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SUBMAXIMAL INTEGRAL DOMAINS

A. Azarang

Abstract. It is proved that if D is a UFD and R is a D-algebra, such that
U(R) ∩ D �= U(D), then R has a maximal subring. In particular, if R is a ring
which either contains a unit x which is not algebraic over the prime subring of
R, or R has zero characteristic and there exists a natural number n > 1 such
that 1

n
∈ R, then R has a maximal subring. It is shown that if R is a reduced

ring with |R| > 22ℵ0 or J(R) �= 0, then any R-algebra has a maximal subring.
Residually finite rings without maximal subrings are fully characterized. It is
observed that every uncountable UFD has a maximal subring. The existence
of maximal subrings in a noetherian integral domain R, in relation to either the
cardinality of the set of divisors of some of its elements or the height of its
maximal ideals, is also investigated.

1. INTRODUCTION

All rings in this article are commutative with 1 �= 0; all modules are unital. If
S is a subring of a ring R, then 1R ∈ S. In this paper the characteristic of a ring
R is denoted by Char(R), and the set of all maximal ideals of a ring R is denoted
by Max(R). For any ring R, let Z = Z · 1R = {n · 1R | n ∈ Z}, be the prime
subring of R. Rings with maximal subrings are called submaximal rings in [4] and
[7]. Some important rings such as uncountable artinian rings, zero-dimensional rings
which are either not integral over Z or with zero characteristic, noetherian rings R
with |R| > 2ℵ0 and infinite direct product of rings are submaximal, see [4-7]. We
should remind the reader that all finite rings except Zn (up to isomorphism), where n
is a natural number, are submaximal. It is also interesting to note that whenever S is
a finite maximal subring of a ring R, then R must be finite, see [8, Theorem 8], [19],
[17] and [20]. The latter interesting fact is also an easy consequence of [5, the proof of
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Theorem 2.9 ] or [6, Theorem 3.8]. Recently S.S. Korobkov determined which finite
rings have exactly two maximal subrings, see [18].
We remind the reader that whenever S is a maximal subring of a ring R, then R is

called minimal ring extension of S. Recently, D.E. Dobbs and J. Shapiro have extended
the results in [15], to integral domains and certain commutative rings, see [13] and [14],
respectively. Also see [23], [11] and [21]. T.G. Lucas, in [21], characterized minimal
ring extensions of certain commutative rings especially in the case of minimal integral
extension. It is interesting to know that every commutative ring R has a minimal ring
extension, for if M is a simple R-module then the idealization R(+)M is a minimal
ring extension of R (note, for any R-module M , every R-subalgebra of R(+)M has
the form R(+)N , where N is a submodule of M , see [12]). For a generalization of
minimal ring extensions, see also [10].
Unlike maximal ideals (resp. minimal ring extension) whose existence is guaran-

teed either by Zorn Lemma or noetherianity of rings (resp. by idealization or other
techniques, see [12]), maximal subrings need not always exist, see [7] for such exam-
ples and in particular, for example of rings of any infinite cardinality, which are not
submaximal. In fact by the above comment about the idealization, one can easily see
that if K is any field with zero characteristic, then the ring Z(+)K is not submaximal,
see [7, Example 3.19]. Also, in the latter reference and in [4] a good motivations
for the study of maximal subrings related to algebraic geometry and elliptic curves are
given.
In this paper, we are interested in finding submaximal integral domains, especially

atomic and noetherian integral domains. A brief outline of this paper is as follow.
Section 1, contains some preliminaries and also some generalizations of results which
are to appeared in [7]. It is observed that wheneverD is a UFD and R is a D-algebra
in which a non-unit of D is invertible, then R is submaximal. In particular, if R is
a ring with zero characteristic and there exists n ∈ (Z \ {1,−1}) ∩ U(R), then R is
submaximal. Moreover, if D is a PID and D ⊆ R is an integral domain such that
D is integrally closed in R and U(R) �= U(D), then R is submaximal. Consequently
it is proved that, if R is a Z-algebra, then either R is submaximal or for any prime
number p, there exists a maximal idealM of R such that Char( R

M ) = p. It is observed
that every ring either is submaximal or is Hilbert. In particular, if R is a reduced ring
with |R| > 22ℵ0 or J(R) �= 0, then any R-algebra is submaximal. Consequently, it
is shown that if R is a reduced non-submaximal ring with zero characteristic, then
⋂

p∈P Rp = 0, where P is the set of prime numbers. It is proved that if R is a
residue finite non-submaximal ring, then R is a countable principal ideal ring which is
either an integral domain with zero characteristic or it is an artinian ring with nonzero
characteristic. Finally in Section 1, the existence of maximal subring in semi-local
rings and localization of rings are investigated. In particular, it is proved that if R
is a ring and S is a multiplicatively closed set in R such that RS is semi-local, then
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either RS is submaximal or every prime ideal of RS has the form PS , for some
P ∈ Max(R) ∩ Min(R). Moreover, in the latter case, if RS is submaximal, then
R is submaximal too. Section 2, is devoted to the existence of maximal subrings in
unique factorization domains, noetherian integral domains and certain atomic domains.
It is observed that, every uncountable UFD is submaximal. We also generalized the
latter result to certain uncountable atomic domains. In particular, it is proved that if
R is an uncountable noetherian Z-algebra, in which every natural number has at most
countably many (irreducible) divisors, then R is submaximal. It is shown that, if R is a
noetherian integral domain with zero characteristic and tr.degZR = n ≥ 1 (resp. with
nonzero characteristic and tr.degZR = n ≥ 2) such that the height of every maximal
ideal of R is greater or equal to n + 1 (resp. greater or equal to n) and Z[X ] ⊆ R is
a residually algebraic extension, where X is a transcendence basis for R over Z, then
R is submaximal. Finally, we show that every uncountable Dedekind domain D with
|Max(D)| ≤ ℵ0, is submaximal.
Finally, let us recall some standard definitions and notations in commutative rings,

see [16]. An integral domainD is called G-domain if the quotient field of D is finitely
generated as a ring over D. A prime ideal P of a ring R is called G-ideal if R

P is a
G-domain. A ring R is called Hilbert if every G-ideal of R is maximal. We also call
a ring R, not necessarily noetherian, semi-local (resp. local) if Max(R) is finite (resp.
|Max(R)| = 1). An integral domain D is called atomic, if every nonzero non-unit
of D is a finite product of irreducible elements, not necessarily unique. An integral
domain D is called idf -domain if every nonzero non-unit element of D has at most
finitely many irreducible divisors, see [1]. In this paper the set of minimal prime ideals
and prime ideals of a ring R are denoted by Min(R) and Spec(R), respectively. As
usual, let U(R) denote the set of all units of a ring R. The Jacobson and the nil
radical ideals of a ring R are also denoted by J(R) and N (R), respectively. If P is a
prime ideal of a ring R, then the height of P is denoted by ht(P ). If D is an integral
domain, then from each set of associate irreducible elements of D, choose one to put
into Ir(D). We recall that if D ⊆ R is an extension of integral domains, then as for
the existence a transcendence basis for field extensions, one can easily see that there
exists a subset X of R which is algebraically independent over D and R is algebraic
over D[X ] (hence every integral domain is algebraic over a UFD). Moreover, in the
latter case |X | = tr.degF (E), where E and F are the quotient fields of R and D,
respectively. Hence, similar to the field extensions, we can define the transcendence
degree of R over D which is denoted by tr.degD(R). Finally, we denote the set of all
prime numbers by P.

2. PRELIMINARIES AND GENERALIZATIONS

We begin this section with the following useful fact about the existence of maximal
subrings in subrings of a submaximal ring, which is the converse of [6, Proposition
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2.1]. We remind the reader that a ring R is submaximal if and only if there exist a
proper subring S of R and an element x ∈ R \S such that S[x] = R, see [3, Theorem
2.5]. Now the following is in order, and although its proof is in [7], we present it for
the sake of the reader.

Proposition 2.1. [7, Theorem 2.19]. Let R ⊆ T be rings. If there exists a
maximal subring V of T such that V is integrally closed in T and U(R) � V , then
R is submaximal.

Proof. First, we claim that whenever x ∈ U(R) \ V , then x−1 ∈ V . To see
this, we observe that x−1 ∈ R ⊆ T = V [x] (note, V is a maximal subring of T ).
Consequently, x−1 = a0 + a1x + · · · + anxn, where a0, a1, . . . , an ∈ V . Now by
multiplying the latter equality by x−n, we infer that x−1 is integral over V , hence
x−1 ∈ V . But U(R) � V implies that V ∩R is a proper subring of R and there exists
x ∈ U(R) \ V with T = V [x]. Finally, we claim that R = (V ∩ R)[x], which by the
preceding comment, it implies that R is submaximal. To this end, let y ∈ R, hence
y ∈ V [x] and therefore y = b0 + b1x+ · · ·+ bmxm, where b0, b1, . . . , bm ∈ V , implies
that yx−m ∈ V ∩ R (note, x−1 ∈ V ), i.e., y ∈ (R ∩ V )[x] and we are done.

Next, we have the following fact which is needed in the sequel.

Theorem 2.2. Let R be a ring and D be a subring of R which is a UFD. If
there exists an irreducible element p ∈ D such that 1

p ∈ R, then R is submaximal. In
particular, if U(R) ∩ D �= U(D), then R is submaximal.

Proof. We first assume that R is algebraic over D. We also may assume that
R is an integral domain (note, if not, then there exists a prime ideal Q of R such that
D∩Q = 0 and therefore R

Q contains a copy of D). Now suppose that K and E are the
quotient fields of D and R, respectively. Thus E/K is an algebraic extension, since
R is algebraic over D. Now, note that K has a maximal subring V such that 1

p /∈ V

(for example V = D(p)). Hence E has a maximal subring W such that W ∩ K = V ,
by [6, Proposition 2.1]. Therefore 1

p /∈ W . Thus we have U(R) � W which implies
that R is submaximal by the above proposition. Finally, assume that R is not algebraic
over D, but by the preceding comment we may suppose that R is an integral domain
too. Let X be a transcendence basis for R over D. Thus R is algebraic over D[X ].
Now note that D[X ] is a UFD and p is an irreducible element in it. Hence we are
done by the first part of the proof. The final part is evident.

The following fact also serves to justify why in [4, Proposition 2.10] the proof is
divided into two cases.

Remark 2.3. Let R be a ring satisfying the conditions of the above theorem, then
there exists a maximal subring of R which dose not contain 1

p . In particular, if K is
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a field with zero characteristic, then for any prime number p, there exists a maximal
subring Vp of K such that 1

p /∈ Vp. Hence if M is the unique nonzero prime ideal of
Vp, we infer that Char(Vp

M ) = p.

The next three interesting facts are now immediate.

Corollary 2.4. Let R be a UFD and S be a multiplicatively closed subset of R

which contains a non-unit of R, then RS is submaximal.

Corollary 2.5. Let R be a ring with zero characteristic. If there exists a natural
number n > 1 such that 1

n ∈ R, then R is submaximal.

Corollary 2.6. Let D be an integral domain with zero characteristic and X be
a set of independent indeterminates over it. Then for any x ∈ X and every natural
number n > 1, the ring D[X ]

(nx−1)D[X ] is submaximal.

Corollary 2.7. If R is a ring with 0 = Char(R) �= Char( R
J(R)), then any R-

algebra T is submaximal.

Proof. Assume that Char( R
J(R)) = n, thus n ∈ J(R). Hence for any k ∈ Z, we

have 1 − kn ∈ U(R) ⊆ U(T ) and therefore we are done by Corollary 2.5.

Corollary 2.8. Let R be a ring with zero characteristic which is not submaximal.
Then {Char( R

M ) | M ∈ Max(R) } = P and therefore |Max(R)| is infinite.
Proof. Since R is not submaximal, we infer that Char( R

M ) �= 0 for each maximal
ideal M of R, by Corollary 2.5. Hence {Char( R

M ) | M ∈ Max(R) } ⊆ P. Now
for each prime number q we claim that there exists a maximal ideal M of R with
Char( R

M ) = q, which proves the corollary. To see this, we note that qR �= R, by
Corollary 2.5. Consequently, there exists a maximal ideal M of R with qR ⊆ M , i.e.,
Char( R

M ) = q.

For more observations we need the following lemma.

Lemma 2.9. Let R be a ring and x ∈ R be non-algebraic over the prime subring
of R. Then at least one of the following conditions holds.

(1) If Char(R) = 0, then there exists a prime ideal Q of R such that R/Q contains
a copy of Z[x].

(2) If Char(R) = n > 0, then for any prime divisor p of n, there exists a prime
ideal Q of R such that R/Q contains a copy of Zp[x].

Proof. If R has zero (or prime) characteristic, we are done since Z[x] \ {0} is a
multiplicatively closed set in R. Now, suppose that R has nonzero characteristic, say
n, which is also not a prime number. Assume that p is a prime divisor of n. Since
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dimZn[x] = 1 and P = pZ
nZ

[x] is a non-maximal prime ideal of Zn[x], hence we infer
that P is a minimal prime ideal of Zn[x]. Thus, there exists a minimal prime ideal Q
of R such that Q∩ Zn[x] = P . Now we have Zp[x] ∼= Zn[x]

Q∩Zn[x] ⊆ R
Q and therefore we

are done.

Remark 2.10. In fact in Corollary 2.8, we see that if R is not submaximal and
Z ⊆ R, then |Max(R)| ≥ |P|. We can generalize the previous fact to any non-
submaximal ring which contains a UFD as follow. First, we recall that if R is a ring
with |Max(R)| > 2ℵ0 , then R is submaximal, see [4, Proposition 2.6 ]. Now assume
that D is a UFD and let Ir′(D) be a subset of Ir(D) such that for any p �= q in
Ir′(D), we have pD + qD = D. Now, if R is a ring which contains D, then either
R is submaximal or |Ir′(D)| ≤ |Max(R)| ≤ 2ℵ0 . To see this assume that R is not
submaximal, then for any q ∈ Ir′(D) we have qR �= R, by Theorem 2.2 and hence
there exists a maximal ideal Mq of R, such that qR ⊆ Mq. It is clear that whenever
p �= q in Ir′(D), then we have Mq �= Mp, and therefore we are done. In particular, if
R is a non-submaximal ring with nonzero characteristic, say n, which is not algebraic
over Zn, then |Max(R)| is infinite. To see this note that by part (2) of the above
lemma, for any prime divisor p of n there exists a prime ideal Q of R such that R/Q
contains a copy of Zp[x]. Hence we are done by the first part of the proof.

The following proof greatly simplifies the proof of [7, Theorem 2.1 and Theorem
2.4].

Corollary 2.11. [7, Theorem 2.4]. Let R be a ring with a unit element which
is not algebraic over the prime subring of R. Then R is submaximal (in fact every
R-algebra is submaximal).

Proof. In view of Theorem 2.2 and Lemma 2.9 we are done.

Corollary 2.12. Let R be a ring. Then either R is submaximal or every element
of J(R) is algebraic over the prime subring of R.

We need the following immediate corollary in the next section.

Corollary 2.13. Let R be a ring which is not algebraic over Z. Then either R is
submaximal or for any non-algebraic element x ∈ R over Z and every natural number
n > 1, we have Z ∩ (nx − 1)R �= 0.

Proof. If (nx − 1)R = R, then we are done by Corollary 2.11, and if not, then
by using Corollary 2.5, we are done.

Corollary 2.14. Let D be a PID and R ⊇ D be an integral domain. If D is
integrally closed in R and U(R) �= U(D), then R is submaximal. In particular, every
proper overring of a PID is submaximal.
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Proof. Let x ∈ U(R) \ U(D). If x is not algebraic over D, then we are done,
by Corollary 2.11. Hence assume that x is algebraic over D, thus there exists b ∈ D
such that bx is integral over D and since D is integrally closed in R, we must have
bx = a ∈ D. Therefore x = a

b . Now, since x /∈ U(D), we infer that either x /∈ D or
x−1 /∈ D. Therefore, in any case, there must exist r, s ∈ D such that (r, s) = 1 and
z = r

s ∈ U(R) \D. Now since D is a PID, we infer that 1
s ∈ R. Thus we are done,

by Theorem 2.2. The final part is evident.

Lemma 2.15. Let R be a ring with nonzero characteristic n which is square free
(in particular, if R is reduced ring with nonzero characteristic). Then either R is
submaximal or U(R) is a torsion group.

Proof. Without lose of generality we may assume that Char(R) = p, where p is
a prime number. Now suppose that R is not submaximal, then U(R) must be algebraic
over Zp, by Corollary 2.11. Assume that x ∈ U(R), thus we infer that Zp[x] ∼= Zp[t]

I ,
where I is a nonzero ideal of the polynomial ring Zp[t]. Hence we infer that Zp[x] is
a finite ring, and therefore x is a torsion element. Thus U(R) is a torsion group.

We recall that zero dimensional rings (in particular von Neumann regular rings)
with zero characteristic are submaximal, see [6, Corollary 3.11]. We also have the
following.

Proposition 2.16. Let R be a von Neumann regular ring. Then either R is sub-
maximal or R is a periodic ring.

Proof. If R is not submaximal then by the above comment R has nonzero
characteristic. Hence by the above lemma U(R) is torsion. But it is well-known that
von Neumann regular rings are unit regular, that is to say, for any x ∈ R, there exists
u ∈ U(R) such that x = x2u. Hence by the above lemma, if un = 1, then we have
xn = x2n and thus we are done.

In fact the above result holds for any zero-dimensional ring R. For proof note that
if R is not submaximal then R has nonzero characteristic, say n, and R is integral over
Zn, by [6, Corollary 3.14]. Now note that for any x ∈ R, the ring Zn[x] is finite and
hence we are done. The next remark shows in some rings R, the group U(R) may not
be torsion.

Remark 2.17. LetR be a ring. If R is von Neumann regular with zero characteristic
then clearly U(R) is not torsion, by the proof of the above proposition, since R is not
periodic. Also, ifR is a ring with prime characteristic, say p, and there exists a non zero-
divisor x ∈ J(R), thenU(R) is not torsion. To see this note that if U(R) is torsion, then
there exists a natural number n such that (1+x)n = 1. Hence we infer that there exists
a natural number m such that amxm + · · ·+ an−1x

n−1 + xn = 0, where ai ∈ Zp and
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am �= 0 (note, x is not a zero-divisor). Since am +· · ·+an−1x
n−m−1 +xn−m ∈ U(R),

we infer that xm = 0, which is a contradiction.

By Corollary 2.12, if R is a ring then either R is submaximal or every element of
J(R) is algebraic over Z. Now we also have the following result.

Proposition 2.18. Let R be a ring with zero characteristic and J(R) �= 0. Then
either R is submaximal or for any x ∈ J(R) and f(t) ∈ Z[t], where t is an inde-
terminate over Z, if f(x) = 0, then f(0) = 0. In particular J(R) consists of zero
divisors.

Proof. Assume that R is not submaximal and x ∈ J(R), f(t) ∈ Z[t], and
f(x) = 0. Now since x ∈ J(R), we infer that if u is one of the elements 1 + f(0)
or 1 − f(0), then u ∈ U(R) ∩ Z. Thus by Corollary 2.5, we have u = 1 or u = −1.
This implies that either f(0) = 0, and therefore we are done, or f(0) ∈ {2,−2}. But
in the latter case, we have 2 ∈ J(R) and therefore 1 − 2n ∈ U(R), for each n ∈ Z,
which is impossible by Corollary 2.5.

The following is a generalization of [7, Corollary 2.24].

Corollary 2.19. Let R be an integral domain with J(R) �= 0. Then any R-algebra
T is submaximal. In particular, any algebra over a non-fieldG-domain is submaximal.

Proof. If R has nonzero characteristic or if Char(R) = Char( R
J(R)) = 0, then

one can easily see that J(R) is not algebraic over the prime subring of R (note, if
0 �= x ∈ J(R) and anxn + · · · + a1x + a0 = 0, where n ∈ N, ai are in the prime
subring of R and a0 �= 0, then we infer that a0 ∈ J(R) which is absurd). Therefore
U(R) is not algebraic over the prime subring of R. Thus U(T ) is not algebraic over the
prime subring of T and therefore T is submaximal, by Corollary 2.11. Hence we may
assume that 0 = Char(R) �= Char( R

J(R)) and hence T is submaximal by Corollary
2.7. The last part is now evident.

Remark 2.20. One can prove the above corollary by using the proof of Proposition
2.18, Lemma 2.15 and Remark 2.17.

Proposition 2.21. Let R ⊆ T be an extension of commutative rings with the
lying-over property and R is not Hilbert. Then T is submaximal.

Proof. Let P be a prime ideal in R such that P is not an intersection of a family
of maximal ideals in R. Now assume Q is a prime ideal in T lying over P . Thus
R/P ⊆ T/Q and since J(R/P ) �= 0, we infer that T/Q is submaximal by Corollary
2.19.

We recall that if R is a ring with |Max(R)| > 2ℵ0, then R is submaximal, see [4,
Proposition 2.6].
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Corollary 2.22. Let R be a ring. Then either R is submaximal or it is a Hilbert
ring with |Spec(R)| ≤ 22ℵ0 .

Proof. If R is not submaximal, then for any prime ideal P of R, the integral
domain R/P is not submaximal too. Hence we infer that J(R/P ) = 0, by Corollary
2.19, i.e., R is Hilbert and therefore P is an intersection of a set of maximal ideals of
R. Thus by the above comment we infer that |Spec(R)| ≤ 22ℵ0 .

Remark 2.23. In fact if R is not submaximal, then for any prime ideal P and
subring S of R, the prime ideal P ∩S is an intersection of a family of maximal ideals
of S. To see this note that R/P contains a copy of S/(P ∩ S), and since R is not
submaximal, we infer that J(S/(P ∩ S)) = 0, by Corollary 2.19. Hence we are done.

Lemma 2.24. Let R be a ring. Then at least one of the following conditions holds,

(1) There exists a maximal idealM of R, such that R/M is not an algebraic exten-
sion of a finite field (i.e., R/M is not absolutely algebraic field). In particular,
R/M and therefore R are submaximal.

(2) For any subring S of R, we have J(S) ⊆ J(R).

Proof. If (1) does not hold, then for any maximal ideal M of R, the field R/M
is algebraic over a finite field. Hence we infer that every subring of R/M is a field.
Now note that if S is a subring of R, then (S + M)/M is a subring of R/M and
therefore (S+M)/M is a field. Thus S∩M is a maximal ideal of S, for any maximal
ideal M of R. This shows that J(S) ⊆ J(R). For the final part in (1), note that by
[4, Theorem 1.8 ], if R/M is not algebraic over a finite field, then R/M and therefore
R are submaximal.

In [4, Proposition 2.9] it is proved that if R is a ring with |R/J(R)| > 22ℵ0 , then
R is submaximal.

Corollary 2.25. Let R be a reduced ring. If either J(R) �= 0 or |R| > 22ℵ0 , then
R is submaximal. Moreover, every R-algebra T , is submaximal too.

Proof. If R is not submaximal, then by Corollary 2.22, R is Hilbert ring and
therefore J(R) = N (R). Hence we infer that J(R) = 0 and by the above comment
also we have |R| ≤ 22ℵ0 which contradicts our assumptions. For the final part note
that T/N (T ) contains a copy of R, hence by our assumptions, either by the above
lemma J(T/N (T )) �= 0, or |T/N (T )| > 22ℵ0 . Thus by the first part, T/N (T ) and
therefore T are submaximal.

Hence by the above corollary if T is a non-submaximal ring, then for any reduced
subring R of T we have J(R) = 0. More generally, for any subring R of T we have
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N (R) = J(R). To see this, note that R+N (T ) is a subring of T . Now since T/N (T )
contains a copy of R/N (R), we infer that J(R/N (R)) = 0, hence we are done. The
following is also interesting.

Corollary 2.26. Let R be a reduced ring with zero characteristic, then either R

is submaximal or
⋂

p∈P Rp = 0.

Proof. If R is not submaximal then by Corollary 2.8, we infer that
⋂

p∈P Rp ⊆
J(R). But by the above corollary we also have J(R) = 0. Hence we are done.

We recall that each zero dimensional ring with nonzero characteristic which is not
integral over its prime subring, is submaximal, see [6, Corollary 3.14]. The following
is a generalization of the existence of maximal subrings in artinian rings, see [5].

Corollary 2.27. Let R be a semi-local ring. Then either R is submaximal or R has
nonzero characteristic, say n, which is integral over Zn (thus R is zero-dimensional).
In particular, every semi-local ring with zero characteristic is submaximal. Conse-
quently,

(1) Non-submaximal semi-local integral domains are exactly non-submaximal
fields.

(2) Every non-submaximal noetherian semi-local ring, is countable artinian.

Proof. If Char(R) = 0, then we are done by Corollary 2.8. Hence assume
that R has nonzero characteristic. If R is not submaximal, then R is a Hilbert ring
by Corollary 2.22. Therefore every non-maximal prime ideal of R is an intersection
of infinitely many maximal ideals. Hence we infer that R is zero dimensional, since
|Max(R)| < ℵ0. Now by the above comment we infer that R must be integral over
its prime subring. For part (1), we note that the prime subring of an integral domain
with nonzero characteristic is a field; and for (2) note that R is a zero-dimensional
ring. Hence R is artinian. Thus by [5, Proposition 2.4], R must be countable too.

Proposition 2.28. Let R1 ⊆ R2 be extension of rings. Assume that R1 is semi-
local. Then either R2 is submaximal or R1 is zero-dimensional. In other words, every
algebra over a semi-local ring which is not zero dimensional, is submaximal.

Proof. First note that, if P is a prime ideal of R2, then the ring R2/P contains
a copy of S = R1/(R1 ∩ P ). Hence if J(S) �= 0, then R2/P and therefore R2 are
submaximal by Corollary 2.19. If not, then we infer that P ∩R1 is a maximal ideal of
R1, since R1 is semi-local. Hence, we may assume that for any prime ideal P of R2,
R1 ∩ P is a maximal ideal in R1. Now, if Q is a prime ideal in R1, then there exists
a prime ideal P of R2 such that P ∩ R1 ⊆ Q (note, by Zorn’s Lemma there exists a
prime ideal P of R2 with P ∩ (R1 \ Q) = ∅). Hence we infer that Q = P ∩ R1 and
therefore Q is maximal in R1. Hence R1 is a zero dimensional ring.
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We recall the reader that a ring R is called residue finite if R/I is a finite ring
for every nonzero ideal I of R. It is clear that if R is a residue finite ring, then
dim(R) ≤ 1 and in fact dim(R) = 1 if and only if R is a non-field integral domain.
In the next theorem we give the structure of non-submaximal residue finite rings.

Theorem 2.29. Let R be a residue finite ring which is not submaximal. Then R
is a countable principal ideal ring. Moreover, exactly one of the following holds:

(1) If dim(R) = 1, then R = U(R)Z and R is algebraic over Z.
(2) If dim(R) = 0, then R is an artinian ring with nonzero characteristic, say n,

which is also integral over Zn. Moreover, R has only finitely many ideals. In
particular, if R is reduced then R is finite.

Proof. First note that since R is not submaximal then for any nonzero ideal I of
R we infer that R/I ∼= Zm for some natural number m (note, it is clear that all finite
rings except Zn, up to isomorphism, where n is a natural number, are submaximal).
This shows that I is principal and therefore R is a principal ideal ring. Now by the
above comment we have two cases, either dim(R)= 1 or dim(R)= 0. First assume
that dim(R)=1 and therefore R is a non-field integral domain. Hence we have two
cases.

(1) If R has nonzero characteristic, say p (where p ∈ P), then we infer that for any
nonzero ideal I of R we have R/I ∼= Zp, which is absurd, by the first part of
the proof (note, in this case R ∼= Zp which is impossible).

(2) If R has zero characteristic. Then R is a PID with Ir(R) = P, by the first
part of the proof. Hence we infer that R = U(R)Z. Also note that by Corollary
2.11, U(R) is algebraic over Z. Therefore U(R) is countable and hence R is
countable too. Thus we are done.

Now assume that R is zero-dimensional ring. Thus R is artinian, since R is
noetherian (note, every ideal of R is principal). Therefore by [5, Proposition 2.4], R

is countable and has a nonzero characteristic, say n, which is also integral over Zn,
by [5, Corollary 2.5]. Moreover, by the first part of the proof either R is a finite ring
or every nonzero ideal of R has the form I = Rm, where m|n. Thus R has only
finitely many ideals. Also note that if R is reduced, then by Corollary 2.25, we infer
that J(R)=0 and therefore R∼=Zn (where n is square free) and hence we are done.

Proposition 2.30. Let D be an integral domain and S be a multiplicatively closed
set in it such that S � U(D). If DS is not submaximal then the following conditions
hold.

(1) D has zero characteristic. S is algebraic over Z and therefore |S| ≤ ℵ0. In
particular, Z is not integrally closed in DS .

(2) There exists an infinite subsetM ofMax(D) such thatMax(DS) = {QS | Q ∈
M}. In particular, ⋂M = 0.
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(3) For any non-maximal prime ideal PS of DS , either Char(D
P ) = 0 or DS

PS

∼= D
P .

Proof. Since DS is not submaximal then by Corollary 2.11, we infer that S is
algebraic over Z. Hence if Char(D) �= 0, then S ⊆ U(D) which is absurd. Thus D
has zero characteristic. Hence by Corollary 2.14, Z is not integrally closed inDS . Now
assume that PS is a maximal ideal in DS and P ∈ Spec(D)\Max(D). Thus we have
DS
PS

∼= (D
P )S̄ = Frac(D

P ), where S̄ = {s + P | s ∈ S} and Frac(D
P ) is the quotient

field of D
P . Since P is not maximal we infer that Frac(D

P ) is submaximal by Corollary
2.11, and therefore DS is submaximal which is absurd. Hence P ∈ Max(D). Also,
note that by Corollary 2.27, Max(DS) is infinite since DS is not submaximal; and by
Corollary 2.19, we have J(DS) = 0 and therefore

⋂M = 0. Finally, for part (3),
assume that Char(D

P ) = q > 0, then by part (1), either S̄ ⊆ U(D
P ) and therefore

DS
PS

∼= (D
P )S̄ = D

P and we are done; or S̄ � U(D
P ) and therefore (D

P )S̄ is submaximal.
Thus DS is submaximal which is absurd.

Note that in the above proposition clearly for any maximal ideal QS of DS we also
have DS

QS

∼= D
Q . More generally, if R is a ring and S be a multiplicatively closed set

in R, then the non-submaximality of RS implies that every maximal ideal of RS has
the form PS for some maximal ideal P of R, by the preceding proof. In particular,
if R has nonzero characteristic then one can easily see that, by a similar proof, for
every prime ideal PS of RS we have RS

PS

∼= R
P . The following is a generalization of

[7, Theorem 3.2 ].

Theorem 2.31. Let R be a ring and S be a multiplicatively closed set in R, such
that RS is semi-local. Then at least one of the following holds.

(1) RS is submaximal.
(2) Spec(RS) = Max(RS) = {PS | P ∈ M}, where M is a finite subset of

Min(R) ∩ Max(R).

In particular if (2) holds and RS is submaximal, then R is submaximal too.

Proof. Assume thatRS is not submaximal, then by the above commentMax(RS) =
{PS | P ∈ M}, whereM is a finite subset of Max(R). But since RS is a semi-local
non-submaximal ring, then we infer that RS is zero-dimensional, by Corollary 2.27.
Hence M ⊆ Min(R). Now assume that (2) holds and RS is submaximal. Thus by
[7, Theorem 2.26], at least one of the following holds (note RS is zero-dimensional).

(1) There exists a maximal ideal PS of RS , such that RS/PS is submaximal. Since
RS/PS

∼= R/P , we infer that R/P and therefore R are submaximal.
(2) There exist distinct maximal ideals PS and QS of RS such that RS/PS

∼=
RS/QS . Hence similar to (1), we infer that R/P ∼= R/Q and therefore R is
submaximal, by [3, Theorem 2.2].
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(3) There exist an ideal IS and a maximal ideal PS of RS, such that (PS)2 ⊆ IS ⊆
PS and RS/IS

∼= K[x]/(x2), for some field K. Hence we infer that I is a
P -primary ideal in R. Therefore R/I is a local ring with unique prime ideal
P/I . Thus RS/IS

∼= (R/I)S̄
∼= (R/I)P/I = R/I , where S̄ = {s + I | s ∈ S},

see [16, P. 24, Ex. 7]. Hence R/I and therefore R are submaximal.

The following remark which is a generalization of [4, Corollary 1.15] is interesting.

Remark 2.32. Let F be the set of all fields, up to isomorphism, which are not
submaximal (note, by [4, Corollary 1.15], F is a set with |F | = 2ℵ0) and let D be
the class of all integral domains (or reduced rings), up to isomorphism, which are not
submaximal. Now for any D ∈ D we have the following facts:

(1) For any M ∈ Max(D), we have D/M ∈ F .
(2) For anyM, N ∈ Max(D), withM �= N we haveD/M � D/N (For otherwise,

by [3, Theorem 2.2], D is submaximal). In other words there exists an injection
ΦD from Max(D) into F , sendingM into D/M .

(3) |Max(D)| ≤ |F|, by [4, Proposition 2.6] or (2).
(4) J(D) = 0, by Corollary 2.19 or 2.25.
(5) Hence we have the natural rings embeddingD ↪→ ∏

M∈Max(D) D/M ↪→ ∏
E∈F E

(i.e., every non-submaximal integral domain (or reduced ring) can be embedded
in

∏
E∈F E).

Now, for any D ∈ D, let RdMax(D) = Im(ΦD). Two non submaximal integral
domains D1 and D2 are called RdMax-equivalent, if RdMax(D1) = RdMax(D2).
Now, let D′ be the set of equivalent classes of this relation. We claim that |D′| ≤
2|F| = 22ℵ0 and F ⊆ D′. To show this, it is clear that F ⊆ D′. Also note that for
any [D] ∈ D′, the function that send [D] into RdMax(D) is well-defined and one-one
from D′ into P (F ), the set of all subsets of F . Hence we are done, since |F | = 2ℵ0 ,
by [4, Corollary 1.15].

3. SUBMAXIMAL INTEGRAL DOMAINS

In [5, Corollary 1.3], it is proved that uncountable fields, are submaximal. The
following interesting result is a generalization of this fact.

Theorem 3.1. Let R be an uncountable UFD, then R is submaximal.

Proof. If U(R) is uncountable, then we are done by Corollary 2.11. Hence we
may assume that U(R) is countable. Thus |Ir(R)| = |R|. Now, note that there exists
a p ∈ Ir(R) such that 1 − p /∈ U(R). Hence let p be an element in Ir(R), such
that 1 − p /∈ U(R) and q0 ∈ Ir(R) such that q0|1 − p. Thus q0 ∈ A = {q ∈
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Ir(R) | pR + qR = R }. Now we show that A must be an uncountable set. Let us
assume that A is countable and put B = {pq + 1 | q ∈ Ir(R) \ A}. It is clear that
B is an uncountable set and therefore there exists a non-unit element x ∈ B such that
x has an irreducible divisor q′ ∈ Ir(R) \ A (note, U(R) and A are countable, thus
the set of all elements which are of the form uq1 · · ·qn, where u ∈ U(R) and qi ∈ A,
n ∈ N ∪ {0} must be a countable set). Hence q′R + pR = R and q′ /∈ A, which
is a contradiction. Thus A must be uncountable. Now for any q ∈ A, p + (q) is a
unit in the ring R/(q), hence if there exists q ∈ A such that p + (q) is not algebraic
over the prime subring of R/(q), then by Corollary 2.11, R/(q) and therefore R are
submaximal. Consequently, we may assume that for any q ∈ A, p + (q) is algebraic
over the prime subring of R/(q). Thus for any q ∈ A, Z[p] ∩ (q) �= 0, where Z is the
prime subring of R. But Z[p] is a countable set and the set {(q)}q∈A is uncountable,
thus there exists a nonzero element f ∈ Z[p] which belongs to an infinite (in fact
uncountable) number of (q), where q ∈ A, which is a contradiction. This proves the
theorem.

Corollary 3.2. Let R be a non-submaximal non-field PID, then R is countable
and |Ir(R)| = |R|.
Proof. By the above theorem, R and Ir(R) are countable. Now note that if Ir(R)

is finite then R is a G-domain and therefore R is submaximal by Corollary 2.19, hence
we are done.

Corollary 3.3. Every localization of an uncountable UFD is submaximal.

Proposition 3.4. Let D be an uncountable atomic (or noetherian) domain. As-
sume that there exists an irreducible element p of D such that 1 − p /∈ U(D) and
every element of Z[p] has at most countably many (irreducible) divisors. Then D is
submaximal. In particular, if D is an uncountable atomic (or noetherian) domain such
that every element of it has at most countably many (irreducible) divisors, then D is
submaximal. Consequently, every uncountable noetherian idf -domain is submaximal.

Proof. Note that any noetherian integral domain is an atomic domain, and by using
the proof of the previous theorem word-for-word, one can easily complete the proof.

Theorem 3.5. Let R be an uncountable atomic (or noetherian) integral domain
with zero characteristic. If every n ∈ N has at most countably many (irreducible)
divisors, then R is submaximal.

Proof. We may assume that U(R) is algebraic over Z and therefore it is count-
able, by Corollary 2.11. Hence we infer that |Ir(R)| = |R| and therefore Ir(R) is
uncountable. LetX be a transcendence basis for R over Z. Now, if there exist a natural
number n > 1 and x ∈ X such that Z ∩ (nx − 1)R = 0, then R is submaximal by
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Corollary 2.13. Hence we may assume that Z∩ (nx−1)R �= 0 for any natural number
n > 1 and x ∈ X . Since X is uncountable (note, since R is uncountable we infer
that its quotient field, say E , is uncountable too. Hence we have |X | = tr.degQ(E),
which clearly is uncountable) and the number of ideals of Z is countable, we infer
that there exists an uncountable subset Y of X such that for any y ∈ Y we have
Z ∩ (ny − 1)R = mZ for some fixed natural numbers n > 1 and m. Hence for any
y ∈ Y we have ny−1|m. Now we show that m has uncountably many irreducible di-
visors. Assume that P = {q ∈ Ir(R) : q|ny− 1, for some y ∈ Y }. If P is countable,
then we infer that {ny− 1 : y ∈ Y } is countable too (note U(R) is countable) which
is a contradiction. Hence P is uncountable. Now note that any q ∈ P is an irreducible
divisor of m, i.e., m has uncountable many irreducible divisors, which is a contradic-
tion. Thus for any natural number n > 1, the set {x ∈ X | Z ∩ (nx − 1)R �= 0} is
countable, and therefore R is submaximal, by Corollary 2.13.

For more observations we need the following definition, see [2].

Definition 3.6. An extension R ⊆ T of rings is called residually algebraic exten-
sion, if for any prime ideal Q of T , the ring T/Q is algebraic over R/(Q∩ R).

One can easily see that if R ⊆ T is a residually algebraic extension then T must
be algebraic over R. Also see [2] for more interesting results about residually alge-
braic extensions. In particular, see [2, Section 4, b-Maximal subrings] which contains
interesting results related to the subject of this paper. The following lemma is needed
for the next theorem.

Lemma 3.7. Let R ⊆ T be a residually algebraic extension of rings where
dim(R) < ∞. Then T has finite dimension too and we have dim(T ) ≤ dim(R).

Proof. Assume that n = dim(R). First suppose that T is an integral domain,
and we prove the lemma by induction on n. If n = 0, then R is a field and therefore
T is a field too, hence we are done. Thus assume that n ≥ 1 and the lemma holds
for any residually algebraic extension (of integral domains) R ⊆ T with dim(R) < n.
Now assume that R ⊆ T is a residually algebraic extension of integral domains with
dim(R) = n. Hence for any nonzero prime ideal Q of T , the extension R/(Q∩R) ⊆
T/Q is also a residually algebraic extension of integral domains and dim(R/(Q∩R)) <

n (note that T is algebraic over R and Q �= 0, hence Q ∩ R �= 0). Hence we infer
that dim(T/Q) < n. This immediately implies that dim(T ) ≤ n and therefore we are
done. Now assume that R ⊆ T be any residually algebraic extension, dim(R) = n and
Q be a prime ideal of T . Hence R/(Q∩R) ⊆ T/Q is a residually algebraic extension
of integral domains and dim(R/(Q∩ R)) ≤ n. Thus by the first part of the proof we
infer that dim(T/Q) ≤ n and since the latter inequality holds for any prime ideal Q

of T , we must have dim(T ) ≤ n. Therefore we are done.

The following is now in order.
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Theorem 3.8. Let R be a noetherian integral domain with tr.degZ(R) = n < ℵ0

and assume that X is a transcendence basis for R over Z. Moreover let Z[X ] ⊆ R
be a residually algebraic extension and at least one of the following holds.

(1) If Char(R) = 0 and n ≥ 1, then for any maximal ideal M of R we have
ht(M) ≥ n + 1.

(2) If Char(R) = p > 0 and n ≥ 2, then for any maximal ideal M of R we have
ht(M) ≥ n.

Then R is submaximal.

Proof. (1) Let x ∈ X , if R(2x − 1) = R, then we are done, by Corollary
2.11. Hence assume that R(2x − 1) �= R, and let P be a prime ideal of R which
is minimal over R(2x − 1). Thus by the Krull’s principal ideal theorem we in-
fer that ht(P ) = 1 and therefore by our assumption P is not a maximal ideal in
R. Hence (0) � (2x − 1)Z[X ] ⊆ P ∩ Z[X ]. Thus we have two cases. First, if
(2x − 1)Z[X ] = P ∩ Z[X ], then Z[X ]

(2x−1)Z[X ] ⊆ R
P and therefore 1

2 ∈ U(R
P ), hence we

are done, by Corollary 2.5. Thus we may assume that Q = P ∩Z[X ] �= (2x−1)Z[X ].
Therefore ht(Q) ≥ 2 and since dim(Z[X ]) = n+1, we infer that dim(Z[X ]

Q ) ≤ n−1.
But Z[X ]

Q ⊆ R
P is a residually algebraic extension, hence by the above lemma, we con-

clude that dim(R
P ) ≤ n − 1. Now since ht(P ) = 1, the latter inequality immediately

implies that ht(M) ≤ n, for any maximal ideal M ⊇ P , which is absurd. Thus we
are done.

(2) Let x, y ∈ X and x �= y. If R(1 − xy) = R, then we are done by Corollary
2.11. Hence assume that R(1 − xy) �= R and let P be a prime ideal of R which is
minimal over R(xy − 1). Thus by the Krull’s principal ideal theorem we infer that
ht(P ) = 1 and therefore by our assumption P is not a maximal ideal in R. Hence
(0) � (xy−1)Zp[X ] ⊆ P ∩Zp[X ]. Thus we have two cases. First, if (xy−1)Zp[X ] =
P ∩Zp[X ], then Zp[X ]

(xy−1)Zp[X ] ⊆ R
P and therefore x+(xy−1)Zp[X ] ∈ U(R

P ), hence we
are done by Corollary 2.11 (note, x + (xy − 1)Zp[X ] is not algebraic over Zp, since
Zp[X ] is a UFD). Thus assume that Q = P ∩ Zp[X ] �= (xy − 1)Zp[X ]. Therefore
ht(Q) ≥ 2 and since dim(Zp[X ]) = n we infer that dim(Zp[X ]

Q ) ≤ n − 2. But
Zp[X ]

Q ⊆ R
P is a residually algebraic extension, hence by the above lemma we infer that

dim(R
P ) ≤ n − 2. Now since ht(P ) = 1, the latter inequality immediately implies

that ht(M) ≤ n − 1, for any maximal ideal M ⊇ P , which is absurd. Thus we are
done.

Proposition 3.9. Let a non-singletonX �= ∅ be a set of algebraically independent
indeterminates in a noetherian ring R over Z, where Z is the prime subring of R. If
Char(R) ∈ P ∪ {0} and R is integral over Z[X ], then R is submaximal.
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Proof. Let x, y ∈ X and x �= y. If R(1 − xy) = R, then we are done. Hence
assume that P is a minimal prime ideal of R(1−xy). Hence ht(P ) ≤ 1, by the Krull’s
principal ideal theorem. Thus ht(P ∩ Z[X ]) ≤ 1. But (1− xy)Z[X ] is a prime ideal
in Z[X ], which is contained in P ∩Z[X ]. So we infer that (1−xy)Z[X ] = P ∩Z[X ]
and therefore T = Z[X ]/(1− xy)Z[X ] ⊆ R/P . Now x̄ and ȳ are units in T , which
are not algebraic over the prime subring of T (note, Z[X ] is a UFD). Hence R/P
has unit elements which are not algebraic over its prime subring and therefore we are
done, by Corollary 2.11.

We conclude this article with the following fact about Dedekind domains.

Proposition 3.10. Let D be an uncountable Dedekind domain with countable set
of maximal ideals. Then U(D) is uncountable. In particular, D is submaximal.

Proof. Let U(D) be countable and seek a contradiction. It is now clear that Ir(D)
is uncountable. Hence we infer that the set of principal ideals of D is uncountable.
But since D is a Dedekind domain, every nonzero ideal of D is a finite product of
prime ideals. Since the set of prime ideals of D is countable, we infer that the set of
ideals D is countable too, which is a contradiction. Thus U(D) is uncountable and
therefore we are done, by Corollary 2.11.
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