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ON UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING FIVE
SMALL FUNCTIONS IN SOME ANGULAR DOMAINS

Huifang Liu* and Zhiqiang Mao*

Abstract. In this paper, we prove that two nonconstant meromorphic functions
are identical provided that they share five distinct small functions IM in some
angular domains.

1. INTRODUCTION AND MAIN RESULTS

It is assumed that the reader is familiar with the Nevanlinna’s value distribution
theory of meromorphic functions (see [1] or [2]). Let α be a nonconstant meromorphic
functions or α ∈ C∞(= C ∪ {∞}). We say that two meromorphic function f and g
share α IM (ignoring multiplicities) in X ⊂ C provided that in X , f(z)−α = 0 if and
only if g(z)−α = 0, f and g share α CM (counting multiplicities) in X provided that
in X , f(z)−α and g(z)−α assume 0 at the same points with the same multiplicities.
R. Nevanlinna [3] proved the following well-known five value theorem.

Theorem A. If two nonconstant meromorphic functions f and g share five dis-
tinct values αi(i = 1, · · · , 5) IM in X = C, then f(z) ≡ g(z).
After his very work, lots of uniqueness results of meromorphic functions in the

complex plane have been obtained, which are introduced systematically in [4]. In [5],
J. H. Zheng suggested first time to investigate the uniqueness of meromorphic functions
in a precise subset of C and posed the following question.

Question 1.1. Under what conditions, must two meromorphic functions onX( �= C)
be indentical?
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It is an interesting topic how to extend some important uniqueness results in the
complex plane to an angular domain, see [5, 6, 7, 8, 9, 10]. In [5, 6, 9, 10], by using
Nevanlinna characteristic for an angular domain, the authors have extended Nevan-
linna’s five value theorem and four value theorem to some angular domain respec-
tively. Recently, J. H. Zheng [11] proved the following version of five value theorem
of meromorphic functions in an angular domain in terms of the Tsuji characteristic.

Theorem B. Let f and g be two nonconstant meromorphic functions in an angular
domain Ω(α, β) = {z : α < arg z < β} (0 ≤ α < β ≤ 2π), and

lim
r→∞

Tα,β(r, f)
log r

= ∞.

If f and g share five distinct values aj(j = 1, · · · , 5) IM in Ω(α, β), then f ≡ g.
In this paper, we use Tα,β(r, f) to denote the Tsuji characteristic of f in an angular

domain Ω(α, β) and its definition can be found below. The Nevanlinna five value
theorem has been extended in [12, 13] to the case of five IM shared small functions.
Please see the following result.

Theorem C. Let f and g be two nonconstant meromorphic functions in C, and
αj(j = 1, · · · , 5) be five distinct small functions with respect to f and g. If f and g
share αj(j = 1, · · · , 5) IM in C, then f(z) ≡ g(z).
It is natural to hope such an extension of Theorem B would be also available. In

order to make our statements understand easily, first of all we introduce some notations
and definitions as follows (see [11]).
Let f be a meromorphic function in an angular domain Ω(α, β) = {z : α < arg z <

β} with 0 < β − α ≤ 2π. Define

Mα,β(r, f) =
1
2π

∫ π−arcsin(r−ω)

arcsin(r−ω)
log+

∣∣∣f(rei(α+ω−1θ) sinω−1
θ)

∣∣∣ 1
rωsin2θ

dθ,

Nα,β(r, f) =
∑

1<|bn|<r(sin(ω(βn−α)))ω−1

(sinω(βn − α)
|bn|ω − 1

rω

)
= ω

∫ r

1

nα,β(t, f)
tω+1

dt,

where ω = π
β−α , bn = |bn|eiβn are the poles of f(z) in Ξ(α, β, r) = {z = teiθ :

α < θ < β, 1 < t ≤ r(sin(ω(θ − α)))1/ω} appearing according to their multiplicities,
nα,β(r, f) denotes the number of poles of f(z) in Ξ(α, β, r) counting multiplicities.
We also define Nα,β(r, f) in the same form of Nα,β(r, f) for distinct poles bn of f ,
that is, ignoring their multiplicities. The Tsuji characteristic of meromorphic function
f in Ω(α, β) is defined by

Tα,β(r, f) = Mα,β(r, f) + Nα,β(r, f).
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Let f and α be two meromorphic functions in Ω(α, β). α is called a small function
with respect to f in Ω(α, β) (in the sense of the Tsuji characteristic) if Tα,β(r, α) =
o(Tα,β(r, f)) as r → ∞, possibly outside a set E of r of finite linear measure. In the
sequel, the term ”small function” always means small function in the sense of the Tsuji
characteristic.
The following is the question we consider in this paper.

Question 1.2. Do f and g coincide if they share five distinct small functions IM
in an angular domain?

Dealing with the above question, we obtain the following results which give an
affirmative answer to Question 1.2.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions in an an-
gular domain Ω(α, β) such that

(1.1) lim
r→∞

Tα,β(r, f)
log r

= ∞,

and let αj (j = 1, · · · , 5) be five distinct small functions with respect to f and g in
Ω(α, β). If f and g share αj (j = 1, · · · , 5) IM in Ω(α, β), then f ≡ g.

Let a ∈ C∞, we use n(r, Ω(α, β), f = a) to denote the number of zeros of f − a

in Ω(α, β)
⋂{z : |z| < r} counting multiplicities. When a = ∞, the zeros of f − a

mean the poles of f .

Theorem 1.2. Let f and g be two nonconstant meromorphic functions in an an-
gular domain Ω(α, β) such that for some ε > 0 and for some a ∈ C∞,

(1.2) lim
r→∞

logn(r, Ω(α + ε, β − ε), f = a)
log r

>
π

β − α
.

Let αj(j = 1, · · · , 5) be five distinct small functions with respect to f and g in Ω(α, β).
If f and g share αj (j = 1, · · · , 5) IM in Ω(α, β), then f ≡ g.

Remark 1.1. It is well know that every meromorphic function of order ρ (0 < ρ ≤
+∞) must have at least one direction arg z = θ(0 ≤ θ < 2π) such that for sufficiently
small ε > 0,

lim
r→∞

logn(r, Ω(θ − ε, θ + ε), f = a)
log r

= ρ

holds for all a ∈ C∞ with at most two exceptional values. So when f is of order
ρ ∈ (1/2,∞], the angular domain satisfying (1.2) must exist.
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Remark 1.2. For the case that αj (j = 1, · · · , 5) are five distinct complex number,
the result in Theorem 1.2 has been obtained in [6].

Theorem 1.3. Let f and g be two nonconstant meromorphic functions in C,
Ω(α, β) be an angular domain satisfying

(1.3) lim
ε→0+

lim
r→+∞

logT0(r, Ω(α + ε, β − ε), f)
log r

>
π

β − α
.

Let αj (j = 1, · · · , 5) be five distinct small functions with respect to f and g in
Ω(α, β). If f and g share αj (j = 1, · · · , 5) IM in Ω(α, β), then f ≡ g, where
T0(r, Ω(α, β), f) denote the Ahlfors-Shimizu characteristic of f in Ω(α, β).

Remark 1.3. For the case that αj (j = 1, · · · , 5) are five distinct complex number,
the result in Theorem 1.3 has been obtained in [10].

2. LEMMAS

Lemma 2.1. (see [11]). Let f be a nonconstant meromorphic function in Ω(α, β).
Then for every a ∈ C we have

Tα,β

(
r,

1
f − a

)
= Tα,β(r, f) + O(1).

Lemma 2.2. (see [11]). Let f be a nonconstant meromorphic function in Ω(α, β)
and k be a positive integer. Then for 0 < r < R, we have

Mα,β

(
r,

f (k)

f

)
≤ c

{
log+ Tα,β(R, f) + log

R

R − r
+ 1

}
,

where c > 0 is a constant. Furthermore, we have

Mα,β

(
r,

f (k)

f

)
= O

{
log r + log+ Tα,β(r, f)

}

as r → ∞, possibly outside a set E of r of finite linear measure.

For the sake of convenience, we use Qα,β(r, f) to denote any quantity satisfying

Qα,β(r, f) = O
{

log r + log+ Tα,β(r, f)
}

as r → ∞, possibly outside a set E of r of finite linear measure.

Lemma 2.3. (see [11]). Let f be a nonconstant meromorphic function in Ω(α, β)
and bj ∈ C∞(j = 1, · · · , q) be q(≥ 3) distinct complex number. Then

(q − 2)Tα,β(r, f) ≤
q∑

j=1

Nα,β

(
r,

1
f − bj

)
+ Qα,β(r, f).
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Lemma 2.4. (see [11]). Let f be a nonconstant meromorphic function in Ω(α, β).
Then for all irreducible rational function R(z, f) in f with coefficients meromorphic
and small with respect to f in Ω(α, β), we have

Tα,β(r, R(z, f)) = dTα,β(r, f) + o(Tα,β(r, f))

as r → ∞, possibly outside a set E of r of finite linear measure, where d denotes the
degree of R(z, f) in f .

Lemma 2.5. Let f be a nonconstant meromorphic function in Ω(α, β), and βj(j =
1, 2, 3) be small functions with respect to f in Ω(α, β). Then

Tα,β(r, f) ≤
3∑

j=1

Nα,β

(
r,

1
f − βj

)
+ Qα,β(r, f) + o(Tα,β(r, f)).

Proof. Set

F (z) =
f(z) − β1(z)
f(z) − β2(z)

· β3(z)− β2(z)
β3(z)− β1(z)

.

Then combining Lemmas 2.3 and 2.4, we obtain the result.

Lemma 2.6. (see [14]). Let g : (0,∞) → R and h : (0,∞) → R be monotone
nondecreasing functions such that g(r) ≤ h(r) outside of an exceptional set E of finite
linear measure. Then for any α > 1, there exists r0 such that g(r) ≤ h(αr) for all
r > r0.

Let f be meromorphic function in Ω(α, β), we define N (r, Ω(α, β), f = a) as

N (r, Ω(α, β), f = a) =
∫ r

1

n(t, Ω(α, β), f = a)
t

dt.

Especially, when a = ∞, we denote it asN (r, Ω(α, β), f). We also defineN (r, Ω(α, β),
f = a) in the same form of N (r, Ω(α, β), f = a) for distinct zeros of f − a, that is,
ignoring their multiplicities.

Lemma 2.7. (see [11]). Let f be a nonconstant meromorphic function in Ω(α, β).
Then for ε > 0, we have

Nα,β(r, f) ≥ ωcω N (cr, Ω(α + ε, β − ε), f)
rω

+ ω2cω

∫ cr

1

N (t, Ω(α + ε, β − ε), f)
tω+1

dt,

where ω = π
β−α , 0 < c < 1 is a constant depending on ε.

Lemma 2.8. (see [15]). Let f be meromorphic in C. Then for any three distinct
points a1, a2, a3 on C∞ and any small ε > 0, we have

T0(r, Ω(α + ε, β − ε), f) ≤ 3
3∑

i=1

N(2r, Ω(α, β), f = ai) + O
(
(log r)2

)
.
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Lemma 2.9. Let f be a meromorphic function in C, and Ω(α, β) be an angular
domain. If

(2.1) lim
ε→0+

lim
r→+∞

log T0(r, Ω(α + ε, β − ε), f)
log r

= λ,

where 0 < λ ≤ ∞, then

(2.2) lim
ε→0+

lim
r→+∞

logN (r, Ω(α+ ε, β − ε), f = a)
log r

≥ λ

for all a ∈ C∞ with at most two exceptional values.

Proof. If the conclusion doesn’t hold, then there exist at least three distinct values
a1, a2, a3 such that for sufficiently small ε > 0,

(2.3) lim
r→+∞

logN (r, Ω(α + ε, β − ε), f = ai)
log r

< λ (i = 1, 2, 3)

Set

μi = lim
r→+∞

logN (r, Ω(α + ε, β − ε), f = ai)
log r

. (i = 1, 2, 3)

Let σ be a real number such that max
1≤i≤3

{μi} < σ < λ. Then by (2.3), for sufficiently

large r,

(2.4) N (r, Ω(α+ ε, β − ε), f = ai) < rσ. (i = 1, 2, 3)

Combining Lemma 2.8 and (2.4), we have

(2.5)

T0(r, Ω(α + 2ε, β − 2ε), f)

≤ 3
3∑

i=1

N (2r, Ω(α + ε, β − ε), f = ai) + O
(
(log r)2

)

< Mrσ,

where M is a positive number. By (2.5) we have

lim
r→+∞

log T0(r, Ω(α + 2ε, β − 2ε), f)
log r

≤ σ.

Hence

lim
ε→0+

lim
r→+∞

log T0(r, Ω(α + ε, β − ε), f)
log r

≤ σ < λ,

which contradicts (2.1). Lemma 2.9 is thus completely proved.
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Lemma 2.10. Let f be a meromorphic function in C, and Ω(α, β) be an angular
domain. If

lim
ε→0+

lim
r→+∞

logT0(r, Ω(α + ε, β − ε), f)
log r

>
π

β − α
,

then

lim
r→∞

Tα,β(r, f)
log r

= ∞.

Proof. Set

(2.6) λ = lim
ε→0+

lim
r→+∞

log T0(r, Ω(α + ε, β − ε), f)
log r

.

By Lemma 2.9 and (2.6), there exists some a ∈ C∞ such that

(2.7) lim
ε→0+

lim
r→+∞

log N(r, Ω(α + ε, β − ε), f = a)
log r

≥ λ.

By (2.7), for any given ε1(0 < 2ε1 < λ − π
β−α), there exists at least some ε0(> 0)

sufficiently small such that

(2.8) lim
r→+∞

log N(r, Ω(α + ε0, β − ε0), f = a)
log r

≥ λ − ε1.

Let μ be a real number such that π
β−α < μ < λ − ε1. Then by (2.8), there exists a

sequence rn → ∞ such that

(2.9) N (rn, Ω(α + ε0, β − ε0), f = a) > rμ
n

holds for rn sufficiently large. By Lemma 2.7 and (2.9), we get

(2.10) Nα,β(rn, f = a) ≥ πc
μ+ π

β−α

β − α
r
μ− π

β−α
n .

Then by Lemma 2.1 and (2.10), we prove the conclusion.

3. PROOFS OF THEOREMS

Proof of Theorem 1.1. Suppose that f �≡ g. Set

(3.1) L(w) =
w − α1

w − α2
· α3 − α2

α3 − α1
.

Let F (z) = L(f(z)), G(z) = L(g(z)), βj = L(αj), (j = 1, · · · , 5). By (3.1) and
Lemma 2.4, we get β1 = 0, β2 = ∞, β3 = 1, and β1, · · · , β5 are small functions with
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respect to F and G. By the assumption of Theorem 1.1 and (3.1), we know that F

and G share 0, 1,∞ IM. Then combining Lemmas 2.1, 2.3, we get

(3.2)

Tα,β(r, F ) ≤ Nα,β

(
r,

1
F

)
+ Nα,β

(
r,

1
F − 1

)
+ Nα,β(r, F ) + Qα,β(r, F )

≤ Nα,β

(
r,

1
G

)
+ Nα,β

(
r,

1
G − 1

)
+ Nα,β(r, G)+ Qα,β(r, F )

≤ 3Tα,β(r, G) + Qα,β(r, F ).

Similarly, we have

(3.3) Tα,β(r, G) ≤ 3Tα,β(r, F ) + Qα,β(r, G).

Hence by (3.2) and (3.3), we get

(3.4) Qα,β(r, F ) = Qα,β(r, G).

We claim that at least three among Nα,β

(
r, 1

F−βj

)
(j = 1, · · · , 5) are not equal to

Qα,β(r, F ) + o(Tα,β(r, F )). Otherwise, by Lemma 2.5, we get

(3.5) Tα,β(r, F ) ≤ Qα,β(r, F ) + o(Tα,β(r, F )).

By (3.5) and Lemma 2.6, we get

lim
r→∞

Tα,β(r, f)
log r

< ∞,

which contradicts (1.1).
Without loss of generality, we assume that

(3.6) Nα,β

(
r,

1
F − β5

)
�= Qα,β(r, F ) + o(Tα,β(r, F )).

Now we use the method of [13] and [16] to complete the proof. Set

(3.7) H =
F ′(β′

4G − β4G
′)(F − G)

F (F − 1)G(G− β4)
− G′(β′

4F − β4F
′)(F − G)

G(G− 1)F (F − β4)
.

Then by (3.7), we get

(3.8) H =
(F − G)H1

F (F − 1)(F − β4)G(G− 1)(G− β4)
,

where

(3.9)
H1 = F ′(β′

4G − β4G
′)(G− 1)(F − β4) − G′(β′

4F − β4F
′)(F − 1)(G− β4)

= β′
4FF ′G2 − β′

4FF ′G − β4(β4 − 1)FF ′G′ − β4β
′
4F

′G2 + β4β
′
4F

′G

− β′
4F

2GG′ + β′
4FGG′ + β4(β4 − 1)F ′GG′ + β4β

′
4F

2G′ − β4β
′
4FG′.
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Noting that f �≡ g, by (3.1), we have

(3.10) F �≡ G.

We discuss the following two cases.

Case 1. H ≡ 0. By (3.7) and (3.10), we get

(3.11)
F ′(β′

4G − β4G
′)

(F − 1)(G− β4)
≡ G′(β′

4F − β4F
′)

(G− 1)(F − β4)
.

If β4 is a constant, then by β4 �= 1 and (3.11), we get F ≡ G, which contradicts (3.10).
So β4 is not a constant. By (3.11), we get

F ′(β′
4G− β4G

′)
G′(β′

4F − β4F ′)
− 1 ≡ (F − 1)(G− β4)

(G − 1)(F − β4)
− 1.

Hence we get

(3.12)
F ′ − G′

F − G
≡ (1− β4)G′(β′

4F − β4F
′)

β′
4G(G− 1)(F − β4)

+
G′

G
.

By (3.6), we know that there is a point z0 such that z0 is a common zero of F − β5

and G−β5, but is not a zero or a pole of β4, β
′
4, β5, β5− 1, β5−β4. It is obvious that

z0 is a pole of the left side of (3.12), and not a pole of the right side of (3.12), which
is a contradiction.

Case 2. H �≡ 0. By (3.7), we get

(3.13)
H =

F ′

F − 1
· β′

4G − β4G
′

G(G − β4)
−

( F ′

F − 1
− F ′

F

)
· β′

4G− β4G
′

G − β4

−
( G′

G − 1
− G′

G

)
· β′

4F − β4F
′

F − β4
+

G′

G − 1
· β′

4F − β4F
′

F (F − β4)
.

Since

(3.14)
β′

4G − β4G
′

G(G− β4)
=

G′

G
− G′ − β′

4

G − β4
,

β′
4G − β4G

′

G − β4
= β′

4 −
β4(G′ − β′

4)
G − β4

,

then by Lemma 2.2 and (3.4), we get

(3.15)
Mα,β

(
r,

β′
4G − β4G

′

G(G− β4)

)
≤ Mα,β

(
r,

G′

G

)
+ Mα,β

(
r,

G′ − β′
4

G − β4

)

= Qα,β(r, F ) + o(Tα,β(r, F )),
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(3.16)
Mα,β

(
r,

β′
4G − β4G

′

G − β4

)
≤ Mα,β(r, β′

4) + Mα,β

(
r,

β4(G′ − β′
4)

G − β4

)

= Qα,β(r, F ) + o(Tα,β(r, F )).

Combining (3.13), (3.15) and (3.16), we get

(3.17) Mα,β(r, H) = Qα,β(r, F ) + o(Tα,β(r, F )).

Next we estimate Nα,β(r, H). By (3.7), we know that the poles of H only possibly
occur from the zeros of F, G, F − 1, G− 1, F − β4 and G− β4, the poles of F, G and
β4. Let E0 be the set of all zeros, 1-points and poles of β4. We discuss the following
four subcases.

Subcase 1. Suppose that z1 is a zero of F with multiplicity m1 and G with
multiplicity n1, but z1 �∈ E0. Then by (3.9), we know that z1 is a zero of H1 with
multiplicity at least m1 + n1 − 1. Noting that z1 is a zero of F − G with multiplicity
min{m1, n1}, by (3.8), we deduce that z1 is not a pole of H .

Subcase 2. Suppose that z2 is a pole of F with multiplicity m2 and G with
multiplicity n2, but z2 �∈ E0. Then by (3.9), we know that z2 is a pole of H1 with
multiplicity at most 2m2 +2n2 +1. Noting that z2 is a pole of F −G with multiplicity
at most max{m2, n2}, by (3.8), we deduce that z2 is not a pole of H .

Subcase 3. Suppose that z3 is a zero of F − 1 with multiplicity m3 and G − 1
with multiplicity n3, but z3 �∈ E0. Noting that z3 is a zero of F − G with multiplicity
min{m3, n3}, a simple pole of F ′

F−1 and
G′

G−1 , by (3.7), we deduce that z3 is not a pole
of H .

Subcase 4. Suppose that z4 is a zero of F − β4 with multiplicitym4 and G− β4

with multiplicity n4, but z4 �∈ E0. By (3.14), we know that z4 is a simple pole of
β′
4G−β4G′
G(G−β4) and

β′
4F−β4F ′
F (F−β4) . Noting that z4 is a zero of F − G, by (3.7), we deduce that

z4 is not a pole of H .
From the above, we get

(3.18) Nα,β(r, H) = o(Tα,β(r, F )).

Thus by (3.17) and (3.18), we get

(3.19) Tα,β(r, H) = Qα,β(r, F ) + o(Tα,β(r, F )).

Since F and G share β5 IM, by (3.7) and (3.19), we get

Nα,β

(
r,

1
F − β5

)
≤ Nα,β

(
r,

1
H

)
≤ Qα,β(r, F ) + o(Tα,β(r, F )),

which contradicts (3.6). Theorem 1.1 is completely proved.
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Proof of Theorem 1.2. By Lemma 2.7, (1.2) implies (1.1). So combining Theorem
1.1 we get the conclusion of Theorem 1.2.

Proof of Theorem 1.3. By (1.3) and Lemma 2.10, we know that f satisfies (1.1).
Hence by Theorem 1.1 we obtain that f ≡ g in Ω(α, β). Then by the identity principle
we prove that f ≡ g in C.
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