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MULTILINEAR OPERATORS

Zengyan Si* and Qingying Xue

—

Abstract. Let T be the multilinear Calderdn-Zygmund operator and T, (f) be the
1/q
vector-valued version of T given by T, (f)(z) = (Zzozl IT(fik, - s frr)(2)]2

In this paper, the weighted strong type and weighted end-point weak type estimates
for the commutators of T, (f) were established respectively.

1. INTRODUCTION

Multilinear Calderén-Zygmund operators were introduced and first studied by Coif-
man and Meyer [1-3], and later on by Grafakos and Torres [6, 7]. In analogy with
the linear theory, the class of multilinear singular integrals with standard Calderén-
Zygmund kernels provides a fundamental topic of investigation within the framework
of the general theory. The study of this subject was recently enjoyed a resurgence of
renewed interest and activity.

Let K(z,y1, - ,Ym) be a locally integrable function defined away from the diag-
onal x = y; = - -+ = g, in (R™)™*, For constants A > 0 and ¢ € (0, 1], we say that
K is a kernel in m-CZK (A, ¢) if it satisfies

(1) the size condition

A
(lz =il +-- -+ [z = ym|)™

K(xuylu"'uym> S
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for all (z,y1, -, ym) € (R")™! satisfying x # y; for some 1 < j < m;
(2) the regularity conditions

/ Alz —z'|f
K(zx,y1, ..., - K(z,y1, ..., <
‘ ( Y1 ym> ( Y1 ym>‘ (\x—y1\+~~~+\x—ym\)mn+5

whenever 2|z — 2’| < max |z — | and, for each fixed k € {1,---,m},
1<k<m

Aly — y,.°
‘a; _ y1\ R ‘x _ ymDmn-i—s

[ K (2, Y1y ees Yhoy oves Ym) — K (T Y1y vty Ypoy oes Ym) | < (

whenever 2|y, — v, | < max |z — y;|. An operator T, defined on m-fold product of
jsm

Schwartz spaces and takiﬁg values into the space of tempered distributions, is said to
be an m-linear Calderén-Zygmund operator with kernel K if

(a) T' is m-linear;

(b) for g1, ,qm € [1,00] and ¢ € (0,00) with 1/q = >~} 1/qx, T can be
extended to be a bounded operator from L9 (R") x L2(R™) x --- x L™ (R™) to
L1(R™);

(c) for f1,- -+, fn € L*(R™) with compact support and = ¢ (-, supp fx,

—

TF@) =T f)e) = [ Ky amd i) um)ds v

where K is in m-CZK (A, ) for some constant A and .
Given a collection of locally integrable functions b = (by,---,b;), where 1 <1 <
m. The commutators associated with 7" is defined by

Tn[}’(f)(x> = [bi, [bi—1, -+, [b, T]l o ']l_l]l(flu e fm) (),
where b is a suitable function and
[b7 T]k(-]?)(x> = b(x>T(f17 o ,fm>(113> - T(fh o 7fk—17 bfka fk+17 o 7fm>(x>

If T is associated with a distribution kernel, which coincides with the function K
defined away from the diagonal yg = y; = -+ = y,, in (R?)™F! then, at formal
level,

Ty(F)(@) = /( ayn H[bj(ﬂf)—bj(yjﬂK(ﬂ?;yh o Ym) fr(yn) e fn(Ym)dyr - dyim.

whenever x ¢ ();L; suppf; and fi,-- -, fn are C°° functions with compact support.
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Recently, Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzdlez [9] developed a

multiple weight theory. Precisely, for p'= (p1,- -, pm) and 2—1) = p% + ot % with
m

1< p1,-,pm < 00. Given & = (wy, -+ ,wn), set vz = [] wf/pi. We say that
i=1

satisfies the A5 condition if

o o L LG ) <

1/pl

when p; = <|Q| Jow: 1, is understood as (infg w;) ™.

The weighted strong type and end-point estimates for 7}, with multiple weights
were established.

Theorem A. ([10]). Let &G € Az, 1/p=1/p1+ -+ 1/pm with1 < pj < 00,j =
1,---,m; and be (BMO)™. Then there is a constant C' > 0 independent ofg and f
such that

T (Ol Loy < C T 1IbslBao [T 11£ill Loy,
j=1 j=1
where b = (b1, bm).

Theorem B. ([10]). Let & € Ay . 1) and b e (BMO)™. Then there exists a
constant C depending on b such that

o {rem oo ) <o (T [ B0 )"

/_/\H
where ®(t) = t(1 +log"™ t) and ®™ =0o... 0.

We will sometime use the notation f = (fi, 5 fm), with f; = {fjx}3,, and
¥= (Y1, Ym), dy = dy1 - - - dyp,. The vector-valued multilinear Calder6n-Zygmund
operator T}, associated with the operator 7' was defined and studied by Grafakos and
Martell in [8].

Ty(H@) = 1Ty s fu) @l = [T+ s )@l
o 1/q
- (Z\T(flk,m ,fmk><x>\q) |
k=1

The commutators associated with T}, can be defined by

S 1/q
Tiso (@) = [T D @)l = Tl Frr -+ F \lq_(z\ A ) |
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where f; = { fix} 32, fori =1, -- -, m. Grafakos and Martell [8] obtained the following
results.

Theorem C. ([8]). Let T' be a multilinear Calder6n-Zygmund operators, and let
1/m<p<oo,l/p=1/p1+---+1/pm with1 < p1,--- ,pm < 00,1/m < g < 0
and 1/¢g=1/q¢1+---+1/qm with 1 < g1, -, gm < co. Then there exists a constant
C > 0 such that

To ()l Leny < C Tl 27 ey
j=1

Cruz-Uribe, Martell and Pérez [4] obtained a weak version of Theorem C as follows:

Theorem D. ([4]). Let T' be a multilinear Calder6n-Zygmund operators, and let
I/m<p<oo,l/p=1/p1+ -+ 1/pyp withl <p1,--+,pp <00,1/m < g < o0
and 1/¢g=1/¢1+---+1/qm with 1 < g1, -, gm < co. Then there exists a constant
C > 0 such that

m
T (Alzroe@ny < C TT 1 lgs e ny-
j=1
In this paper, we consider the vector-valued version of Theorem A and B. The following
are the main results:

Theorem 1.1. Let 1/m<p<oo,11) :pil—i—~~~+#, with 1 < p1,-++ ,pm <
00, 1/m<q<ooandq—1+~~~+ﬁ—awith1<q1,~~~,qm<oo.lfﬁeAﬁ,y@:

P

I, w', and b e (BMO). Then there exists a constant C' > 0 such that

1T, (P o) < HHb HBMOHH\J‘J\%HL% (w;)

Theorem 1.2. Let 1/m < q < oo and q—1+~ . '+E = E withl < g1, , Gm < 00.
Ifo e Aq,.. 1) and be (BMO)!. Then there exists a constant C > 0 depending on
b such that

ol {eem t, i) <11 @ () )

m

—f
where ®(t) = t(1 +log" t) and ®™ =0 o... 0.
2. NOTATIONS AND MAIN LEMMAS

We first introduce some notations. For 1 < [ < m, we define some multilinear
maximal operators as follows:
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1
M og (] —supHmf]\q]HL(bgL o 10 ‘Q‘/ Fla,
j=l+1

—

ML(logL (‘ ‘ ) _ngupHmf]‘fbHL(logL

and
M(‘ SUPH‘Q‘/‘JCJ‘%;

where the supremum is taken over all the cubes containing x.
It is easy to see that

—

M(If1g) (@) € Miog 1y (1fl) (@) < Migiogry (| flo) ().

Throughout the paper, M denotes the Hardy-Littlewood maximal operator. For
0 > 0, M is the maximal function defined by

1
M) = MU ) = (s g5 [ 16 %zy)
In addition, M?* is the sharp maximal function of Feffeman and Stein,

ﬁ = ln ~
Mif(z) = sup f‘Q‘/\f  cliy = s ‘Q‘/\f — foldy

and a variant of M? is given by

1
M;f(w) = M¥(|f°)5 ().
To prove the main theorems, we need the following lemmas.

Lemma 2.1. Let 0 < 6 < 1/m, 1/m < qg<ooand1/q=1/q1+---+1/qm with
1<qy, ,qn < oo. Then there exists a constant C > 0 such that

M(T,(f)) (@) < CM(I]1,) (@)
Sfor any smooth vector function { f;;}zozl and any x € R™.

Proof. For simplicity, we only prove for the case m = 2, since there is no essential
difference for the general case. Fix z € R™ and let () be a cube of side length r centered
at x. For any smooth vector function sequence {fx}72,, set f° = fip — f,?, where

f;? = JEl;X2Q = (fiex2Q: - » fmkX20)- Since 0 < § < 1/2 < 1, we have
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5 N\
dy)
q

6dy)% + (5 / ’T(fxm@c)(y) e

1
where C' = ’c’q = <Zk21 ]ck]q)
For Uy, we applying Kolmogorov’s inequality and Theorem D to get

1
(& dy) < O (Pl e o, <0H‘Q‘/\f]\q]

< CM(|flg) ().
To estimate Uy, we choose ¢ = Z?Zl ¢;, where

_T(fflgvfgl?xx)u C2:T(f?k?f§l?)(x>v C3:T(ffl??fgk>(x>'
We may split Uy as Uy < Usy + Ugo + Uss, where

T,(f)(y)

1 00 £00 _ 00 £OOY (.
U1 = (@/Q T(fr, f21)(y) — T(fiks far) ()| d

Ty = (\%\ /Q T(f% £50) () — T(f0% £5) ()| d

Tos — (\%\ /Q T, 19 (0) — TS, £ ()| dy

For the first term Usy, we have

T o) () = TR for) ()]

‘Q‘é‘/n d_’
&2 (7 = y1, @ — yp)[PrFe H‘ i (Y)Y
2

‘Q‘S/n
= CZ/wQ 2\ (2002 (2571|Q|1/m)2nte H [ fir(y)1dy

<CZQ gsnm/ | fi(y5)|dy;-

<C
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2
Now let ggjr = 2(s++>n|cg|f2$+1Q | fir(yj)|dy; and Gsx = [[;_; gsjk- Then we
obtain
o
IT(f3%s F50) () = TR fop) (@) < C Y27 Gl
s=1
For any two positive real numbers ¢ and ¢, let p = min{1, ¢}. It is easy to show that
o

Z 2—88M8 !

s=1

0
< C(s,q) Z 2_8'08‘”8‘(1

s=1

for any sequence us. Applying this inequality to us = G, we get

1/q
TR )W) - TUR. ) <G(Z2 é‘pszG) .

Next, Minkowski’s inequality gives

1/q; 1
(Z%k) S Serng) /25+1Q | fila; (y5)dy;

and then Holder’s inequality gives

(San) " <T(STe) " < Moz,

—

From which we deduce |T'(f{y, fsr)(2) — T(fix, for)(@)|g < CM(|flq)(x). Since
0 <6 < 1/2, we have

<\Q\ [ 17U 5300 - TUR @)

o / TS 150) () — TS 155 (@) lady
< OM(|fly) ().

For Uso, we observe the following fact
IT(fiks F50)(2) = T(fhs f55) ()]

|z — 2|°| far (y2) |dy2
<C d /
=~ / ‘flk(:Ul)‘ n Q) (\z—y1\+\z—y2\)2"+5

<C d ;
Z QS\Q\I/n 2n+e S_HQ‘flk(yl)‘ Y1 25+1Q‘f2k(y2>‘ Yo

<CZQ_SSH2(S+1 ‘Q‘/ ‘f]k y])‘dy]
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The dealing of the other part is almost the same as Us1, we omit the detail. Uss can
be estimated in the same way. Hence we proved Lemma 2.1. ]

For positive integers m and 5 with 1 < 57 < m, we denote by C]m the family of
all finite subsets o = {o(1),---,0(j)} of {1,---,m} of j different elements and the
associated complementary sequence o is given by o’ = {1,---,m} \ o.

Lemma 2.2. Let 0 < § < &£ < 1/m. Then there exists a constant C > 0 depending
only on § and e such that

—

l
M(Tys P(@) < CT il o (Mz(logmu Flo)(@) + M. (T, 3<x>)

j=1
2.1) L
+0> S ] 1bil| BaroMe (T, 1 ,4.) ()
Jj=1 0€C§- €0
for any smooth vector function {f;;}zozl and for any € R", where ¢ = {1,--- ,1}\o.

Proof.  Let F() = fi(y1) - fra(ym), for any A = (A1, -+, An) we have

—

T = [ @) =bi) (o) = o) K P 7

S

((01(z) = A1) = (ba(y) — A1) -~ ((bul) — M) = (ba(y) — M)

(Rn)nl
K(z, §)F(4)dy

T %) [ TT )~ K D@

on ]EO’

X

l

=0 C

= (@) = A0+ ((e) = T (&) + T((br (1) = A0) -+ () = W) F) @)
-1
DI (VY I st = )it 9P

i=1 oec! jeo

Noting the fact [];c . (0;(y;) — Aj) = [1;c,[(bi(y;) — bi()) + (bj(z) — Aj)].
Then we obtain

— —

T o f () < 1(b1(2) = Ax) - - (bu(2) — M) To(f) ()
+ 1T ((01(1) = A1) ==~ (Ba(0) = M) ) (@)

-1
+ C’Z Z H |bj(z) — Aj‘THbo/,qf(x>a

i=1 gecl j€o
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Now fix x € R", for any cube @ of side length r and centered at z. Let \; =
|2Q| Jagbi(2)dz, for j=1,--- 1. Since 0 <& < 1/m < 1, it follows that

1/6
0 dz)

(o ] ]\ T (PR -

. 5\ 1/6
_C’(— T.(f)(z) — ¢ dz)
Q| o ¢
RN
(‘Q‘ Lo =r0 o) - soriia )
q
NS \1/0
DS (& / (H\bj<z>—xj\Tnba/,qf<z>) i)
i=1 eci jE€o
1 . 5 \1/6
+0( [ [t =2t =207~ a:)
q
— [+ 11+ III,
where C' = ]c’q.
We can choose 1 < p1,---,p; <oowithpi1+~-~+pll—|—é = %. Since 0 < § <

e < 1/m. Holder’s inequality gives

l
I< C’H 11651 BaroM(Tyf) ().
j=1
Similarly, we have

-1
11 <0 > TTbilBroMe(Tim,, o) ().
i=1 gecl j€o
For I11,let f; = f?—l—ﬁ‘?o, Whelref]D = fixag,andwechoosec = 3 [(T((by(-1)—
AL, ,Qm
A) (o) = A fam)) ()]
We use the notation f* to denote f{™ --- f%m™. Obviously, we have

T((b1(1) = M) -+ (bu0) = M)f)(2) — ¢

Ty((b1(-1) — /\1) ' "(b (1) = M) fO)(z)
+C Z (1) = A1) - (i) = ) ) (2)

;Qm

- (T ((bl(~1) = A1) (Bi() = M) ) @) g,

where in the last sum each a;; = 0 or oo and in each term there is at least one o; = 0.
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For the first term, we applying Kolmogorov’s estimate and Theorem D to get

) - X b o 5d 1/6
<@ g((01(-1) = A1) -+ (b)) — M) f7)(2) Z)

< CIT(Br) = M)+ () = M) o g

Ly 1
_CH@/ 10j(y5) = AjlI £3(2)lq;d2 H @/Cg‘fj('z)‘qfdz

=l+1

1
<CHHb Lssollfl looere 11 ‘Q‘/Q\fxzmjdz

j=l+1

< CH 191l 5310 M 105 1) (| flg) (2)-

j=1

If all the aj = oo, we have

(i1 L [ =t -2
¢ B 5 N1/6
= (i) = ) () = M) )| )

1 ro
< /Q ’<T<<b1<-1>—A1>~~<bl<~l>—m> )(2)

= (T((01(-1) = Aa) -+ (ba(0) = M) f)) ()| d=
= 27 (Bun) = M) -+~ () — A1) g - | Fm (Ym) g 4T

<C
B (R"\w)m (Iz =ml+- + [z —ym|)m+e
< (.

C Z 9ke ]1_[ 2(k+1 Q| 2k410 ‘b] (y])

_/\JHfJ‘qjdyJ H o(k+1)n \Q\/ \f]\q]dy]

j=l+1
<03 T Mlswoll o lutwens e 11 g T g il
k=1 j= 1 j=l+1

<CZ ngleHb HBMOH‘f]‘Q]HL(IOgL 2k+1Q H 2(k+1 n‘Q‘/ ‘ ]‘q]dyj

Jj=1 j=l+1

< CH 19511 310 M 105 1, (| fl0) (@).

J=1
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Now we estimate the typical representative of I1/. By Minkowski’s inequality, we

have
5 \1/6
<‘Q‘/’ bl (bl( ) Al)ffoa"'v ioov i+l f0><> qdz)
\Q\/’ (b1 A1) (Ou() = M) ioo’ i1 fo)()
_T((bl('1>_A1>"'(bl('l>_Al>ffou"'7 iOO7 417" f())( )
e o= = ICa(1) = M)+ () = Iy =Ly -y
= Sy (=il + - |2 — g5
X | £5 (W) lg;dy;
]];—[’—1/ VAN PAL’] J
< Z Qk‘!ﬁ"mm H/Zk o 130) = Xll ) \q]dyjjlll/ 5o, dy;
<022k5HHb 153100 51,1 2 10g 2y 24+10 H ,M‘ 3 / 1l dy;
J=1 j=l+1

< CH 19511 2310 M U 105 1, (| fl0) (@).

J=1

In other cases, we can also deduce the same estimates with little modifications on the
above argument. Then we proved Lemma 2.2. ]

3. PROOF OF THE MAIN RESULTS

By similar arguments used in the proof of Theorem 3.1 in [11] we get the following
estimates for Tm;q. Since the the main ideas are almost the same, we omit the proof.

L o— Ly
qm q

1 <q1, -, qm < oo. Suppose that be (BMO)Z and w € A, then there exists a
constant C > 0, such that

Lemma 3.1. Let 0 < p < oo,1/m < q < o0, andqil_i_..._i_

—

p
o0 [ g rwir< T o [ (Miguen0700)) wieiir
7=1

and
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gy (10X a1 7))

1
< C'sup

s e ({7 € R Muon(fl00) > e} )

for any smooth function f with compact support.

3.2)

Lemma 3.2. ([11]). Let 1/m < ¢ < coand 1 < q1, -+ ,qm < 00 With % =
a Tt
(i)Letl/m<p<ooand1<p1,~~~,pm<oowithZ—ljzp%—i- —i-ﬁ and &

satisfy the Ay condition. Then there exists a constant C' > 0 such that
l . P 1/p
([ M7 voterie)

o ([ 1l @P )

(i) Let & € A(y,... 1). Then there exists a constant C' > 0 such that

Vg <{a: eR": M} (og 1) (| flg)(z) > tm}/zl
<001/n Mﬁd@”“”“ﬂ |

—_—
where ®(t) = t(1 +log" t) and ®™ =0 o... 0.
Lemma 3.2 was proved by Si and Xue in [11].

Proof of Theorem 1.1 - 1.2. Theorem 1.1 is a consequence of (3.1) and Lemma
3.2. We now prove Theorem 1.2. By homogeneity we may assume ¢ = 1. Since P is
submultiplicative, Lemma 3.1 and Lemma 3.2 yields

%3({3: eR"™: f(a:) })m
< Ci‘;%) W% <{a: €ER": Ty flz) > tm})m
{

1
<C'sup7> w(

(3.3) >0 O™ (1/£)m
1 A (m) ‘fj‘Qj(yj> A A
<O gz 1L, ¥ )y

1 i - o, 1
< Oswp gy LL [, #7050 0080 Gy,
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m
=cll / (| filg; (yi)ws (y;)dy;-
j=1
This complete the proof of Theorem 1.2.
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