖xi,n − pi,n‖2
Hi

< +∞ and

∑
n≥0

‖vi,n − ri,n‖2
Gi

< +∞.(3.14)

(ii) It follows from [11, Theorem 2.5(ii)] that there exists an element x = (x1,

. . . , xm, v1, . . . , vm) in the set zer (A + B), thus a primal-dual solution to Problem
1.1, such that

xn ⇀ x and pn ⇀ x.(3.15)

(ii)(a) It is a direct consequence of (3.15).
(ii)(b) Let be i ∈ {1, ...,m}. Since C−1

i is uniformly monotone, there exists an
increasing function φC−1

i
: R+ → R+ ∪ {+∞}, vanishing only at 0, such that

〈x − y, v − w〉Gi
≥ φC−1

i
(‖x − y‖Gi

) ∀(x, v), (y,w) ∈ gra C−1
i .(3.16)

Taking into consideration (3.2), we define the function φB : R+ → R+ ∪ {+∞},

φB(c) = inf
{
φB(a) +

m∑
i=1

φC−1
i

(bi) :

√√√√a2 +
m∑

i=1

b2
i = c

}
,(3.17)

which is increasing, it vanishes only at 0 and it fulfills due to (3.8) the following
inequality
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〈(x1, . . . , xm, v1, . . . , vm)− (y1, . . . , ym, w1, . . . , wm)|
B(x1, . . . , xm, v1, . . . , vm)− B(y1, . . . , ym, w1, . . . , wm)〉K

=
m∑

i=1

〈xi − yi|Bi(x1, . . . , xm) − Bi(y1, . . . , ym)〉Hi

+
m∑

i=1

〈
vi − wi|C−1

i vi − C−1
i wi

〉
Gi

(3.18)

≥φB

(
‖(x1, . . . , xm) − (y1, . . . , ym)‖H

)
+

m∑
i=1

φC−1
i

(
‖vi − wi‖Gi

)
≥φB

(
‖x − y‖K

)
, ∀x = (x1, . . . , xm, v1, . . . , vm), y

=(y1, . . . , ym, w1, . . . , wm) ∈ K.

Consequently,B is uniformly monotone and, according to [11, Theorem 2.5(iii)(b)], it
follows that xn → x and pn→x as n→+∞. This leads to the desired conclusion.

4. APPLICATIONS TO CONVEX MINIMIZATION PROBLEMS

In this section we turn our attention to the solving of convex minimization problems
with multiple variables via the primal-dual algorithm presented and investigated in this
paper.

Problem 4.1. Let m ≥ 1 and p ≥ 1 be positive integers, (Hi)1≤i≤m, (H′
i)1≤i≤m

and (Gj)1≤j≤p be real Hilbert spaces, fi, hi ∈ Γ(H′
i) such that hi is ν−1

i -strongly
convex with νi ∈ R++, i = 1, ..., m, and gj ∈ Γ(Gj) for i = 1, ..., m, j = 1, ..., p.
Further, let be Ki : Hi → H′

i and Lji : Hi → Gj, i = 1, ..., m, j = 1, ..., p linear
continuous operators. Consider the convex optimization problem

inf
(x1,...,xm)∈H1×...×Hm

⎧⎨
⎩

m∑
i=1

(fi �hi)(Kixi) +
p∑

j=1

gj

(
m∑

i=1

Ljixi

)⎫⎬
⎭ .(4.1)

In what follows we show that under an appropriate qualification condition solving
the convex optimization problem (4.1) can be reduced to the solving of a system of
monotone inclusions of type (1.2).
Define the following proper convex and lower semicontinuous function (see [3,

Corollary 11.16 and Proposition 12.14])

f : H′
1 × . . .×H′

m → R, (y1, . . . , ym) �→
m∑

i=1

(fi �hi)(yi),

and the linear continuous operator
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K : H1 × . . .×Hm → H′
1 × . . .×H′

m, (x1, . . . , xm) �→ (K1x1, . . . , Kmxm),

having as adjoint

K∗ : H′
1 × . . .×H′

m → H1 × . . .×Hm, (y1, . . . , ym) �→ (K∗
1y1, . . . , K

∗
mym).

Further, consider the linear continuous operators

Lj : H1 × . . .×Hm → Gj , (x1, . . . , xm) �→
m∑

i=1

Ljixi, j = 1, ..., p,

having as adjoints

L∗
j : Gj → H1 × . . .×Hm, y �→ (L∗

j1y, . . . , L∗
jmy), j = 1, ..., p,

respectively. We have

(x1, . . . , xm) is an optimal solution to (4.1)

⇔ (0, . . . , 0) ∈ ∂

⎛
⎝f ◦ K +

p∑
j=1

gj ◦ Lj

⎞
⎠ (x1, . . .xm).(4.2)

In order to split the above subdifferential in a sum of subdifferentials a so-called
qualification condition must be fulfilled. In this context, we consider the following
interiority-type qualification conditions:

(QC1)

∣∣∣∣∣∣
there exists x′

i ∈ Hi such that
Kix

′
i ∈ (dom fi + dom hi) and fi � hi is continuous at Kix

′
i, i = 1, ..., m,

and
∑m

i=1 Ljix
′
i ∈ dom gj and gj is continuous at

∑m
i=1 Ljix

′
i, j = 1, ..., p

and

(QC2)

∣∣∣∣∣∣∣∣
(0, . . . , 0) ∈ sqri

(∏m
i=1(dom fi + dom hi) ×

∏p
j=1 dom gj

−{(K1x1, . . . , Kmxm,
∑m

i=1 L1ixi, . . . ,
∑m

i=1 Lpixi) :
(x1, . . . , xm) ∈ H1 × . . .×Hm}

)
.

We notice that (QC1) ⇒ (QC2), these implications being in general strict, and refer
the reader to [3, 5, 6, 20, 27, 30] and the references therein for other qualification
conditions in convex optimization.

Remark 4.1. As already pointed out, due to [3, Corollary 11.16 and Proposition
12.14], for i = 1, ..., m, fi �hi ∈ Γ(H′

i), hence, it is continuous on int (dom fi +
dom hi), providing this set is nonempty (see [20, 30]). For other results regarding
the continuity of the infimal convolution of convex functions we invite the reader to
consult [26].
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Remark 4.2. In finite-dimensional spaces the qualification condition (QC2) is
equivalent to

(QC2)
∣∣∣∣ there exists x′

i ∈ Hi such that Kix
′
i ∈ ri dom fi + ri dom hi, i = 1, ..., m,

and
∑m

i=1 Ljix
′
i ∈ ri dom gj, j = 1, ..., p.

Assuming that one of the qualification conditions above is fulfilled, we have that

(4.3)

(x1, . . . , xm) is an optimal solution to (4.1)

⇔ (0, . . . , 0) ∈ K∗∂f
(
K(x1, . . .xm)

)
+

p∑
j=1

L∗
j∂gj

(
Lj(x1, . . .xm)

)
⇔ (0, . . . , 0) ∈

(
K∗

1∂(f1 �h1)(K1x1), . . . , K∗
m∂(fm � hm)(Kmxm)

)
+

p∑
j=1

L∗
j∂gj

(
Lj(x1, . . .xm)

)
.

The strong convexity of the functions hi imply that dom h∗
i = H′

i (see [3, Corol-
lary 11.16, Proposition 14.15]) and so ∂(fi � hi) = ∂fi �∂hi, i = 1, ..., m, (see [3,
Proposition 24.27]). Thus, (4.3) is further equivalent to

(0, . . . , 0) ∈
(
K∗

1(∂f1 � ∂h1)(K1x1), . . . , K∗
m(∂fm �∂hm)(Kmxm)

)
+

p∑
j=1

L∗
jvj,

where

vj ∈∂gj

(
Lj(x1, . . .xm)

)⇔ vj ∈ ∂gj

( m∑
i=1

Ljixi

)⇔ m∑
i=1

Ljixi ∈ ∂g∗j (vj), j=1, ..., p.

Then (x1, . . . , xm) is an optimal solution to (4.1) if and only if (x1, . . . , xm, v1, . . . , vp)
is a solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ K∗
1 (∂f1 �∂h1)(K1x1) +

p∑
j=1

L∗
j1vj

...

0 ∈ K∗
m(∂fm �∂hm)(Kmxm) +

p∑
j=1

L∗
jmvj

0 ∈ ∂g∗1(v1) −
m∑

i=1

L1ixi

...

0 ∈ ∂g∗p(vp) −
m∑

i=1

Lpixi.

(4.4)

One can see now that (4.4) is a system of coupled inclusions of type (1.2), by
taking
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Ai = ∂fi, Ci = ∂hi, Li = Ki, i = 1, ..., m,

Am+j = ∂g∗j , Cm+j (x) =
{ Gj , x = 0

∅, otherwise , Lm+j = Id Gj , j = 1, ..., p,

and, for (x1, ..., xm, v1, ..., vp) ∈ H1 × . . .Hm ×G1 × . . .×Gp, as coupling operators

Bi(x1, . . . , xm, v1, . . . , vp) =
p∑

j=1

L∗
jivj , i = 1, . . . , m,

and

Bm+j (x1, . . . , xm, v1, . . . , vp) = −
m∑

i=1

Ljixi, j = 1, . . . , p.

Define

(4.5) B(x1, . . . , xm, v1, . . . , vp) = (B1, . . . , Bm+p)(x1, . . . , xm, v1, . . . , vp)

(4.6) =

⎛
⎝ p∑

j=1

L∗
j1vj, . . . ,

p∑
j=1

L∗
jmvj,−

m∑
i=1

L1ixi, . . . ,−
m∑

i=1

Lpixi

⎞
⎠ .

According to [3, Proposition 17.26(i), Corollary 16.24 and Theorem 18.15)] it follows
that C−1

i = (∂hi)−1 = ∂h∗
i = {∇h∗

i } is νi-Lipschitz continuous for i = 1, ..., m. On
the other hand, C−1

m+j is the zero operator for j = 1, ..., p, thus 0-Lipschitz continuous.
Furthermore, the operators Bi, i = 1, ..., m+p are linear and Lipschitz continuous,

having as Lipschitz constants

μi =

√√√√ p∑
j=1

‖Lji‖2, i = 1, ..., m, and μm+j =

√√√√ m∑
i=1

‖Lji‖2, j = 1, ..., p,

respectively. For every (x1, . . . , xm, v1, . . . , vp), (y1, . . . , ym, w1, . . . , wp) ∈ H1×. . .×
Hm × G1 × . . .× Gp it holds

m∑
i=1

〈xi − yi|Bi(x1, . . . , xm, v1, . . . , vp) − Bi(y1, . . . , ym, w1, . . . , wp)〉Hi

+
p∑

j=1

〈vj − wj|Bm+j(x1, . . . , xm, v1, . . . , vp)− Bm+j(y1, . . . , ym, w1, . . . , wp)〉Gj

=
m∑

i=1

〈
xi − yi|

p∑
j=1

L∗
jivj −

p∑
j=1

L∗
jiwj

〉
Hi
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−
p∑

j=1

〈
vj − wj|

m∑
i=1

Ljixi −
m∑

i=1

Ljiyi

〉
Gj

= 0,

thus (1.1) is fulfilled. This proves also that the linear continuous operator B is skew
(i.e. B∗ = −B).

Remark 4.3. Due to the fact that the operator B is skew, it is not cocoercive,
hence, the approach presented in [1] cannot be applied in this context. On the other
hand, in the light of the characterization given in (4.2), in order to determine an optimal
solution of the optimization problem (4.1) (and an optimal solution of its Fenchel-type
dual as well) one can use the primal-dual proximal splitting algorithms which have been
recently introduced in [17, 29]. These approaches have the particularity to deal in an
efficient way with sums of compositions of proper, convex and lower semicontinuous
function with linear continuous operators, by evaluating separately each function via
a backward step and each linear continuous operator (and its adjoint) via a forward
step. However, the iterative scheme we propose in this section for solving (4.1) has
the advantage of exploiting the separable structure of the problem.

Let us also mention that the dual inclusion problem of (4.4) reads (see (1.3))

find w1 ∈ H′
1, . . . , wm ∈ H′

m,

wm+1 ∈ G1, . . . , wm+p ∈ Gp such that
(∃x1 ∈ H1, . . . , ∃xm ∈ Hm,

∃v1 ∈ G1, . . . , ∃vp ∈ Gp)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = K∗
1w1 +

p∑
j=1

L∗
j1vj

...

0 = K∗
mwm +

p∑
j=1

L∗
jmvj

0 = wm+1 −
m∑

i=1

L1ixi

...

0 = wm+p −
m∑

i=1

Lpixi

w1 ∈ (∂f1 �∂h1)(K1x1)
...
wm ∈ (∂fm �∂hm)(Kmxm)
wm+1 ∈ ∂g∗1(v1)
...
wm+p ∈ ∂g∗p(vp).

(4.7)
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Then (x1, ..., xm, v1, ..., vp, w1, ..., wm, wm+1, ..., wm+p) is a primal-dual solution to
(4.4) - (4.7), if

wi ∈ (∂fi �∂hi)(Kixi), wm+j ∈ ∂g∗j (vj),

0 = K∗
i wi +

p∑
j=1

L∗
jivj and 0 = wm+j −

m∑
i=1

Ljixi, i = 1, ..., m, j = 1, ..., p.

Provided that (x1, ..., xm, v1, ..., vp, w1, ..., wm, wm+1, ..., wm+p) is a primal-dual so-
lution to (4.4) - (4.7), it follows that (x1, ...xm) is an optimal solution to (4.1) and
(w1, ..., wm, v1, ..., vp) is an optimal solution to its Fenchel-type dual problem
(4.8)

sup
(w1,...,wm,wm+1,...,wm+p)∈H′

1×...×H′
m×G1×...×Gp

K∗
i wi+

∑ p
j=1 L∗

jiwm+j=0,i=1,...,m

⎧⎨
⎩−

m∑
i=1

(f∗
i (wi) + h∗

i (wi)) −
p∑

j=1

g∗j (wm+j )

⎫⎬
⎭ .

Algorithm 3.1 gives rise to the following iterative scheme for solving (4.4) - (4.7).

Algorithm 4.2.
For every i = 1, . . . , m and every j = 1, . . . , p let (a1,i,n)n≥0, (b1,i,n)n≥0, (c1,i,n)n≥0,
be absolutely summable sequences in Hi, (a2,i,n)n≥0, (b2,i,n)n≥0,
(c2,i,n)n≥0 be absolutely summable sequences inH′

i and (a1,m+j,n)n≥0, (a2,m+j,n)n≥0,
(b1,m+j,n)n≥0, (b2,m+j,n)n≥0, (c1,m+j,n)n≥0 and (c2,m+j,n)n≥0 be absolutely summable
sequences in Gj . Furthermore, set

β = max

⎧⎨
⎩
√√√√m+p∑

i=1

μ2
i , ν1, . . . , νm

⎫⎬
⎭+ max {‖K1‖ , . . . , ‖Km‖ , 1} ,(4.9)

where

μi =

√√√√ p∑
j=1

‖Lji‖2, i = 1, . . . , m, and μm+j =

√√√√ m∑
i=1

‖Lji‖2, j = 1, . . . , p,(4.10)

let ε ∈]0, 1/(β + 1)[ and (γn)n≥0 be a sequence in [ε, (1 − ε)/β]. Let the initial
points (x1,1,0, . . . , x1,m,0) ∈ H1 × . . . × Hm, (x2,1,0, . . . , x2,m,0) ∈ H′

1 × . . . × H′
m

and (v1,1,0, . . . , v1,p,0), (v2,1,0, . . . , v2,p,0) ∈ G1 × . . . × Gp be arbitrary chosen and
set
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(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎣
y1,i,n = x1,i,n − γn

(
K∗

i x2,i,n +
∑p

j=1 L∗
jiv1,j,n + a1,i,n

)
y2,i,n = x2,i,n − γn(∇h∗

i x2,i,n − Kix1,i,n + a2,i,n)
p1,i,n = y1,i,n + b1,i,n

p2,i,n = Prox γnf∗
i
y2,i,n + b2,i,n

For j = 1, . . . , p⎢⎢⎢⎢⎢⎣
w1,j,n = v1,j,n − γn (v2,j,n −∑m

i=1 Ljix1,i,n + a1,m+j,n)
w2,j,n = v2,j,n − γn(−v1,j,n + a2,m+j,n)
r1,j,n = w1,j,n + b1,m+j,n

r2,j,n = Prox γngj w2,j,n + b2,m+j,n

For i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎣
q1,i,n = p1,i,n − γn

(
K∗

i p2,i,n +
∑p

j=1 L∗
jir1,j,n + c1,i,n

)
q2,i,n = p2,i,n − γn(∇h∗

i p2,i,n − Kip1,i,n + c2,i,n)
x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n

x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

For j = 1, . . . , p⎢⎢⎢⎢⎢⎣
s1,j,n = r1,j,n − γn (r2,j,n −∑m

i=1 Ljip1,i,n + c1,m+j,n)
s2,j,n = r2,j,n − γn(−r1,j,n + c2,m+j,n)
v1,j,n+1 = v1,j,n − w1,j,n + s1,j,n

v2,j,n+1 = v2,j,n − w2,j,n + s2,j,n.

The following convergence result for Algorithm 4.2 is a consequence of Theorem
3.1.

Theorem 4.1. Suppose that the optimization problem (4.1) has an optimal solution
and that one of the qualification conditions (QCi), i = 1, 2, is fulfilled. For the
sequences generated by Algorithm 4.2 the following statements are true:

(i) (∀i ∈ {1, . . . , m}) ∑
n≥0

‖x1,i,n − p1,i,n‖2
Hi

< +∞, ∑
n≥0

‖x2,i,n − p2,i,n‖2
Hi

<

+∞ and
(∀j ∈ {1, . . . , p}) ∑

n≥0
‖v1,j,n − r1,j,n‖2

Gj
< +∞, ∑

n≥0
‖v2,j,n − r2,j,n‖2

Gj
<

+∞.
(ii) There exists an optimal solution (x1, . . . , xm) to (4.1) and an optimal solution

(w1, . . . , wm, wm+1, . . . , wm+p) to (4.8), such that (∀i ∈ {1, . . . , m}) x1,i,n ⇀

xi, p1,i,n ⇀ xi, x2,i,n ⇀ wi and p2,i,n ⇀ wi and (∀j ∈ {1, . . . , p}) v1,j,n ⇀
wm+j and r1,j,n ⇀ wm+j as n → +∞.

Remark 4.4. Recently, in [16], another iterative scheme for solving systems of
monotone inclusions, that is also able to handle with the solving of optimization prob-
lems of type (4.1), in case when the functions gj, j = 1, ..., p, are not necessarily
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differentiable, was proposed. Different to our approach, which assumes that the vari-
ables are coupled by the single-valued operator B, in [16] the coupling is made by some
compositions of parallel sums of maximally monotone operators with linear continuous
ones.

5. NUMERICAL EXPERIMENTS

In this section we present two numerical experiments which emphasize the perfor-
mances of the primal-dual algorithm for systems of monotone inclusions.

5.1. Average consensus for colored networks

The first numerical experiment that we consider concerns the problem of average
consensus on colored networks.
Given a network, where each node posses a measurement in form of a real number,

the average consensus problem consists in calculating the average of these measure-
ments in a recursive and distributed way, allowing the nodes to communicate infor-
mation along only the available edges in the network. Consider a connected network
G = (V , E), where V represents the set of nodes and E represents the set of edges.
Each edge is uniquely represented as a pair of nodes (i, j), where i < j. The nodes
i and j can exchange their values if they can communicate directly, in other words,
if (i, j) ∈ E . We assume that each node possesses a measurement in form of a real
number, also called color, and that no neighboring nodes have the same color. Let C
denote the number of colors the network is colored with and Ci the set of the nodes
that have the color i, i = 1, . . . , C. Without affecting the generality of the problem we
also assume that the first C1 nodes are in the set C1, the next C2 nodes are in the set
C2, etc. Furthermore, we assume that a node coloring scheme is available. For more
details concerning the mathematical modelling of the average consensus problem on
colored networks we refer the reader to [22, 23].
Let P and E denote the number of nodes and edges in the network, respectively,

hence,
∑C

i=1 Ci = P . Denoting by θk the measurement assigned to node k, k =
1, . . . , P , the problem we want to solve is

min
x∈R

P∑
k=1

1
2
(x− θk)2.(5.1)

The unique optimal solution to the problem (5.1) is θ∗ = 1
P

∑P
k=1 θk, namely the

average of the measurements over the whole set of nodes in the network. The goal
is to make this value available in each node in a distributed and recursive way. To
this end, we replicate copies of x throughout the entire network, more precisely, for
k = 1, ..., P , node k will hold the k-th copy, denoted by xk, which will be updated
iteratively during the algorithm. At the end we have to guarantee that all the copies
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are equal and we express this constraint by requiring that xi = xj for each (i, j) ∈ E .
This gives rise to the following optimization problem

min
x=(x1,...,xP )∈RP

xi=xj , ∀{i,j}∈E

P∑
k=1

1
2
(xk − θk)2.(5.2)

Let A ∈ R
P×E be the node-arc incidence matrix of the network, which is the

matrix having each column associated to an edge in the following manner: the column
associated to the edge (i, j) ∈ E has 1 at the i-th entry and −1 at the j-th entry, the
remaining entries being equal to zero. Consequently, constraints in (5.2) can be written
with the help of the transpose of the node-arc incidence matrix as ATx = 0. Taking
into consideration the ordering of the nodes and the coloring scheme, we can write
ATx = AT

1 x1 + . . . + AT
CxC , where xi ∈ R

Ci , i = 1, ..., C, collects the copies of the
nodes in Ci, i.e.

x = (x1, ..., xC1︸ ︷︷ ︸
x1

, ..., xP−CC+1, ..., xP︸ ︷︷ ︸
xC

).

Hence, the optimization problem (5.2) becomes

min
x=(x1,...,xC)

AT
1 x1+...+AT

C xC=0

C∑
i=1

fi(xi),(5.3)

where for i = 1, ..., C, the function fi : R
Ci → R is defined as fi(xi) =

∑
l∈Ci

1
2 (xl −

θl)2.
One can easily observe that problem (5.3) is a particular instance of the optimization

problem (4.1), when taking

m = C, p = 1, hi = δ{0}, Ki = Id , L1i = AT
i ∈ R

E×Ci , i = 1, ..., C, and g1 = δ{0}.

Using that h∗
i = 0, i = 1, ..., C, and Prox γg(x) = 0 for all γ > 0 and x ∈ R

E ,
the iterative scheme in Algorithm 4.2 reads, after some algebraic manipulations, in the
error-free case:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For i = 1, . . . , C⌊
y1,i,n = x1,i,n − γn

(
x2,i,n + Aiv1,1,n

)
y2,i,n = x2,i,n + γnx1,i,n
p2,i,n = Prox γnf∗

i
y2,i,n

w1,1,n = v1,1,n − γn

(
v2,1,n −∑C

i=1 AT
i x1,i,n

)
For i = 1, . . . , C⎢⎢⎢⎢⎣ q1,i,n = y1,i,n − γn

(
p2,i,n + Aiw1,1,n

)
q2,i,n = p2,i,n + γny1,i,n
x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n
x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

v1,1,n+1 = v1,1,n + γn
∑C

i=1 AT
i y1,i,n

v2,1,n+1 = γ2
n

(∑C
i=1 AT

i x1,i,n − v2,1,n

)
.
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Let us notice that for i = 1, ..., C and γ > 0 it holds Prox γf∗
i
(xi) = (1 + γ)−1(xi −

γθi), where θi is the vector in R
Ci whose components are θl with l ∈ Ci. In order to

compare the performances of our method with other existing algorithms in literature,
we used the networks generated in [23] with the number of nodes ranging between
10 and 1000. The measurement θk associated to each node was generated randomly
and independently from a normal distribution with mean 10 and standard deviation
100. We worked with networks with 10, 50, 100, 200, 500, 700 and 1000 nodes
and measured the performance of our algorithm from the point of view of the number
of communication steps, which actually coincides with the number of iterations. As
stopping criterion we considered

‖xn − 11P θ∗‖∣∣∣√Pθ∗
∣∣∣ ≤ 10−4,

where 11P denotes the vector in R
P having all entries equal to 1.

(a) Watts-Strogatz network (b) Geometric network

Fig. 5.1. Figure (a) shows the communication steps needed by the four algorithms for a
Watts-Strogatz network with different number of nodes. Figure (b) shows the
communication steps needed by the four algorithms for a Geometric network
with different number of nodes. In both figures ALG stands for the primal-dual
algorithm proposed in this paper.

We present in Figure 5.1 the communication steps needed when dealing with the
Watts-Strogatz network with parameters (2,0.8) and with the Geometric network with
a distance parameter 0.2. The Watts-Strogatz network is created from a lattice where
every node is connected to 2 nodes, then the links are rewired with a probability of
0.8, while the Geometric network works with nodes in a [0, 1]2 square and connects
the nodes whose Euclidean distance is less than the given parameter 0.2. As shown in
Figure 5.1, our algorithm performed comparable to D-AMM, presented in [23], but it
performed better then the algorithms presented in [24] and [31].
In order to observe the behavior of our algorithm on different networks, we tested it
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on the following 6 networks: 1. Erd"os-Rényi network with parameter 0.25, 2. Watts-
Strogatz network with parameters (2, 0.8) (network 2), 3. Watts-Strogatz network with
parameters (4, 0.6), 4. Barabási-Albert network, 5. Geometric network with parameter
0.2 and 6. Lattice network, with a different number of nodes. Observing the needed
communication steps, we can conclude that our algorithm is communication-efficient
and it performs better than or similarly to the algorithms in [23, 24] and [31] (as
exemplified in Figure 5.2).

Fig. 5.2. Comparison of the four algorithms over six networks with 10 nodes. Here,
ALG stands for the primal-dual algorithm proposed in this paper.

5.2. Support vector machines classification

The second numerical experiment we present in this section addresses the problem
of classifying images via support vector machines.
Having a set training data ai ∈ R

n, i = 1, . . . , k, belonging to one of two given
classes, denoted by “-1” and “+1”, the aim is to construct by it a decision function
given in the form of a separating hyperplane which should assign every new data to one
of the two classes with a low misclassification rate. We construct the matrixA ∈ R

k×n

such that each row corresponds to a data point ai, i = 1, ..., k and a vector d ∈ R
k such

that for i = 1, ..., k its i-th entry is equal to −1, if ai belongs to the class “-1” and it
is equal to +1, otherwise. In order to cover the situation when the separation cannot
be done exactly, we consider non-negative slack variables ξi ≥ 0, i = 1, . . . , k, thus
the goal will be to find (s, r, ξ) ∈ R

n × R × R
k
+ as optimal solution of the following

optimization problem (also called soft-margin support vector machines problem)
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min
(s,r,ξ)∈R

n×R×R
k
+

D(As+1kr)+ξ�1k

{
‖s‖2 + C ‖ξ‖2

}
,(5.4)

where 11k denotes the vector in R
k having all entries equal to 1, the inequality z � 11k

for z ∈ R
k means zi ≥ 1, i = 1, ...k, D = Diag(d) is the diagonal matrix having the

vector d as main diagonal and C is a trade-off parameter. Each new data a ∈ R
n

will by assigned to one of the two classes by means of the resulting decision function
z(a) = sT a + r, namely, a will be assigned to the class “-1”, if z(a) < 0, and to
the class “+1”, otherwise. For more theoretical insights in support vector machines we
refer the reader to [19].

A sample of data for number 2 A sample of data for number 9

Fig. 5.3. A sample of images belonging to the classes -1 and +1, respectively.

We made use of a data set of 11907 training images and 2041 test images of size 28×
28 from the website http://www.cs.nyu.edu/˜roweis/data.html. The
problem consisted in determining a decision function based on a pool of handwritten
digits showing either the number two or the number nine, labeled by −1 and +1,
respectively (see Figure 5.3). We evaluated the quality of the decision function on a
test data set by computing the percentage of misclassified images. Notice that we use
only a half of the available images from the training data set, in order to reduce the
computational effort.
The soft-margin support vector machines problem (5.4) can be written as a special

instance of the optimization problem (4.1), by taking

m = 3, p = 1, f1(·) = ‖·‖2 , f2 = 0, f3(·) = C ‖·‖2 + δ
R

k
+
(·),

hi = δ{0}, Ki = Id , i = 1, 2, 3,

g1 = δ{z∈Rk :z�11k}, L11 = DA, L12 = D1k and L13 = Id .

Thus, Algorithm 4.2 gives rise in the error-free case to the following iterative scheme:
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(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For i = 1, 2, 3⎢⎢⎢⎢⎣
y1,i,n = x1,i,n − γn

(
x2,i,n + LT

1iv1,1,n

)
y2,i,n = x2,i,n + γnx1,i,n

p2,i,n = Prox γnf∗
i
y2,i,n

w1,1,n = v1,1,n − γn

(
v2,1,n −∑3

i=1 L1ix1,i,n

)
w2,1,n = v2,1,n + γnv1,1,n

r2,1,n = Prox γng1w2,1,n

For i = 1, 2, 3⎢⎢⎢⎢⎢⎢⎢⎣
q1,i,n = y1,i,n − γn

(
p2,i,n + LT

1iw1,1,n

)
q2,i,n = p2,i,n + γny1,i,n

x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n

x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

s1,1,n = w1,1,n − γn(r2,1,n −
∑3

i=1 L1ip1,i,n)
s2,1,n = r2,1,n + γnw1,1,n

v1,1,n+1 = v1,1,n − w1,1,n + s1,1,n

v2,1,n+1 = v2,1,n − w2,1,n + s2,1,n

We would also like to notice that for the proximal points needed in the algorithm one
has for γ > 0 and (s, r, ξ, z) ∈ R

n × R × R
k × R

k the following exact formulae:

Prox γf∗
1
(s) = (2+γ)−12s, Prox γf∗

2
(r) = 0, Prox γf∗

3
(ξ) = ξ−γP

R
k
+

(
(2C+γ)−1ξ

)
and

Prox γg1(z) = P{x∈Rk:x�1k}(z).

With respect to the considered data set, we denote by D= {(Xi, Yi), i = 1, ..., 6000} ⊆
R

784 × {+1,−1} the set of available training data consisting of 3000 images in the
class −1 and 3000 images in the class +1. A sample from each class of images is
shown in Figure 5.3. The images have been vectorized and normalized by dividing each

of them by the quantity
(

1
6000

∑6000
i=1 ‖Xi‖2

) 1
2 . We stopped the primal-dual algorithm

after different numbers of iterations and evaluated the performances of the resulting
decision functions. In Table 1 we present the misclassification rate in percentage for
the training and for the test data (the error for the training data is less than the one
for the test data) and observe that the quality of the classification increases with the
number of iterations. However, even for a low number of iterations the misclassification
rate outperforms the ones reported in the literature dealing with numerical methods for
support vector classification. Let us also mention that the numerical results are given
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for the case C = 1. We tested also other choices for C, however we did not observe
great impact on the results.

Table 1. Misclassification rate in percentage for different numbers of iterations for
both the training data and the test data.

Number of iterations 100 1000 2000 3000 5000
Training error 2.95 2.6 2.3 1.95 1.55
Test error 2.95 2.55 2.45 2.15 2
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