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THE 2-RANKS OF CONNECTED COMPACT LIE GROUPS

Bang-Yen Chen

Abstract. The 2-rank of a compact Lie group G is the maximal possible rank of
the elementary 2-subgroup Z2×· · ·Z2 of G. The study of 2-ranks (and p-rank for
any prime p) of compact Lie groups was initiated in 1953 by A. Borel and J.-P.
Serre [9]. Since then the 2-ranks of compact Lie groups have been investigated
by many mathematician. The 2-ranks of compact Lie groups relate closely with
several important areas in mathematics.

In this article, we survey important results concerning 2-ranks of compact
Lie groups. In particular, we present the complete determination of 2-ranks of
compact connected simple Lie groups G via the maximal antipodal sets A2G of
G introduced in [16, 17].

1. INTRODUCTION

For a prime number p, a p-group is a periodic group in which each element has
a power of p as its order. A Sylow p-subgroup of a finite group G is a maximal
p-subgroup of G, i.e., a subgroup of G that is a p-group, and that is not a proper
subgroup of any other p-subgroup of G.
In the field of finite group theory, the Sylow theorems are a collection of theorems

named after Ludwig Sylow (1832-1918) that give detailed information about the number
of subgroups of fixed order that a given finite group contains (cf. [36]). The Sylow
theorems assert a partial converse to Lagrange’s theorem that for any finite group G
the order of every subgroup of G divides the order of G.
The Sylow theorems form a fundamental part of finite group theory and have very

important applications in the classification of finite simple groups (cf. [2, 27]). Further,
the problem of finding a Sylow subgroup of a given group becomes an important
problem in computational group theory. In permutation groups, it has been proven that
a Sylow p-subgroup and its normalizer can be found in polynomial time of the input.
These algorithms are now becoming practical as the constructive recognition of finite
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simple groups becomes a reality (cf. [22, 23]). In particular, versions of this algorithm
are now used in the Magma computer algebra system.
A Sylow p-subgroup in an infinite group to be a p-subgroup that is maximal for

inclusion among all p-subgroups in the group. Such subgroups exist by Zorn’s lemma.
There is an analogue of the Sylow theorems for infinite groups.
A. Borel and J.-P. Serre considered in [9] a topological group H which has a

sequence of normal subgroups

e = H0 ⊂ H1 ⊂ · · · ⊂ Hk = H

such that every factor groupHi/Hi−1 is either a finite cyclic group or a one-dimensional
torus, and they prove that if such a group H is a subgroup of a compact Lie group G,
it is contained in the normalizer N of a maximal torus T in G. It follows, in particular,
that every abelian subgroup of G is contained in some N .
Borel and Serre defined in [9] the p-rank rp (p prime) of a compact Lie group G

as the largest integer h such that G contains the direct product of h cyclic groups of
order p. The p-ranks (in particular, the 2-ranks) of compact Lie groups relate closely
with several important areas in mathematics.
It is clear that the p-rank of G is at least equal to the rank of G (i.e., the dimension

of a maximal torus T ), but since the Weyl group N/T (N the normalizer of T ) of
G is finite, it follows from the above result that the p-rank of G is always finite. By
applying the method of spectral sequences of fibre bundles, they proved that if the
p-rank of a connected compact Lie group G is greater than the rank of G, then G has
p-torsion.
In particular, for 2-rank, A. Borel and J.-P. Serre established the following two

results:
(i) The usual rank rank(G) ≤ r2G ≤ 2(rank(G)); and
(ii) G has (topological) 2-torsion if rank(G) < r2G.

In [9], they are able to determine the 2-rank of the simply-connected simple Lie
groups SO(n), Sp(n), U(n), G2, F4. They showed that the exceptional Lie groups G2,
F4 and E8 have 2-torsion. On the other hand, it was also mentioned in [9, page 139]
that they are unable to determine the 2-rank for the exceptional simple Lie groups E6

and E7. Since then the 2-ranks of compact Lie groups have been investigated by many
mathematician.
In this article, we survey important results concerning the 2-rank of connected

compact Lie groups. In particular, we provide the complete determination of the 2-
ranks of compact connected simple Lie groups G via the maximal antipodal sets A2G
and the 2-number #2G of G, which were originally introduced by B.-Y. Chen and T.
Nagano in [16, 17]. The maximal antipodal sets of compact simple Lie groups were
determined in [17] via the (M+, M−)-method discovered in [15].
The main references of this article are [9, 10, 15, 16, 17, 31, 32].
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2. BASIC NOTATIONS AND DEFINITIONS

In this article, we assume a good knowledge of [20] on Lie groups and symmetric
spaces on the part of the readers.

2.1. Symmetric spaces

An isometry s of a Riemannian manifold M is said to be involutive if s2 = idM .
A Riemannian manifold M is called a symmetric space if for each point x ∈ M there
is an involutive isometry sx of M such that x is an isolated fixed point of sx. The
involutive isometry sx is called the symmetry at x.
For a symmetric spaceM , we denote byGM the identity component of the isometric

group I(M, g) of M . We denote by KM the isotropy subgroup at a point o so that
M = GM/KM .
For a compact symmetric space M , let M∗ denote the bottom space (the adjoint

space in [20]) of the space M . Let M/Zμ denote the space of which M is a covering
space with the covering transformation group Zμ, the cyclic group of order μ (if there
is no ambiguity).

2.2. Antipodal set and the 2-number

The notions of maximal antipodal sets and 2-number were introduced by Chen and
Nagano in [16, 17].
For a compact symmetric space M , the 2-number, denoted by #2M , is defined as

the maximal possible cardinality #2A2M of a subset A2M of M such that the point
symmetry sx fixes every point of A2M for every x ∈ A2M . It is known that a subset
A2 of a connected symmetric space M is antipodal if and only if any pair of points in
A2 are antipodal points on some closed geodesic in M .
The 2-number #2M is finite. The definition is equivalent to saying that #2M is

a maximal possible cardinality #A2M of a subset A2M of M such that, for every
pair of points x and y of A2M , there is a closed geodesic of M on which x and y
are antipodal to each other. Thus the invariant can also be defined on Riemannian
manifolds.
The invariant, #2M , has certain bearings on the topology of M ; for instance,

#2M equals X (M), the Euler number of M , if M is a semisimple hermitian sym-
metric space. And in general one has the inequality #2M ≥ X (M) for any com-
pact connected symmetric space M . Furthermore, M. Takeuchi proved in [38] that
#2M = dimH(M, Z2) for any symmetric R-space, whereH(M, Z2) is the homology
group of M with coefficients in Z2. This formula is actually correct for every space
we could check (see [17]).

2.3. Compact Lie groups

If G is a connected compact Lie group, then by assigning sx(y) = xy−1x to every
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point x ∈ G, we have s2
x = idG to each point x. Therefore G becomes a compact

symmetric space with respect to a bi-invariant Riemannian metric.
The automorphism group, denoted by Aut(G), of a connected compact Lie group

G contains the left translation group, and hence Aut(G) is transitive on G.
Any compact connected Lie group G contains a maximal torus T . The solutions

of t2 = 1 in T form a 2-subgroup A2T ⊂ G of the same rank as G. However, it is
not necessarily maximal. This fact shows rank(G) ≤ r2G.
In this article, the standard notations for the Lie groups such as G2, F4, E6, · · ·

denote the simply-connected ones.

2.4. (M+, M−)-method

Here we provide a brief introduction of the (M+, M−)-method for compact sym-
metric spaces, introduced by B.-Y. Chen and T. Nagano in [15, 17]. This method
plays the key roles in our determination of 2-numbers of compact symmetric spaces;
in particular, of 2-ranks of compact Lie groups.
Let o be a point of a symmetric space M . We call a connected component of the

fixed point set F (so, M) of the symmetry so in M a polar of o. We denote it by M+

or M+(p) if M+ contains a point p. When a polar consists of a single point, we call
it a pole.
We call a connected component of the fixed point set F (sp ◦ so, M) of sp ◦ so

through p the meridian of M+(p) in M and denote it by M−(p) or simply by M−.
Notice that M−(p) has the same rank as M . Moreover, we have

dim M+(p) + dimM−(p) = dimM.

Polars and meridians are totally geodesic submanifolds of a symmetric space M ;
they are thus symmetric spaces. And they have been determined for every compact
connected irreducible Riemannian symmetric space (see [10, 15, 24, 29, 30]). One
of the most important properties of these totally geodesic submanifolds is that M is
determined by any pair of (M+(p), M−(p)) completely.
Let M be a compact connected Riemannian symmetric space and o be a point in

M . If there exists a pole p of o ∈ M , then we call the set consisting of the midpoints
of the geodesic segments from o to p the centrosome and denote it by C(o, p). Each
connected component of the centrosome of {o, p} is a totally geodesic submanifold of
M .
The following result from [17] characterizes poles in compact symmetric spaces.

Proposition 2.1. The following six conditions are equivalent to each other for two
distinct points o, p of a connected compact symmetric space M = GM/KG.

(i) p is a pole of o ∈ M ;
(ii) sp = so;
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(iii) {p} is a polar of o ∈ M ;
(iv) there is a double covering totally geodesic immersion π = π{o,p} : M → M ′′

with π(p) = π(o);
(v) p is a point in the orbit F (σ, GM)(o) of the group F (σ, GM) through o, where

σ = ad(so);
(vi) the isotropy subgroup of SGM at p is that, SKG (of SGM at o), where SGM is

the group generated by GM and the symmetries; SGM/GM is a group of order
≤ 2.

For a compact symmetric space M , the Cartan quadratic morphism

Q = Qo : M → GM

carries a point x ∈ M into sxso ∈ GM . The Cartan quadratic morphism is a GM -
equivariant morphism which is an immersion.
We have the following result for centrosomes [17].

Proposition 2.2. The following five conditions are equivalent to each other for two
distinct points o, q of a connected compact symmetric space M .

(i) sosq = sqso;
(ii) Q(q)2 = 1GM

, where Q = Qo is Cartan quadratic morphism;
(iii) either so fixes q or q is a point in the controsome C(o, p) for some pole p of o;
(iv) either so(q) = q or so(q) = γ(q) for the covering transformation γ for some

pole p = γ(o) of o;
(v) either so(q) = q or there is a double covering morphism π : M → M ′′ such

that so′′ fixes q′′, where o′′ = π(o) and q′′ = π(q).

These two propositions plays important roles for the study of maximal antipodal
sets and 2-numbers of compact symmetric spaces and of compact Lie groups.
It was known that the polars, meridians and centrosomes play very important roles

in the study of compact symmetric spaces as well as of compact Lie groups (cf. [10,
11, 12, 15, 17]).

3. TWO BASIC RESULTS ON 2-RANKS

The relationship between the 2-rank and the 2-number of a compact Lie group G
was established in the following theorem of [17].

Theorem 3.1. Let G be a connected compact Lie group. Then we have

(3.1) #2G = 2r2G.
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This theorem can be proved as follows: Since the automorphism group Aut(G) is
transitive on G, in finding the 2-number#2G we may therefore assume that a maximal
antipodal set A2 in G contains the unit element 1. First observe that the fixed point set
F (s1, G) consists of the members of order 1 or 2. Thus we have sx(y) = y for any
two members x, y of A2 if and only if xy = yx holds. Also observe that this implies
that the maximal A2 is a subgroup. Moreover, A2 is an elementary abelian 2-subgroup
isomorphic to (Z2)t = Z2 × · · ·Z2 (t copies of Z2) for some positive integer t, a
2-subgroup for short. The largest possible value of t is by definition the 2-rank of the
Lie group G. Consequently, #2G is a power of 2 for the compact Lie group G.
For products of compact Lie groups, we have the following.

Theorem 3.2. Let G1 and G2 be connected compact Lie groups. Then

(3.2) #2(G1 × G2) = 2r2G1+r2G1 .

This follows from the fact that the symmetry at (x, y) ∈ G1 × G2 carries a point
(u, v) into (sxu, syv). Thus one has F (s(x,y), G1 × G2) = F (sx, G1) × F (sy, G2).
Consequently, we have (3.2).

4. RELATIONS BETWEEN 2-RANKS AND TOPOLOGY

The first relationship between the 2-number and the topological 2-torsion of a
compact Lie group was discovered by A. Borel and J.-P. Serre in [9], in which they
applied the method of spectral sequences of fiber bundles.

Theorem 4.1. Let G be a connected compact Lie group. If

(4.1) rank(G) < 2r2G,

then G has topological 2-torsion.

By using the spectral sequence connecting H2(G, Z2) to H2(G, Z)/Tors ⊗ Z2,
whose differential is the successive Bockstein operators, A. Borel also obtained the
following two results in [7].

Theorem 4.2. The cohomology of a connected compact Lie group G has no topo-
logical 2-torsion if and only if every antipodal subgroup A2G is contained in some
torus T in G.

Theorem 4.3. If a compact Lie group G is simply-connected and it does have a
topological 2-torsion, then G contains an antipodal group of rank 3 which no torus
of G contains.

By applying the classification of simply-connected simple Lie groups and on case-
by-case consideration, A. Borel also proved in [8] the following two results which
relate the 2-subgroups and 2-torsions for compact Lie groups.
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Theorem 4.4. Let G be a simply-connected simple Lie group. Then G has no
topological 2-torsion if 2 does not divide the coefficients in the expression of the
highest root as a linear combination of simple roots.

Theorem 4.5. A connected compact simple Lie group G has no topological 2-
torsion if and only if every 2-subgroup is contained in a torus.

The following simple relationship between the 2-rank and the Euler characteristic
was discovered by Chen and Nagano in [17].

Theorem 4.6. Let G be a connected compact Lie group. Then we have

(4.2) 2r2G ≥ X (G),

where X (G) denotes the Euler characteristic of G.

Theorem 4.6 was proved by applying the (M+, M−)-method together with some
results of H. Hopf and H. Samelson [21].
The following result was obtained by M. Takeuchi in [38] who applied a result of

Chen-Nagano in [17] as well as an earlier result of Takeuchi [37].

Theorem 4.7. If M is a symmetric R-space, then

(4.3) #2M = dimH(M, Z2),

where H(M, Z2) is the homology group of M with coefficients in Z2.
In particular, (4.3) holds for the classical simple Lie groups SO(m), U(m) and

Sp(m).

Let F be either a field or the rational integer ring Z. Let

A =
∑
i≥0

Ai

be a graded commutative F -algebra in sense of Milnor-Moore [28]. If A is connected,
then it admits a unique augmentation ε : A → F . Put Ā = Ker ε. The Ā is called the
augmentation ideal of A.
A sequence of elements {x1, . . . , xn ∈ Ā} in the augmentation ideal Ā is called a

simple system of generators if {xε1
1 · · ·xεn

n : εi = 0 or 1} is a module base of A.
Let G be a compact connected Lie group. Denote by s(G) the number of generators

of a simple system of the Z2-cohomology H∗(G, Z2) of G.
A. Kono discovered in [25] the following relationship between s(G), r2G and the

Z2-cohomology H∗(G, Z2).

Theorem 4.8. Let G be a connected compact Lie group. Then the following three
conditions are equivalent:
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(1) s(G) ≤ r2G;
(2) s(G) = r2G;
(3) H∗(G, Z2) is generated by universally transgressive elements.

To prove Theorem 4.8, A. Kono used May’s spectral sequence [26], Eilenberg-
Moore’s spectral sequence [19] as well as Quillen’s result in [31].
In [25], Kano also described properties of compact Lie groups satisfying condition

(3) in Theorem 4.8 and gives some applications.

5. COVERING MAPS AND 2-RANKS

In this section, we present some very simple relationships between covering maps
and 2-numbers for connected compact Lie groups. Such relationships were discovered
in [17].

Theorem 5.1. Let G and G′ be two compact Lie groups. If there exists a k-fold
covering morphism f : G′ → G for some odd k, then we have

(5.1) r2G
′ = r2G.

As an application of Theorem 5.1, we have the following.

Corollary 5.1. The 2-rank r2G of G depends only on the local class of G if G is
one of the compact Lie groups SU(k) and E6, where k is odd.

This corollary follows from Theorem 5.1 and the fact that the fundamental group
of the bottom groups E∗

6 and SU(k)∗ have odd order with odd k.
For double covering Lie groups we have the following result.

Theorem 5.2. Let G and G′′ be compact Lie groups. If G is a double covering
group of G′′, then we have

(5.2) r2G ≤ 1 + r2G
′′.

This theorem was proved as follows: Let A2 be a maximal antipodal set in G. The
union A2 ∪ γ(A2) is also an antipodal set, where γ is the covering transformation for
the covering morphism π : G → G′′. Thus γ stabilizes A2. Consequently, π(A2) is
antipodal in G′′. Hence we find

#(A2) = 2#(πA2) ≤ 2#2G
′′,

which implies inequality (5.2).

Remark 5.1. Inequality (5.2) is sharp, since the equality holds in caseG is SO(2m)
for m > 2.
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6. 2-RANKS FOR COMPACT LIE GROUPS WITH POLES

Suppose a finite group Γ is acting on two symmetric spaces M and N freely as
automorphism groups. Then Γ acts on the product space M × N freely. And the
orbit space (M ×N )/Γ is called the dot product of M and N (with respect to Γ) and
denoted by M · N .
In most cases, Γ will be the group of order two acting onM and N as the covering

transformation groups for double covering morphisms. In the sequel, Γ will not be
mentioned in that case, if Γ is obvious or if Γ need not be specified.

Example 6.1. SO(4) = S3 · S3 and U(n) = SO(2) · SU(n). Here Γ for U(n) is
the center of SU(n), a cyclic group of order n.

The following two results from [17] relate the 2-ranks, poles, and the dot product
for compact Lie groups.

Theorem 6.1. If a compact connected Lie group G has a pole, then

(i) #2(U(1) · F ) equals either 2r2G or 21+r2G;
(ii) If the second case in (i) occurs, then the centrosome of G has the 2-number

equal to #2G.

Theorem 6.2. One has

r2G ≤ r2(Sp(1) · G) ≤ 2 + r2G

for a compact Lie group G with a pole.

Theorem 6.1 and Theorem 6.2 were used in the determination of the 2-ranks for
exceptional Lie groups

7. 2-RANK AND KRULL DIMENSION

In commutative algebra, the Krull dimension of a ring R, named after Wolfgang
Krull (1899-1971), is the supremum of the number of strict inclusions in a chain of
prime ideals, not the number of primes. More precisely, we say that a strict chain of
inclusions of prime ideals of the form:

p0 � p1 � · · · � pn

is of length n. That is, it is counting the number of strict inclusions.
Given a prime ideal p ⊂ R, we define the height of p to be the supremum of the

set
{n ∈ N : p is the supremum of a strict chain of length n}.
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Then the Krull dimension is the supremum of the heights of all of its primes.
Let G be a compact Lie group. Put

H∗
G = H∗(BG; Z2),

where BG is a classifying space for G. Let N ∗
G ⊂ H∗

G denote the ideal of nilpotent
elements. Then H∗

G/N ∗
G = H#

G is a finitely generated commutative algebra.
In [31], D. Quillen studied the relationship between H#

G and the structure of the
Lie group G. In particular, he proved that, under some suitable assumptions, the Krull
dimension of H#

G is equal to the 2-rank of G. He proved the result by calculating the
mod 2 cohomology ring of extra special 2-groups.
Quillen’s result provides an affirmative answer to a conjecture of M. F. Atiyah and

R. G. Swan (cf. [3, 35]).

8. 2-RANKS OF DIHEDRAL GROUPS

We denote by D[4] the dihedral group of order 8, or the automorphism group of
a square in the plane. Thus D[4] is generated by the reflections in the x-axis and the
line y = x in the Euclidean plane. Clearly

(8.1) #2D[4] = 4.

Let Q[8] denote the quaternion group, generated, by i and j in the group of the
nonzero quaternions, where i and j together with k form a standard basis for the pure
quaternions. One has

(8.2) #2Q[8] = 2.

Their commutator subgroups have the 2-numbers both equal to 4.

9. 2-RANKS OF CLASSICAL GROUPS

In this section, we present the 2-ranks of all classical Lie groups from [17]. For
the simply-connected classical Lie groups U(n), SO(n) and Sp(n), this was already
done by Borel and Serre in [9].

Theorem 9.1. Let U(n)/Zμ be the quotient group of the unitary group U(n) by
the cyclic normal subgroup Zμ of order μ. Then we have

(9.1) r2(U(n)/Zμ) =

{
n + 1 if μ is even and n = 2 or 4;
n otherwise.

The proof of this theorem based on several rather complicate lemmas whose proofs
used linear algebra.
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Theorem 9.2. For SU(n)/Zμ, we have

(9.2) r2(SU(n)/Zμ) =

⎧⎪⎨
⎪⎩

n + 1 for (n, μ) = (4, 2);
n for (n, μ) = (2, 2) or (4, 4);
n − 1 for the other cases.

The proof of Theorem 9.2 is similar to that of Theorem 9.1.
The next three results are concerned with other classical groups and their adjoint

groups. Basically, they are proved with the same method as Theorem 9.1.

Theorem 9.3. One has r2(SO(n)) = n − 1 and, for SO(n)∗, we have

(9.3) r2(SO(n)∗) =

{
4 for n = 4;
n − 2 for n even > 4.

Remark 9.2. SO(n)∗ is SO(n) for n odd and SO(n)/{±1} if n = 2n′ is even
> 2.

Theorem 9.4. Let O(n)∗ = O(n)/{±1}. We have
(a) r2(O(n)) = n;
(b) r2(O(n)∗) is n if n is 2 or 4, while it is n − 1 otherwise.

For Sp(n) and Sp(n)∗ we have the following.

Theorem 9.5. One has r2(Sp(n)) = n, and, for Sp(n)∗, we have

(9.4) r2(Sp(n)∗) =

{
n + 2 for n = 2 or 4
n + 1 otherwise.

Thus we also have

(9.5) r2(Sp(n)∗) = r2(U(n)/Z2) + 1

for every n.

10. 2-RANKS OF SPINORS AND SEMI-SIPNORS

Now, we consider the spinor Spin(n) and related groups. Recall that Spin(n) is
a subset of the Clifford algebra Cl(n), which is generated over R by the vectors ei

in the fixed orthonormal basis of Rn and subject to the conditions eiej = −ejei, and
eiei = −1, i 
= j (cf. [4, 18]).
Under the projection

π : Spin(n) → SO(n),
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the member (cos θ)e1 + (sin θ)e2 of Spin(n), for instance, projects to the rotation of
the (e1, e2)-plane by the angle 2θ, carrying e1 into (cos 2θ)e1 + (sin 2θ)e2, for every
real number θ, where π denotes the double covering homomorphism with the kernel
{1,−1}.
Every maximal antipodal group A2 in the spinor Spin(n) projects into a diagonal-

izable subgroup of SO(n). Therefore, we may assume that A2 is a subgroup of

E(n) = {±eI : I ⊂ {1, 2, . . . , n}},

where eI = eiej · · ·ek (= 1 if I is empty) for any subset

I = {i, j, . . . , k}, i < j < · · · < k

of {1, 2, . . . , n}.
For Spin(n) we have the following results from [17].

Theorem 10.1. We have

r2(Spin(n)) =

{
r + 1 if n ≡ −1, 0 or 1 (mod 8)
r otherwise,

where r is the rank of Spin(n), r = [n/2].

Theorem 10.2. (PERIODICITY). One has

r2(Spin(n + 8)) = r2(Spin(n)) + 4

for n ≥ 0.

The group Pin(n) was introduced by M. F. Atiyah, R. Bott and A. Shapiro in [4]
while they studied Clifford modules. Pin(n) is a group in the Clifford algebra Cl(n)
and it double covers O(n) and whose connected component Spin(n) double covers
SO(n).

Theorem 10.3. For Pin(n) we have

r2(Pin(n)) = r2(Spin(n + 1))

for n ≥ 0.

The proofs of Theorem 10.1, Theorem 10.2 and Theorem 10.3 base mainly on the
following lemma.

Lemma 10.1. We have the following:
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(a) One has eIeJ = eJeI if and only if the cardinalities satisfy

(#I)(#J)− #(I ∩ J) ≡ 0 (mod 2);

(b) one has (eI)2 = 1 if and only if #I ≡ 0 or 3 (mod4); and
(c) eI is a member of Spin(n) if and only if #I is even.

Let SO(4m)# denote Spin(4m)/{1, e((4m))} the semi-spinor group.
For the semi-spinor group SO(4m)#, we have the following result from [17].

Theorem 10.4. We have

r2(SO(4m)#) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3 if m = 1
6 if m = 2,
r + 1 if m is even > 2,
r if m is odd > 1,

where r is the rank 2m of SO(4m)#.

For the proof of Theorem 10.4, we have applied the dihedral groups D[4] and Q[8]
(see §8) and we also investigated the inverse image of a maximal antipodal subgroup
A2 of SO(4m)# under the projection: Spin(4m) → SO(4m)#.

Remark 10.1. The maximal 2-subgroups of both Spin(16) and SO(16)# have
been studied independently by J. F. Adams in [1].

11. 2-RANKS OF EXCEPTIONAL GROUPS

Finally, we provide the 2-ranks of compact exceptional Lie groups from [17]. For
G2 and F4 this was already done in [9].

Theorem 11.1. One has

r2G2 = 3, r2F4 = 5, r2E6 = 6, r2E7 = 7, r2E8 = 9

for the simply-connected exceptional simple Lie groups.

For the proof of Theorem 11.1, we have applied Theorem 6.2 and the (M+, M−)-
theory of compact symmetric spaces from [15], as well as linear algebra.
For the bottom space E∗

6 , we have the following result from [17].

Theorem 11.2. One has r2E
∗
6 = 6.

This theorem follows from Corollary 6.1 and Theorem 11.1.
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Remark 11.1. Independently, J. F. Adams studied in [1] the 2-subgroups of E8.
He proved that a maximal 2-subgroup of the compact exceptional simple group E8 fall
into just two conjugacy classes D(T 8) ⊂ Spin(16) and EC9 (see [1] for details).

12. CONCLUDING REMARKS

(1) For every complex flag manifold MC there exists a positive integer k0 =
ko(MC) ≥ 2 such that for each integer k ≥ k0 there exists a k-symmetric structure on
MC.
To extend the notion of 2-number #2M of Chen-Nagano for compact symmetric

spaces, C. U. Sánchez introduced in [33] the k-number #k(MC) of the complex flag
manifold MC as the maximal possible cardinality of the so-called k-sets Ak ⊂ MC

with the property that for each x ∈ Ak the corresponding k-symmetry fixes every point
of Ak. He then proved that

#k(MC) = dim H∗(MC, Z2)

for each complex flag manifold MC.
Using the fact that each real flag manifold M can be isometrically embedded into

a complex flag manifold MC (the so-called complexification of M ), he defined in [34]
the index p of M as the smallest prime number p ≥ k0(MC). Moreover, he defined
the index number #IM of M as the maximal possible cardinality of the p-sets ApM .
C. U. Sánchez proved that

#IM = dim H∗(M, Z2)

for any real flag manifold M .
(2) B.-Y. Chen conjectured in [10] that the 2-number#2M of a compact symmetric

space (or a compact Lie group) M is closely related to the smallest number of cells
that are needed for a CW -complex structure on M .
By direct computation one can see that the 2-number #2M is in fact equal to the

smallest number of cells needed to have a CW -complex structure of M if M is a
sphere, a real projective space or a Hermitian symmetric space.
J. Berndt, S. Console and A. Fino proved in [5] that the index number #IM of

a real flag manifold M coincides with the smallest number of cells that are needed
for a CW -complex structure on M . Furthermore, they showed that the intersection of
the fixed point sets of all k-symmetries for all k ≥ k0 at a point x of a complex flag
manifold coincides with the critical point set of the height function with respect to x.
Moreover, they proved that the index number#IM is the number of cells of the Bruhat
decomposition of M which is determined by the above generic height functions.
(3) H. Tasaki investigated in [39] the 2-number of the complex hyperquadric

Qn(C) = {[z1, z2, . . . , zn+2] ∈ CPn+1 : z2
1 + z2

2 + · · ·+ z2
n+2 = 0}.
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It is known that Qn(C) is holomorphically isometric to the Hermitian symmetric space
SO(n + 2)/SO(2)× SO(n), which is the Grassmann manifold G̃2(Rn+2) consisting
of all oriented linear subspaces of dimension 2 in Rn+2. This Hermitian symmetric
space admits certain real forms Sk,n−k defined by

Sk,n−k = (Sk × Sn−k)/Z2.

Let k, � be integers with 0 ≤ k ≤ � ≤ [n/2], and let L1 and L2 be real forms of
G̃2(Rn+2) which are congruent to Sk,n−k and S�,n−�, respectively. In [39], H. Tasaki
proved that if L1 and L2 intersect transversally, then L1 ∩ L2 is a maximal antipodal
set of L1 and an antipodal set of L2. Moreover, if k = � = [n/2], then L1 ∩ L2 is a
maximal antipodal set of G̃2(Rn+2). As a consequence, he proved that any real form
of G̃2(Rn+2) is a globally tight Lagrangian submanifold.
(4) By computing the geometric invariant #2G of a compact Lie group G, we are

able to determine the 2-rank r2G of all compact simple Lie groups G via Theorem
3.1 and applying the (M+, M−)-method. It would be quite interesting to establish a
general method for computing the p-rank rpG of a compact Lie group G for a prime
number p > 2 in the spirit of Theorem 3.1.
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