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EXISTENCE AND UNIQUENESS OF LAX-TYPE SOLUTIONS TO THE
RIEMANN PROBLEM OF SCALAR BALANCE LAW WITH SINGULAR

SOURCE TERM

Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin*

Abstract. We give a new approach of constructing the generalized entropy so-
lutions to the Riemann problem of scalar nonlinear balance laws with singular
source terms. The source term is singular in the sense that it is a product of delta
function and a discontinuous function, which is undefined in distribution. By
re-formulating the source term, we study the corresponding perturbed Riemann
problem. The existence and stability of perturbed Riemann solutions is established
under some entropy condition so that the generalized entropy solutions of Riemann
problem can be interpreted as the limit of corresponding perturbed Riemann solu-
tions. The self-similarity of generalized entropy solutions is also obtained, which
means that Lax’s method in [13] can be extended to scalar nonlinear balance laws
with singular source terms.

1. INTRODUCTION

In this paper we consider the Riemann problem of scalar nonlinear balance law

(1.1) ut + f(u)x = a′(x)g(u), (x, t) ∈ R × R
+,

(1.2) u(x, 0) =

{
uL, x < 0,

uR, x > 0,

where u = u(x, t) ∈ R and uL, uR are constants. Also a(x) is given by

(1.3) a(x) =

{
aL, x < 0,

aR, x > 0,
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where aL, aR are also constants, and a′(x) ≡ da/dx in the sense of distribution. We
assume that f , g are smooth functions of u, and 0 is the only root of f ′(u) and g(u),
also f ′′(u) > 0 for all u.
It is well known that equation (1.1) only admits weak solutions, it follows that

a′g(u) may not be defined in distribution since it can be a product of delta function a′

and discontinuous function g(u). Indeed, by the results of Dal Maso- LeFloch- Murat
[4], source term a′g(u) is only defined as a Borel measure, which is weaker than
distribution. The goal of this paper is to investigate the global existence and stability
of generalized entropy solutions of Lax-type to (1.1)-(1.3).
We first review previous results related to this topic. When g(u) ≡ 0, equation

(1.1) is reduced to a scalar conservation law

(1.4) ut + f(u)x = 0.

To the case that (1.4) is a system with genuinely nonlinear or linear degenerate char-
acteristic fields, the existence of weak solutions to the Riemann problem is first estab-
lished by Lax [13]. In [13], Lax showed that, under some entropy condition, Riemann
problem (1.4), (1.2) admits a unique admissible weak solution consisting of constant
states separated by elementary waves (rarefaction waves, shock waves or contact dis-
continuities) when |uL − uR| is sufficiently small. We call this kind of self-similar
solutions the weak solutions of Lax type. Moreover, in the paper by Glimm [6],
the global existence of solutions for the Cauchy problem is established by the scheme
involved random choice method whose approximate solutions are constructed based on
the Riemann solutions in [13]. On the other hand, the measure-valued solutions of
(1.1) was studied by DiPerna [5] by using the technique of zero diffusion method and
compensated compactness. To the quasilinear hyperbolic equations

(1.5) ut + f(t, x, u)x = g(t, x, u),

the weak solutions to the Cauchy problem of scalar equation was first studied by Volpert
[23] and Kruzkov [12]. For system (1.5) with f = f(x, u), g = g(x, u), the global
existence of weak solutions for the Cauchy problem was first established by Liu [16].
On the other hand, Dafermos [1] invented the technique of generalized characteristics to
study the structure of solutions to general system (1.5). Furthermore, the weak solutions
to the Cauchy problem of general system (1.5) were studied by Dafermos-Hsiao [3]
and Hong-LeFloch [9]. We refer the readers to [19] for more details of the Riemann
problem for balance laws without convexity. We notice that the results described above
cannot be applied to our case since the source term in (1.1) is not defined in distribution.
In addition, the solutions of (1.1)-(1.3) may not be self-similar due to the appearance
of source term. Therefore, the technique in [13] cannot be applied to our problem.
In this paper we provide a new approach of constructing a unique generalized

entropy solution of (1.1)-(1.3). The entropy solution, which is constructed as the limit
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of corresponding perturbed Riemann solution, is self-similar so that Lax’s method
can be extended to the Cauchy problem. The framework of this paper is described
as follows. First, for given 0 < ε << 1, we re-formulate source term a′g(u) by
a′ε(x)g(uε) where aε(x) is chosen as a smooth monotone function in [−ε, +ε] and
connects constant states aL, aR at x = ±ε. Then, for such aε(x) we define the
corresponding perturbed Riemann problem of (1.1)-(1.3):

(1.6) uε
t + f(uε)x = a′ε(x)g(uε), (x, t) ∈ R × R

+,

(1.7) uε(x, 0) =

{
uL, x < 0,

uR, x > 0,

when uL > uR, or

(1.8) uε(x, 0) =

⎧⎪⎨
⎪⎩

uL, x < −ε,

ζε(x), −ε ≤ x ≤ ε,

uR, x > ε,

when uL < uR where ζε(x) is the linear function connecting uL, uR at x = ±ε. And
aε(x) is given by

(1.9) aε(x) =

⎧⎪⎨
⎪⎩

aL, x < −ε,

ϕε(x), −ε ≤ x ≤ ε,

aR, x > ε,

where ϕε(x) is a C1 monotone function connecting aL, aR at x = ±ε. Note that
a′ε(x)g(uε) in (1.6) is defined in distribution. Next, we apply the characteristic method
for first order partial differential equations to construct uε(x, t) of (1.6)-(1.9). When
uε(x, t) is constructed, the generalized solutions of (1.1)-(1.3) can be interpreted as the
limit of uε(x, t), which is given in the following definition.

Definition 1.1. Suppose that uε(x, t) is the weak solution of perturbed Riemann
problem (1.6)-(1.9) for given aε(x). Then, generalized solution u(x, t) of (1.1)-(1.3)
under the re-formulation of source term a′ε(x)g(uε) is defined as

(1.10) u(x, t) ≡ lim
ε→0

uε(x, t).

We show that, the limit of perturbed Riemann solutions to (1.6)-(1.9) with aε(x)
piecewise linear, consist of at most three constant states separated by either rarefac-
tion waves or shock waves, and a discontinuous standing wave from stationary field
(standing shock) when aL �= aR (Sections 2 and 3). Thus, the generalized solutions
of (1.1)-(1.3) are self-similar under Definition 1.1. In addition, by (1.10) we observe



434 Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin

that the standing shocks appear in generalized solutions due to the bending (instead of
intersection) of characteristic curves in stationary field. So Rankine-Hugoniot condition
cannot be applied to this kind of discontinuous waves.
We notice that the behavior of perturbed Riemann solutions depend on the signs

of source term. In this paper we focus on the cases that (A) uL, uR > 0, aL > aR,
and g(u) > 0 ((aR − aL)g(u) < 0), or (B) uL, uR > 0, aL > aR, and g(u) < 0
((aR − aL)g(u) > 0). The analysis for the rest of cases is similar. On the other hand,
there are infinitely many ways to select the profile of ϕε(x) in (1.9), and the structure
of perturbed Riemann solutions is dependent on the choice of ϕε(x). Therefore, the
generalized solutions of (1.1)-(1.3) may not be unique under Definition 1.1. To obtain
the uniqueness of generalized solutions, we give a condition to aε(x), which can be
considered as an extra entropy condition beside Lax entropy condition (Section 4). The
entropy condition is given as follows. To Case (A) (resp., Case (B)), we assume that
aε(x) in (1.6) is a monotone function satisfying

(1.11) aε(x) = āε(x) + δε(x),

where āε(x) is the piecewise linear function (see (2.3)) and δε(x) ∈ C2
0 ([−ε, ε]) satis-

fying

(1.12) δ′′ε (x) > 0 (resp., δ′′ε (x) < 0) ∀ x ∈ (−ε, ε),

and

(1.13) ‖δ′ε(x)‖L1([−ε,ε]) → 0 as ε → 0.

We show the stability of uε(x, t) whenever aε(x) satisfying (1.11)-(1.13) so that the
uniqueness of generalized entropy solution to (1.1)-(1.3) can be established under the
following definition.

Definition 1.2. Suppose that uε(x, t) is a weak solution of (1.6)-(1.9) where aε(x)
satisfies (1.11)-(1.13). Then the generalized entropy solution of (1.1)-(1.3) is defined
as

u(x, t) ≡ lim
ε→0

uε(x, t).

We mention that equation (1.1) can be written as the 2× 2 system of balance laws

Ut + F (U)x = a′(x)G(U),

or the hyperbolic system in non-conservative form

Ut + A(U) · Ux = 0,
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where U = (a, u)T , F (U) = (0, f(u))T , G(U) = (0, g(u))T and

A(U) =
[

0 0
−g ∂f

∂u

]
.

Note that the eigenvalues of A(U) are 0 and ∂f
∂u , which implies that the resonant

phenomenon (eigenvalues of A(U) coincide) occurs when the initial data contains u∗

satisfying fu(u∗) = 0. The technique developed here provides a new direction of study-
ing the generalized solutions to the Riemann problem of resonant systems, although we
only study the non-resonance case (uL, uR are nonzero and have the same signs) in
this paper. We refer the readers to [4, 7, 8, 14] for more details of the resonant systems
in hyperbolic balance laws.

The outline of the paper is summarized as follows. In Section 2, we apply charac-
teristic method to study the classical perturbed Riemann solutions of (1.6)-(1.9) where
aε(x) is piecewise linear. In Section 3, we study the shock waves of (1.6)-(1.9) with
aε(x) given in Section 2. In Section 4, we first demonstrate an example to show that
the type of weak solutions to (1.6)-(1.9) completely change (from rarefaction waves
to shock waves) if piecewise linear function aε(x) is perturbed into a non-monotone
function in [−ε, ε]. Next, by imposing (1.11)-(1.13) as the extra conditions beside Lax
entropy condition, we establish the stability of perturbed Riemann solutions, which
leads to the uniqueness of generalized entropy solutions to (1.1)-(1.3). In the end of
the paper, we give the main theorem of this paper.

2. CLASSICAL SOLUTIONS OF PERTURBED RIEMANN PROBLEM

In this section we study the classical solutions of perturbed Rimann problem where
aε(x) is linear within [−ε, ε]. For given 0 < ε << 1, we consider

(2.1) uε
t + f(uε)x = a′ε(x)g(uε), (x, t) ∈ R × R

+,

(2.2) uε(x, 0) = uε
0(x) ≡

⎧⎪⎪⎨
⎪⎪⎩

uL, x < −ε,

ζε(x) ≡ (uR − uL

2ε

)
x +

uR + uL

2
, −ε ≤ x ≤ ε,

uR, x > ε,

where uL < uR, and

(2.3) aε(x) =

⎧⎪⎨
⎪⎩

aL, x < −ε,

ϕε(x), −ε ≤ x ≤ ε,

aR, x > ε,
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where

(2.4) ϕε(x) =
(aR − aL

2ε

)
x +

aR + aL

2
, −ε ≤ x ≤ ε.

We carry out the analysis to the case aL > aR and uR > uL > 0. In addition, to avoid
the resonance case, we assume that

(2.5) uR > uL > 2γ > 0

when g(u) > 0 ((aR − aL)g(u) < 0) and

(2.6) γ =
aL − aR

f ′(uL)
max

u∈[0,uL]
g(u).

Moreover, for g(u) < 0 ((aR − aL)g(u) > 0), to prevent the appearance of shocks in
solutions, we assume that δ ≡ |uL − uR| satisfies

(2.7) δ >
aL − aR

f ′(uL)
max

u∈[uL,uR ]
(−g(u)).

Note that

(2.8) a′ε(x) ≡ bε(x) =

{ aR − aL

2ε
, −ε < x < ε,

0, |x| > ε.

It implies that bε(x)g(uε) is not defined at x = ±ε. However, the solution along each
characteristic curve remains continuous, so we can give the value of uε(−ε, t) (resp.,
uε(ε, t)) by uε(−ε+, t) (resp., uε(ε−, t)).

We construct the solutions of (2.1)-(2.4) by characteristic method. To start, by (2.8)
we rewrite the perturbed Riemann problem as

uε
t + f(uε)x = bε(x)g(uε),

uε(x, 0) = uε
0(x).

(2.9)

For convenience we define the following regions and segments:

ΩL ≡ {(x, t) : x < −ε, t > 0}, Ωε ≡ {(x, t) : −ε < x < ε, t > 0},
ΩR ≡ {(x, t) : x > ε, t > 0}, ΓL ≡ {(x, t) : x = −ε, t > 0},
ΓR ≡ {(x, t) : x = ε, t > 0}, Γ0L ≡ {(x, t) : x < −ε, t = 0},
Γ0R ≡ {(x, t) : x > ε, t = 0}, Γ0ε ≡ {(x, t) : −ε < x < ε, t = 0}.

(2.10)

We let xε(t; x̃0) denote the characteristic curve starting at x̃0 ≡ (x0, 0), and uε(t; x̃0)
denote the solution along xε(t; x̃0). The notations xε(t), uε(t) are adopted for xε(t; x̃0),
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uε(t; x̃0) when x̃0 is specified. By characteristic method, the initial value problem of
xε(t; x̃0) and uε(t; x̃0) is

(2.11)
dxε

dt
= f ′(uε),

(2.12)
duε

dt
= bε(xε)g(uε),

(2.13) xε(0) = x0, uε(0) = uε
0(x0).

Note that the solution of (2.11)-(2.13) is globally bounded since the source term only
affects the solution in a short period of time. Now we construct the solution of (2.9)
in each region, which can be divided into the following three cases.

Case I. x̃0 ≡ (x0, 0) ∈ Γ0L.

First, since there is no effect of source term in ΩL, we obtain uε(t; x̃0) = uL, and
xε(t; x̃0) = x0 + f ′(uL)t in ΩL. Also xε(t; x̃0) intersects ΓL at (−ε, t1) where

(2.14) t1 =
−ε − x0

f ′(uL)
,

and uε(t1; x̃0) = uL. Next, to construct uε(t; x̃0), xε(t; x̃0) in Ωε, we give initial data
uε(t1) = uL and integrate (2.12) with respect to t. Then we obtain

G(uε(t; x̃0)) = G(uL) + bε(t − t1),

where

(2.15) G(u) ≡
∫ u

γ

ds

g(s)
,

and γ is given in (2.6). It follows that uε(t; x̃0) in Ωε can be expressed as

(2.16) uε(t; x̃0) = G−1(G(uL) + bε(t − t1)),

where t1 is in (2.14). Since g(u) is nonzero when u ≥ γ , we see that uε in (2.16) is
well defined. Plugging (2.16) into (2.11) together with xε(t1; x̃0) = −ε, we obtain

xε(t; x̃0) = −ε +
∫ t

t1

f ′(G−1(G(uL) + bε(s − t1)))ds

= −ε + F (t; x̃0)
(2.17)

in Ωε where

(2.18) F (t; x̃0) ≡
∫ t

t1

f ′(G−1(G(uL) + bε(s − t1)))ds.
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For fixed x̃0, we define F−1(x) ≡ F−1(x; x̃0). Note that F−1(x) is well defined in
[0, 2ε]. Then, by mean value theorem and xε(t2; x̃0) = ε, we have

(2.19) t2 = F−1(2ε) = t1 +
2ε

f ′(uε(c1; x̃0))

for some c1 ∈ (t1, t2). Also, by (2.19) we easily obtain

(2.20) uε(t2; x̃0) = G−1(G(uL) + bε(F−1(2ε) − t1)).

In the case g(u) > 0 ((aR−aL)g(u) < 0), by (2.12) we see that uε is decreasing along
each characteristic curve in Ωε. This may causes the problem that the characteristic
curves do not pass through ΓR when uε decreases to 0. On the other hand, if g(u) <
0 ((aR − aL)g(u) > 0), solution uε is increasing along each characteristic curve in
Ωε, which causes the other problem that xε(t; x̃0) may intersect characteristic curves
starting on Γ0R when uε(t; x̃0) > uR on ΓR, it implies that the classical solution no
longer exists. However, in Lemma 2.1 we give conditions (2.5)-(2.7) to prevent those
situation taking place. Next, since the source term vanishes in ΩR, by (2.20) it leads
to

uε(t; x̃0) = uε(t2; x̃0) = G−1(G(uL) + bε(F−1(2ε) − t1)), t > t2.

And xε(t; x̃0) is a straight line in ΩR given by

xε(t; x̃0) = ε + f ′(G−1(G(uL) + bε(F−1(2ε) − t1)))(t− t2), t > t2.

Thus, by previous construction of uε(t; x̃0), xε(t; x̃0), we obtain

(2.21) uε(t; x̃0) =

⎧⎪⎨
⎪⎩

uL, 0 ≤ t < t1,

G−1(G(uL) + bε(t − t1)), t1 ≤ t < t2,

G−1(G(uL) + bε(F−1(2ε) − t1)), t ≥ t2,

and

(2.22)

xε(t; x̃0)

=

⎧⎪⎨
⎪⎩

x0 + f ′(uL)t, 0 ≤ t < t1,

−ε + F (t; x̃0), t1 ≤ t < t2,

ε + f ′(G−1(G(uL) + bε(F−1(2ε)− t1)))(t− t2), t ≥ t2,

where F , G, t1 and t2 are given in (2.18), (2.15), (2.14), (2.19) respectively. By simple
calculation, we observe that, if g(u) > 0 (resp., g(u) < 0), then xε(t; x̃0) is increasing,
concave down (resp., up) with respect to t in Ωε, and uε(t; x̃0) is decreasing (resp.,
increasing) along xε(t; x̃0). We have the following lemma regarding to the behavior of
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uε(t; x̃0) and xε(t; x̃0) issued from Γ0L.

Lemma 2.1 Consider perturbed Riemann Problem (2.9). Suppose that x̃0, x̃1 ∈
Γ0L.
(1) Characteristic curves xε(t; x̃0), xε(t; x̃1) are parallel in Ωε.
(2) If g(u) > 0, then γ < uε(t; x̃0) < uR for t ≥ 0 under conditions (2.5), (2.6).
(3) If g(u) < 0, then 2γ < uε(t; x̃0) < uR for t ≥ 0 under condition (2.7).
(4) Functions uε(t; x̃0), xε(t; x̃0) tend to piecewise linear functions of t as ε ap-
proaches 0, that is,

(2.23) lim
ε→0

xε(t; x̃0) =

{
x0 + f ′(uL)t, 0 ≤ t < − x0

f ′(uL) ,

f ′(u∗)(t + x0
f ′(uL)

), t > − x0
f ′(uL)

,

(2.24) lim
ε→0

uε(t; x̃0) =

{
uL, 0 ≤ t < − x0

f ′(uL) ,

u∗, t > − x0
f ′(uL)

,

where

(2.25) u∗ ≡ lim
ε→0

ũε(aR)

with ũε(aε) solving initial value problem

(2.26)
dũε

daε
=

g(ũε)
f ′(ũε)

, ũε(aL) = uL.

Proof. First, we show statement (1). By the monotonicity of xε(t; x̃i) in Ωε,
i = 0, 1, we can rewrite initial value problems (2.11)-(2.13) of uε(t; x̃i) into⎧⎪⎨

⎪⎩
duε(t; x̃i)
dxε(t; x̃i)

= bε g(uε(t; x̃i))
f ′(uε(t; x̃i))

,

uε(ti1; x̃i) = uL, i = 0, 1,

where ti1 =
−ε − xi

f ′(uL)
, i = 0, 1. By change of variable z = t− x0 − x1

f ′(uL)
to the problem

of uε(t; x̃1) above, we obtain⎧⎪⎨
⎪⎩

duε(z; x̃1)
dxε(z; x̃1)

= bε g(uε(z; x̃1))
f ′(uε(z; x̃1))

,

uε(t01; x̃1) = uL.

It implies that uε(t; x̃0), uε(t; x̃1) solve the same initial value problem. By the
uniqueness theorem of ordinary differential equations (ODEs), it leads to uε(t; x̃0) =

uε(z; x̃1), and consequently
dxε(t; x̃0)

dt
=

dxε(z; x̃1)
dz

. Next, we observe that



440 Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin

xε(
−ε − x0

f ′(uL)
; x̃0) = −ε,

and
xε(t =

−ε − x1

f ′(uL)
; x̃1) = xε(z =

−ε − x0

f ′(uL)
; x̃1) = −ε.

Thus, by the uniqueness theorem of ODEs again, we obtain xε(t; x̃0) = xε(z; x̃1),
which is sufficient to imply that xε(t; x̃0), xε(z; x̃1) are parallel in Ωε.
Next, we show statement (2). Since bεg(uε) < 0 and uL < uR, it is easy to see that

uε(t; x̃0) < uR. To show γ < uε(t; x̃0), by statement (1) and (2.21), it is equivalent
to show that

(2.27) uε(t2; (−ε, 0)) = G−1(G(uL) + bεF−1(2ε)) > γ,

where G, F are in (2.15), (2.18). Since g(u) > 0, we see that G−1 is increasing. Then
by the fact G(γ) = 0, it implies that (2.27) is equivalent to

G(uL) + bεF−1(2ε) > 0.

By mean value theorem, we see that the last inequality is equivalent to

(2.28) uL − γ > (aL − aR)
g(u1)
f ′(u2)

for some u1 ∈ (γ, uL) and u2 ∈ (uL, uR). Then, by (2.5) and comparing (2.6) with
(2.28), we complete the proof of statement (2).
To show statement (3), it is equivalent to show

(2.29) uε(t2; (−ε, 0)) = G−1(G(uL) + bεF−1(2ε)) < uR.

Since g(u) < 0, by mean value theorem and G−1 is decreasing, we obtain that (2.29)
is equivalent to

(2.30)
∫ uL

uR

ds

g(s)
>

aL − aR

f ′(u3)

for some u3 ∈ (uL, uR). Applying mean value theorem to the LHS of (2.30), we see
that condition (2.7) is sufficient to imply (2.29).

Next we show statement (4). First, by statement (1) we observe that the value
of uε(t; x̃0) at x = ε is equal to some constant for any x̃0 ∈ Γ0L. Let c denote
the constant. Then, by replacing bε by daε/dx in (2.12) and the re-scaling technique
to (2.11)-(2.13), we observe that uε(x, t) along each characteristic curve in Ωε can be
regarded as a function of aε, and constant c can be solved by (2.26). Finally, we simply
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let ε approach 0 in (2.21), (2.22) and use the fact that t2 → t1 and t1 → − x0

f ′(uL)
as

ε → 0, we complete the proof of statement (4).

Case II. x0 ∈ Γ0ε.

By similar analysis in Case I and (2.2), we obtain

(2.31) uε(t; x̃0) =

{
G−1(G(ζε(x0)) + bεt), 0 ≤ t < t12,

G−1(G(ζε(x0)) + bεF−1
1 (ε − x0)), t ≥ t12,

and

(2.32)

xε(t; x̃0)

=

{
x0 + F1(t; x̃0), 0 ≤ t < t12,

ε + f ′(G−1(G(ζε(x0)) + bεF−1
1 (ε− x0)))(t− t12), t ≥ t12,

where G is in (2.15) and F1, t12 are given by

(2.33) F1(t; x̃0) ≡
∫ t

0
f ′(G−1(G(ζε(x0)) + bεs))ds,

(2.34) t12 ≡ F−1
1 (ε − x0) =

ε − x0

f ′(u(c1
2; x̃0))

for some c1
2 ∈ (0, t12), and F−1

1 (x) ≡ F−1
1 (x; x̃0) for fixed x̃0. Note that F−1

1 is well
defined on [0, 2ε]. On the other hand, for x0 ∈ Γ0ε, there exists a constant k ∈ (−1, 1)
such that x0 = kε. Therefore uε(t; x̃0), xε(t; x̃0) in (2.31), (2.32) can be written as

(2.35) uε(t; x̃0) =

{
G−1(G(ζε(kε)) + bεt), 0 ≤ t < t12,

G−1(G(ζε(kε)) + bεF−1
1 ((1 − k)ε)), t ≥ t12,

and

(2.36)

xε(t; x̃0)

=

{
kε + F1(t), 0 ≤ t < t12,

ε + f ′(G−1(G(ζε(kε)) + bεF−1
1 ((1− k)ε)))(t− t12), t ≥ t12,

where t12 = F−1
1 ((1− k)ε) (see Figure 1).

Next, we let D ≡ ⋃
x̃0∈Γ0ε

{(xε(t; x̃0), t) : t ≥ 0}, and L−ε+ , Lε− be the char-
acteristic curves starting at (−ε+, 0), (ε−, 0) respectively. We also let Dε ≡ D

⋂
Ωε,

and DR ≡ D
⋂

ΩR.



442 Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin

Fig. 1. The characteristic curve starting at x̃0 ∈ Γ0ε.

Lemma 2.2. Consider perturbed Riemann problem (2.9) where aR < aL and
uL, uR satisfy (2.5)-(2.7). Then all the characteristic curves in D do not intersect.
Furthermore, given any (x, t) ∈ D, there exists a unique x0 = x0(x, t) ∈ (−ε, ε) such
that characteristic curve xε(t; (x0, 0)) passes through (x, t), namely uε(x, t) can be
determined uniquely in D .

Proof. First we consider g(u) < 0. Given x̃0 = (x0, 0), x̃1 = (x1, 0)
where x0, x1 ∈ (−ε, ε) and x1 > x0, we see that G(ζε(x0)) > G(ζε(x1)) since
ζε(x0) < ζε(x1) and G is decreasing. Therefore, we have

(2.37) G−1(G(ζε(x0)) + bεt) < G−1(G(ζε(x1)) + bεt)

for 0 ≤ t ≤ t∗1 where t∗1 is the time when xε(t; x̃1) intersects ΓR. Then, by (2.31) and
(2.37), it implies that uε(t; x̃0) < uε(t; x̃1) for 0 ≤ t ≤ t∗1. Following f ′′ > 0 we obtain
f ′(uε(t; x̃0)) < f ′(uε(t; x̃1)) for 0 ≤ t ≤ t∗1, which implies that xε(t; x̃0), xε(t; x̃1)
do not intersect when 0 ≤ t ≤ t∗1.
Next, for t ≥ t∗1 we see that xε(t; x̃1) is a straight line, so it is necessary to show

uε(t; x̃1)|x=ε > uε(t; x̃0)|x=ε, or equivalently

(2.38) G−1(G(ζε(x0)) + bεF−1
1 (ε − x0)) < G−1(G(ζε(x1)) + bεF−1

1 (ε − x1)).

To show (2.38), given x ∈ (−ε, ε) we define

(2.39) H(x) ≡ uε(t; (x, 0))|x=ε = G−1(G(ζε(x)) + bεF−1
1 (ε − x)).

DifferentiatingH with respect to x, we have

(2.40)
dH

dx
=

g(ϑ)
2ε

[
uR − uL

g(ζε(x))
+

aL − aR

f ′(G−1(ϑ))
],
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where ϑ = G(ζε(x)) + bεF−1
1 (ε− x). Then, by (2.7), (2.40) and g(ϑ) < 0, it leads to

dH
dx > 0, which implies that (2.38) holds. We complete the proof for case g(u) < 0.
Next, we consider g(u) > 0. By the similar analysis given in g(u) < 0, we also

obtain uε(t; x̃0) < uε(t; x̃1) for 0 ≤ t ≤ t∗1. In addition, by bεg(u) ≤ 0 we have
uε(t∗1; x̃0) > uε(t; x̃0) for all t > t∗1. It follows that uε(t; x̃0) < uε(t; x̃1) for all t ≥ 0.
Finally, by f ′′ > 0 again, we show that f ′(uε(t; x̃0)) < f ′(uε(t; x̃1)) for t ≥ 0, which
implies that xε(t; x̃0), xε(t; x̃1) do not intersect for all t ≥ 0.
Next, we show uε(x, t) can be determined uniquely in D. First, given (x, t) ∈ Dε,

by (2.32), (2.33), it is equivalent to show that there exists a unique x0 ∈ (−ε, ε) such
that

(2.41) h(x, t, x0) ≡ −x + x0 +
∫ t

0
f ′(G−1(G(ζε(x0)) + bεs))ds = 0.

Differentiating h(x, t, x0) with respect to x0, we obtain in both cases (g(u) < 0 or
g(u) > 0) that

∂h(x, t, x0)
∂x0

= 1+
∫ t

0
f ′′(G−1(G(ζε(x0)) + bεs)) · ∂

∂x0
G−1(G(ζε(x0)) + bεs)ds

= 1+
∫ t

0
f ′′(G−1(G(ζε(x0))+bεs)) · 1

G′(G−1(G(ζε(x0))+bεs))
· ∂

∂x0
G(ζε(x0))ds

= 1+
(ζε(x0))′

g(ζε(x0))
·
∫ t

0
f ′′(G−1(G(ζε(x0)) + bεs)) · g(G−1(G(ζε(x0)) + bεs))ds

> 0.

Therefore, by implicit function theorem there exists a unique x0 = x0(x, t) such that
(2.41) holds. Since all the characteristic curves in Dε do not intersect, it follows that
x0 ∈ (−ε, ε).
Next, suppose that (x, t) ∈ DR. Since all the characteristic curves are straight lines

in DR, there exists a unique (ε−, t∗) ∈ Dε such that the characteristic curve passing
through (ε−, t∗) also passes through (x, t). Therefore, by previous analysis we obtain
that there exists a unique x0 ∈ (−ε, ε) such that characteristic curve xε(t; (x0, 0))
passes through (x, t) ∈ DR. We complete the proof.

Case III. x̃0 ∈ Γ0R.

Due to the vanishing of source term in this case, we can easily obtain that

(2.42) uε(t; x̃0) = uR,

(2.43) xε(t; x̃0) = x0 + f ′(uR)t, t ≥ 0.
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Next, we define the following regions:

Ω̃ε ≡ Ωε\Dε,

Ω1
R ≡

⋃
{(xε(t; x̃0), t) : x̃0 ∈ Γ0L}

⋂
ΩR,

Ω2
R ≡ {(xε(t; x̃0), t) : x̃0 ∈ Γ0R}.

(2.44)

By previous cases study of uε(x, t), xε(x, t), we obtain the global classical solution of
perturbed Riemann problem (2.1)-(2.4) where uR > uL > γ > 0 and aR < aL, which
is given in the following theorem.

Theorem 2.3. Consider perturbed Riemann problem (2.1)-(2.4) where aR < aL

and uL, uR satisfy (2.5)-(2.7). Then the classical solution of (2.1)-(2.4) exists for
t ≥ 0. Furthermore, given (x, t) ∈ R × R

+, there exists a unique x0 = x0(x, t) ∈ R

such that the classical solution can be expressed as

(2.45) uε(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uL, (x, t) ∈ ΩL,

G−1(G(uL) + bε(t +
ε + x0

f ′(uL)
)), (x, t) ∈ Ω̃ε,

u∗, (x, t) ∈ Ω1
R,

G−1(G(ζε(x0)) + bεt), (x, t) ∈ Dε,

G−1(G(ζε(x0)) + bεF−1
1 (ε − x0)), (x, t) ∈ DR,

uR, (x, t) ∈ Ω2
R,

where G, F1 and u∗ are given in (2.15), (2.33) and (2.25) respectively (see Figure 2).

Next, we study the behavior of perturbed Riemann solutions as ε approaches 0.
The following theorem indicates that the limit function u(x, t) ≡ lim

ε→0
uε(x, t) is a

discontinuous function consisting of three constant states separated by a standing shock
and a rarefaction wave (a C1 function of

x

t
) when aL �= aR.

Theorem 2.4. Suppose that uε(x, t) is the classical solution of (2.1)- (2.4) which
is given in (2.45). Then function u(x, t) ≡ lim

ε→0
uε(x, t) consists of three constant states

uL, u∗, uR separated by a discontinuity on t-axis and a rarefaction wave in region
{(x, t) : f ′(u∗)t ≤ x ≤ f ′(uR)t, t > 0} (Figure 3). That is, function u(x, t) can be
expressed as

(2.46) u(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uL, (x, t) ∈ Ω1,

u∗, (x, t) ∈ Ω2,

(f ′)−1(
x

t
), (x, t) ∈ Ω3,

uR, (x, t) ∈ Ω4,
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where u∗ is in (2.25) and {Ωi : i = 1, 2, 3, 4} are given by

(2.47)

Ω1 ≡ {(x, t) : x < 0, t > 0},
Ω2 ≡ {(x, t) : 0 < x < f ′(u∗)t, t > 0},
Ω3 ≡ {(x, t) : f ′(u∗)t ≤ x ≤ f ′(uR)t, t > 0},
Ω4 ≡ {(x, t) : x > f ′(uR)t, t > 0}.

Fig. 2. Classical solution uε(x, t) of (2.1)-(2.4) (g(u) > 0).

Fig. 3. Limit function u(x, t) in Ωi, i = 1, 2, 3, 4when uR > uL > γ > 0 and aR < aL.

Proof. First, we observe that all the points in Dε tend to (0, 0) as ε → 0.
Moreover, letting ε → 0 in (2.45), we see that u(0−, t) = uL and u(0+, t) = u∗ for
all t > 0 where u∗ is in (2.25). Therefore u(x, t) has a discontinuity on t-axis.
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Next, let L−ε+ (resp., Lε−) denote the characteristic curve starting at (−ε+, 0)
(resp., (ε−, 0)). Suppose that L−ε+ , Lε− intersect x = ε at (ε, t∗1), (ε, t∗2). Then, by
plugging x0 = −ε+, ε− into (2.45) for uε(x, t) in DR, we obtain

uε(ε, t∗1) = u∗, uε(ε, t∗2) = uR,

where u∗ is given in (2.45). In addition, by (2.41), (2.40), we see that the values of
uε(x, t)|L̃, L̃ = {(ε, t); t ∈ [t∗2, t∗1]}, increase from u∗ to uR in both cases g(u) > 0,
g(u) < 0, and all the points in L̃ tend to (0, 0) as ε → 0. Thus, region DR tends to
Ω3 given in (2.47), and all the characteristic curves in Ω3 are straight lines with slopes
varying from f ′(u∗) to f ′(uR) as ε → 0. Moreover, since source term vanishes in
DR, we observe that the value of uε(x, t) along each characteristic curve in ΩR is a
constant determined by the value of uε at some point in L̃. This is sufficient to say
that u(x, t) = v(

x

t
) in Ω3 for some C1 function v. To obtain u(x, t) in Ω3, we just

solve
x

t
= f ′(v) to get u(x, t) = (f ′)−1(

x

t
). Finally, letting ε approach 0 in (2.45),

we complete the proof.

3. SHOCK WAVES OF THE RIEMANN AND PERTURBED RIEMANN PROBLEMS

In this section we study the discontinuous solutions (shock waves) uε(x, t) to the
perturbed Riemann problem (2.1), (2.3) and (2.4) where uL > uR > 0 and aR < aL.
In addition, we study the self-similarity of u(x, t) ≡ lim

ε→0
uε(x, t). For convenience, we

choose the initial data to be

(3.1) uε(x, 0) = uε
0(x) ≡

{
uL, x < 0,

uR, x > 0.

We notice that, the structure of admissible shocks for (2.1), (2.3), (2.4) and (3.1) is
determined by Rankine-Hugoniot condition and Lax entropy condition, which is more
complicated than the one in homogeneous equations due to the appearance of source
term. To study the shock waves, the first difficulty is to track the location of shocks,
especially the ones in region Ωε. Secondly, the shocks may disappear in finite time
when g(u) is positive and sufficiently large, while uL, uR are sufficiently close. Fur-
thermore, even the shock exists globally, the states on both sides of the shock may not
be constants as ε approaches 0, which implies that the speed of shock may not be a
constant. In this section we first give a condition to |uL −uR| when g(u) > 0 (but no
condition of |uL − uR| required when g(u) < 0) so that the shock exists for all t ≥ 0.
In addition, we show that the limit of perturbed Riemann solution is self-similar, i.e.,
lim
ε→0

uε(x, t) = v(x
t ) for some discontinuous function v.
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To start, we define

(3.2) δ ≡ |uL − uR| > 0.

The following lemma indicates that the solution of (2.1), (2.3), (2.4) and (3.1) consists
of a shock for all t ≥ 0 under some condition of δ.

Lemma 3.1. Consider perturbed Riemann problem (2.1), (2.3), (2.4) and (3.1)
with g(u) > 0, uL > uR > 0 and aR < aL. Suppose that δ in (3.2) satisfies

(3.3) δ ≡ |uL − uR| >
aL − aR

f ′(uR)
max

u∈[uR,uL]
g(u).

Then the solution of (2.1), (2.3), (2.4) and (3.1) consists of a shock for all t ≥ 0. If
g(u) < 0, then the result holds for any δ > 0.

Proof. First, we consider g(u) > 0. For all x0 ≤ −ε, by Lemma 2.1 we see
that uε(t; (x0, 0)) = u∗ at x = ε where u∗ is in (2.25). On the other hand, by Lemma
2.2 it follows that u∗ < uε(t; (x1, 0)) at x = ε for any x1 ∈ (−ε, 0). Moreover, for
x2 ∈ (0, ε), we observe that uε(t; (x2, 0)) < uR at x = ε. Therefore, by previous
facts and that f ′(u) stands for the slope of characteristic curves, we want to show that
u∗ > uR under condition (3.3).
Next, we see that u∗ > uR implies

G−1(G(uL) +
aR − aL

f ′(uc)
) > uR,

where uc ∈ [uL, uR] and G is in (2.15). Since (G−1)′ > 0, the last inequality is
equivalent to

(3.4) G(uL) +
aR − aL

f ′(uc)
> G(uR).

Therefore, by the definition of G in (2.15) and (3.4), we observe that u∗ > uR if

(3.5)
∫ uL

uL−δ

ds

g(s)
>

aL − aR

f ′(uc)
.

Applying mean value theorem to the LHS of (3.5) and the fact that f ′(uc) ≥ f ′(uR),
we show that u∗ > uR if δ satisfies (3.3).
Next, we consider g(u) < 0. By G′ < 0, (G−1)′ < 0 and bεg(u) > 0, we easily

obtain
G−1(G(uL) + bεt) > G−1(G(uR) + bεt)
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for uL > uR and t ≥ 0, which implies that uε(t; (x0, 0)) > uε(t; (x1, 0)), and
consequently f ′(uε(t; (x0, 0))) > f ′(uε(t; (x1, 0))) in Ωε for any x0 ∈ (−ε, 0) and
x1 ∈ (0, ε). Therefore, the shock occurs in Ωε. Next, for all t ≥ 0 we have

uε(t; (x2, 0)) > uε(t; (x0, 0))

for any x2 ≤ −ε, x0 ∈ (−ε, 0), and

uε(t; (x1, 0)) > uε(t; (x3, 0))

for any x3 ≥ ε, x0 ∈ (−ε, 0), which is sufficient to imply that the shock occurs outside
Ωε. We complete the proof.

Taking the limit to uε(x, t), we obtain the following theorem.

Theorem 3.2. Suppose uε(x, t) is the solution of (2.1), (3.1) and (2.4) with
aR < aL, uL > uR > 0 and δ ≡ |uL−uR| satisfying (3.3). Then u(x, t) ≡ lim

ε→0
uε(x, t)

consists of at most three constant states uL, u∗, uR separated by a standing discon-
tinuity and a shock (Figure 4). Namely,

(3.6) u(x, t) =

⎧⎨
⎩

uL, (x, t) ∈ Ω̃1,

u∗, (x, t) ∈ Ω̃2,

uR, (x, t) ∈ Ω̃3,

where u∗ is solved by (2.25) and (2.26), and Ω̃i, i = 1, 2, 3, are given by

Ω̃1 ≡ {(x, t) : x < 0, t > 0},
Ω̃2 ≡ {(x, t) : 0 < x <

f(uR) − f(u∗)
uR − u∗ t, t > 0},

Ω̃3 ≡ {(x, t) : x >
f(uR) − f(u∗)

uR − u∗ t, t > 0}.

Proof. First, we study the shock wave of (2.1), (3.1) and (2.4) when g(u) ≡ 0.
Let Sε(x(t), t) ; t ≥ 0, denote the location of shock when g(u) ≡ 0. Then, by
Rankine-Hugoniot condition, we have

Sε(x(t), t) = {(x(t), t) : x(t) =
f(uR) − f(uL)

uR − uL
t, t ≥ 0}.

Also, characteristic curve xε(t; (ε, 0)) can be expressed as

xε(t; (ε, 0)) = {(x(t), t) : x(t) = ε + f ′(uR)t, t ≥ 0}.
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We notice that xε(t; (ε, 0)) impinges to Sε(x(t), t) at (x∗, t∗) = (ε +
f ′(uR)ε

m − f ′(uR)
,

ε

m − f ′(uR)
) where m =

f(uR) − f(uL)
uR − uL

. Note that x∗, t∗ are of order O(ε). In

addition, characteristic curve xε(t; (x0, 0)), x0 = ε +
f ′(uR) − f ′(uL)

m − f ′(uR)
ε, impinges to

Sε(x(t), t) on the left at (x∗, t∗). By f ′′ > 0 we observe that x0 < 0. Moreover, the
region bounded by xε(t; (ε, 0)), xε(t; (x0, 0)) and {(x, 0) : x ∈ [x0, ε]} vanishes as
ε → 0.

Fig. 4. Solution in regions Ω̃i, i = 1, 2, 3 for uL > uR > 0 and aR < aL.

Next, we consider g(u) > 0. Let S̃ε(x(t), t), t ≥ 0, be the location of shock in this
case. Since the characteristic curves are affected by the source term, curve S̃ε(x(t), t)
can be obtained by perturbing Sε(x(t), t) under Rankine-Hugoniot condition. More
precisely, let u−(t), u+(t) be the states on the left and right of S̃ε(x(t), t) at time
t > 0, then by Rankine-Hugoniot condition we obtain that (x̃(t), t) ∈ Sε(x(t), t)
satisfies

(3.7)
dx̃(t)

dt
=

f(u+(t))− f(u−(t))
u+(t) − u−(t)

, t > 0.

Therefore, by (3.7) and the facts that |f(uL)−f(u−(t))| = O(1), |f(uR)−f(u+(t))| =
O(1) for 0 < t < t∗ =

ε

m − f ′(uR)
and S̃ε(x(t), t), Sε(x(t), t) all start at (0, 0), we

obtain

(3.8) |S̃ε(x(t), t)− Sε(x(t), t)| = O(1)ε

for 0 < t < t∗. Let (x̃∗, t̃∗) be the point where xε(t; (ε, 0)) impinges to S̃ε(x(t), t) on
the right. Also let xε(t; (x1, 0)) for some x1 < 0 be the characteristic curve impinging
to S̃ε(x(t), t) on the left at (x̃∗, t̃∗). Then, by (3.8) we obtain that x̃∗, t̃∗, x1 → 0
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as ε → 0. It follows that region D̃ε bounded by xε(t; (ε, 0)), xε(t; (x1, 0)) and
{(x, 0) : x ∈ [x1, ε]} vanishes as ε → 0.
Next, we see that uε(x, t) outside Ωε

⋃
D̃ε is piecewise constant. Furthermore, by

(3.8) we see that S̃ε(x(t), t) → Sε(x(t), t) as ε → 0, which means that x1, x0 → 0,
and in particular x1 → x0 as ε → 0. Then , by statement (4) of Lemma 2.1, it leads to
uε(t; (x1, 0)) = u∗ at x = 0+, and uε(t; (x1, 0)) = uL at x = 0− as ε → 0 where u∗

is solved by (2.25), (2.26). Finally, by letting ε approach 0, we complete the proof for
g(u) > 0. The proof for g(u) < 0 is similar, we will omit it. The proof is complete.

By previous results in Sections 2 and 3, we see that the standing shock (standing
wave discontinuity) occurs due to the ”bending” of characteristic curves as ε approaches
0, but not by the intersection of characteristic curves. It means that the discontinuity is
not governed by the Rankine-Hugoniot condition but by taking the ε-limit to solutions
of ODEs as described in the following theorem.

Theorem 3.3. Let u(x, t) be the generalized solution of (1.1)-(1.3) constructed
by Definition 1.1, and uL, uR are nonzero and of the same sign. If uL, uR > 0 (resp.,
uL, uR < 0), then the standing wave discontinuity in u(x, t) connects constant states
uL, u∗ (resp., uR, u∗) where u∗ (resp., u∗) is the ε-limit of ũε(aR) (resp., ũε(aL))
with ũε solving

dũε

daε
=

g(ũε)
f ′(ũε)

, ũε(aL) = uL (resp., ũε(aR) = uR).

4. STABILITY OF PERTURBED RIEMANN SOLUTIONS AND GENERALIZED
ENTROPY SOLUTIONS

In Sections 2 and 3 we constructed solution uε(x, t) of perturbed Riemann prob-
lem when aε(x) is piecewise linear, and we study the self-similarity of u(x, t) =
lim
ε→0

uε(x, t). To construct the generalized entropy solution of (1.1)-(1.3) based on Def-
inition 1.2, it is necessary to study the stability of uε(x, t). We see that the behavior of
uε(x, t) depends on the choice of aε(x), which means that uε(x, t) may not be stable
under the general profile of aε(x). Consequently, it may lead to the non-uniqueness of
generalized entropy solutions to (1.1)-(1.3).
In the first part of the section, we give an example to demonstrate the non-stability

of perturbed Riemann solutions under general profile of aε(x). In the second part of
the section, we show that the stability of uε(x, t) can be established with respect to
some set Aε ≡ {ãε(x)} in which every ãε(x) ∈ Aε can be expressed as

ãε(x) = aε(x) + δε(x),

where aε(x) is in (2.3), and δε(x) is a perturbation satisfying some properties given
later in this section.
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To start, for 0 < ε 
 1, we set uL = 1, uR = 2, aL = 3, aR = 1, f(u) = 1
2u2

and g(u) = 1 in (2.1)-(2.2). Then we consider the following perturbed Riemann
problem

(4.1)

{
uε

t + ( 1
2(uε)2)x = (aε(x) + δε(x))′,

uε(x, 0) = uε
0(x),

where

(4.2) aε(x) =

⎧⎪⎪⎨
⎪⎪⎩

3 x < −ε,

−x

ε
+ 2, −ε ≤ x ≤ ε,

1 x > ε,

(4.3) uε
0(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x < −ε,

x

2ε
+

3
2
, −ε ≤ x ≤ ε,

2, x > ε,

and

(4.4) δε(x) =

⎧⎪⎪⎨
⎪⎪⎩

2
ε2

x + 2, −ε2 < x ≤ 0,

− 2
ε2 x + 2, 0 < x < ε2,

0, otherwise.

Note that

(4.5) a′ε(x) + δ′ε(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
ε2

− 1
ε
, −ε2 < x < 0,

−2 + ε

ε2
, 0 < x < ε2,

−1
ε
, −ε < x < −ε2 or ε2 < x < ε,

0, x < −ε or x > ε,

which means that aε(x) + δε(x) is not a monotone function in (−ε, ε).
When δε(x) ≡ 0, by the results in Section 2, we see that there exists a global clas-

sical solution of (4.1). In the following we show that, when δε(x) is given by (4.4), the
characteristic curves starting at {(x0, 0) : x0 < ε2} never reach line x = ε2. It follows
that there exists a region where the information of uε(x, t) is missing. In addition,
those characteristic curves intersect in Ωε so that shocks occur with negative speeds.
This implies that the behavior of perturbed Riemann solution completely changes when
aε(x) in (2.3) is perturbed by δε(x).
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To show this, we set x̃0 ≡ (ε4, 0), x̃1 ≡ (−ε4, 0). We also define regions ΩL
ε ≡

{(x, t) : −ε2 < x < 0, t > 0}, ΩR
ε ≡ {(x, t) : 0 < x < ε2, t > 0}. Then, by (4.5) and

the results in Section 2, we obtain

ũε(t; x̃0) = (
ε3

2
+

3
2
) − 2 + ε

ε2
t, x̃ε(t; x̃0) = ε4 + ũε(t; x̃0) t, t ≥ 0.

It is easy to see that the graph of Γ0 ≡ {(x̃ε(t; x̃0), t) : t ≥ 0} is a parabola concave
down with respect to t. Moreover, for sufficiently small ε we have

max
t≥0

x̃ε(t; x̃0) = x̃ε(t∗0; x̃0) = ε4 + [ε2(
ε3

2
+

3
2
)2] (2(2 + ε))−1 < ε2,

where t∗0 ≡ [
ε5

2
+

3
2

ε2](2 + ε)−1. It implies that Γ0 does not intersect line x = ε2.
Next, by direct calculation we obtain that Γ0 intersects t-axis at (0, t1) where

t1 ≡
[
(
ε5

2
+

3ε2

2
) + ε2

√
(
ε3

2
+

3
2
)2 − 4(−2 + ε

2ε2
) ε4

]
(2 + ε)−1.

On the other hand, we have

ũε(t; x̃1) = (
3
2
− ε3

2
) +

2− ε

ε2
t, x̃ε(t; x̃1) = x1 + ũε(t; x̃1) t

for 0 ≤ t ≤ t̂1 ≡
[

ε5

2
− 3

2
ε2 + ε2

√
(
3
2
− ε3

2
)2 + 2ε2(2− ε)

]
(2 − ε)−1 where t̂1 is

the first intersection time when curve x̃ε(t; x̃1) intersects line x = 0. We observe that
t1 > t̂1 for sufficiently small ε. Next, by the results in Section 2, we obtain

ũε(t; x̃1) =

√
(
3
2
− ε3

2
)2 + 2ε2(2 − ε) − 2 + ε

ε2
(t − t̂1),

x̃ε(t; x̃1) =

√
(
3
2
− ε3

2
)2 + 2ε2(2 − ε)(t − t̂1)− 2 + ε

2ε2
(t − t̂1)2

for t̂1 ≤ t ≤ t̂2 where t̂2 ≡ t̂1 +

[
2ε2

√
(
3
2
− ε3

2
)2 + 2ε2(2− ε)

]
(2 + ε)−1 is the

second intersection time when x̃ε(t; x̃1) intersects x = 0. We see that the graph of
Γ1 ≡ {(x̃ε(t; x̃1), t) : 0 ≤ t ≤ t̂2} is also a parabola concave down with respect to t.
Also, for sufficiently small ε, we have

max
t≥0

x̃ε(t; x̃1) = x̃ε(t∗1; x̃1) = [ε2[(
3
2
− ε3

2
)2 + 2ε2(2− ε)]] (2(2 + ε))−1 < ε2,
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where t∗1 ≡ t̂1 +

[
ε2

√
(
3
2
− ε3

2
)2 + 2ε2(2 − ε)

]
(2+ε)−1. It follows that Γ1 does not

intersect line x = ε2. Finally, by taking Taylor expansion to t̂2, we obtain t̂2 > t1 > t̂1
for sufficiently small ε. It implies that Γ0, Γ1 intersect at some point (x̄, t̄ ) ∈ ΩR

ε

(Figure 5). Therefore, shock wave occurs in ΩL
ε

⋃
ΩR

ε . It indicates that the perturbed
Riemann solutions are unstable with respect to general profile of aε(x).

Fig. 5. Shock occurs in ΩR
ε ⊂ ΩL

ε

⋃
ΩR

ε .

In the rest of this section we establish the stability of perturbed Riemann solutions
when aε(x) is restricted to some class of functions. To start, given 0 < ε 
 1, we
consider the following perturbed Riemann problems

(4.6)

{
uε

t + f(uε)x = a′ε(x)g(uε),

uε(x, 0) = uε
0(x),

and

(4.7)

⎧⎨
⎩

ũε
t + f(ũε)x = ã′ε(x)g(ũε),

ũε(x, 0) = uε
0(x)

with aε(x) given in (2.3), and ãε(x) = aε(x) + δε(x) where δε(x) ∈ C2
0 ([−ε, ε])

satisfies

ã′ε(x) = bε(x) + δ′ε(x) < 0, x ∈ (−ε, ε),(4.8)

δ′′ε (x) > 0, x ∈ (−ε, ε),(4.9)

‖δ′ε(x)‖L1([−ε,ε]) → 0 as ε → 0.(4.10)

Here bε(x) is given in (2.8). Also g(u), uL, uR and uε
0(x) are restricted to either one

of the following four cases:
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(i) g(u) > 0 for u > 0, uε
0(x) is given by (2.2) and uR > uL > γ∗(ε) > 0 where

(4.11) γ∗(ε) ≡ (2
aL − aR

f ′(uL)
+ ‖δ′ε(x)‖L1([−ε,ε])) max

u∈[0,uL]
g(u).

(ii) g(u) > 0 for u > 0, uε
0(x) is given by (3.1) and uL > uR > 0 with δ ≡ |uL −uR|

satisfying

(4.12) δ > (
aL − aR

f ′(uL)
+ ‖δ′ε(x)‖L1([−ε,ε])) max

u∈[uR,uL]
g(u).

(iii) g(u) < 0 for u > 0, uε
0(x) is given by (2.2), and uR > uL > 0 with δ ≡ |uL−uR|

satisfying

(4.13) δ > (
aL − aR

f ′(uL)
+ ‖δ′ε(x)‖L1([−ε,ε])) max

u∈[uL,uR]
(−g(u)).

(iv) g(u) < 0 for u > 0, uε
0(x) is given by (3.1), and uL > uR > 0.

By (4.10) it follows that γ∗(ε) → 2γ and condition (4.12) becomes (3.3) as ε → 0
where γ is in (2.6). Furthermore, by similar analysis in the proof of Lemma 2.1 and
Lemma 3.1, we obtain ũε(x, t) > γ > 0 for t ≥ 0 in Case (i), and ũε(x, t) consists of
a shock globally in Case (ii). Also, condition (4.13) ensures that ũε(x, t) is a global
classical solution in Case (iii).
First, we consider Cases (i) and (iii). We wish to show the solution of (4.7)

converges pointwise to the solution of (4.6) for some assumptions of ãε(x). Note that
there exists a unique global classical solution of (4.6) by the results in Section 2. In
the following lemma we show that the characteristic curves of problem (4.7) in Cases
(i) and (iii) do not intersect so that the classical solution of (4.7) also exists globally.

Lemma 4.1. We consider perturbed Riemann problem (4.7). Set x̃1 ≡ (x1, 0),
x̃2 ≡ (x2, 0) and x1 < x2.

(a) If uL, uR and uε
0(x) are in Case (i), and δε(x) satisfies (4.8)-(4.10), then char-

acteristic curves x̃ε(t; x̃1), x̃ε(t; x̃2) do not intersect for t ≥ 0.

(b) If uL, uR and uε
0(x) are in Case (iii), and δε(x) satisfies (4.8), (4.10) and

(4.14) δ′′ε (x) < 0

for x ∈ (−ε, ε), then statement (1) still holds.

Proof. We only show statement (1). The proof of statement (2) is similar.
First we consider the case that x̃1, x̃2 ∈ Γ0ε where Γ0ε is in (2.10). Then ũε(t; x̃i),
i = 1, 2, satisfy ⎧⎨

⎩
dũε(t; x̃i)

dt
= [bε + δ′ε(x̃

ε(t; x̃i))]g(ũε(t; x̃i)),

ũε(0; x̃i) = uε
0(xi), i = 1, 2.
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It leads to

(4.15) G(ũε(t; x̃i)) = G(uε
0(xi)) + bε t +

∫ t

0
δ′ε(x̃

ε(s; x̃i))ds, i = 1, 2,

where
uε

0(xi) = (
uR − uL

2ε

)
xi +

1
2
(uR + uL), i = 1, 2,

and G is in (2.15). Subtracting equations in (4.15) and applying mean-value theorem
to G(ũε(t; x̃2)) − G(ũε(t; x̃1)) and δ′ε(x̃ε(s; x̃2))− δ′ε(x̃ε(s; x̃1)), we obtain

ũε(t; x̃2) − ũε(t; x̃1) = g(c1(t))[G(uε
0(x2)) − G(uε

0(x1))]

+g(c1(t))
∫ t

0
δ′′ε (c2(s))(x̃ε(s; x̃2) − x̃ε(s; x̃1))ds,

(4.16)

where c1(t) lies between ũε(t; x̃1) and ũε(t; x̃2) for t > 0, and c2(s) lies between
x̃ε(s; x̃1) and x̃ε(s; x̃2) for s ∈ (0, t]. On the other hand, characteristic curves x̃ε(t; x̃i),
i = 1, 2, satisfy ⎧⎨

⎩
dx̃ε(t; x̃i)

dt
= f ′(ũε(t; x̃i)),

x̃ε(0; x̃i) = xi, i = 1, 2.

(4.17)

It follows that

x̃ε(t; x̃2) − x̃ε(t; x̃1)

= (x2 − x1) +
∫ t

0
[f ′(ũε(s; x̃2)) − f ′(ũε(s; x̃1))]ds

= (x2 − x1) +
∫ t

0
f ′′(c3(s))(ũε(s; x̃2) − ũε(s; x̃1))ds,

(4.18)

where c3(s) lies between ũε(s; x̃1) and ũε(s; x̃2) for s ∈ (0, t]. Substituting (4.18) into
(4.16), it leads to

w(t) = g(c1(t))[A(t) +
∫ t

0

∫ s

0
B(τ, s)w(τ)dτds],

where

w(t) ≡ ũε(t; x̃2) − ũε(t; x̃1),

A(t) ≡ [G(uε
0(x2))− G(uε

0(x1))] + (x2 − x1)
∫ t

0
δ′′ε (c2(s))ds,

B(τ, s) ≡ δ′′ε (c2(s))f ′′(c3(τ))



456 Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin

for t > 0, s ∈ (0, t] and τ ∈ (0, s]. We notice that

(4.19) w(0) = uε
0(x2)− uε

0(x1) =
uR − uL

2ε
(x2 − x1) > 0.

In addition, by (2.15), (4.19) and that g(u), δ′′ε are positive, we obtain A(t) > 0 for
t ≥ 0.
Next, we claim that w(t) > 0 for all t > 0. Suppose not, then there exists t∗ > 0

such that w(t∗) ≤ 0. If w(t∗) < 0, then by the fact that w(0) > 0 and intermediate
value theorem, there exists at least one point t̃ ∈ (0, t∗) such that w(t̃ ) = 0. Define

(4.20) t1 ≡ inf {t̃ ∈ (0, t∗] : w(t̃ ) = 0}.
Then w(t) > 0 for all t ∈ (0, t1), and

w(t1) = g(c1(t1))[A(t1) +
∫ t1

0

∫ s

0
B(τ, s)w(τ)dτds] = 0,

which implies ∫ t1

0

∫ s

0
B(τ, s)w(τ)dτds = −A(t1) < 0.

On the other hand, by (4.9) and f ′′ > 0 we have B(τ, s) > 0 for τ ∈ (0, s] and
s ∈ (0, t1), it follows that there exists some τ ∈ (0, s] ⊂ (0, t1) such that w(τ) < 0,
which contradicts (4.20). The proof for w(t∗) = 0 is similar. By the analysis above
and the fact that w(0) > 0 again, we obtain that w(t) = ũε(t; x̃2) − ũε(t; x̃1) > 0 for
all t > 0. We complete the proof of the claim. Finally, by (4.17) and f ′′ > 0, we

conclude that
dxε(t; x̃1)

dt
<

dxε(t; x̃2)
dt

for t > 0. It implies that x̃ε(t; x̃1), x̃ε(t; x̃2)
do not intersect for t ≥ 0 when x̃1, x̃2 ∈ Γ0ε.

Next, if x̃1, x̃2 ∈ Γ0L, then by the same analysis given in Lemma 2.1, we obtain
that x̃ε(t; x̃1), x̃ε(t; x̃2) are parallel for t > 0. On the other hand, if x̃1, x̃2 ∈ Γ0R,
since there is no effect of the source term, we also obtain that x̃ε(t; x̃1), x̃ε(t; x̃2) are
parallel for t > 0. The proof is complete.

Next, we show that the classical solution of (4.7) in Cases (i) (resp., Case (iii))
converges pointwise to the classical solution of (4.6) if perturbation δε(x) satisfies (4.8)-
(4.10) (resp., (4.8),(4.10) and (4.14)). First, given x̃0 ≡ (x0, 0), for the convenience
we let xε(t) (resp., x̃ε(t)) denote the characteristic curve of (4.6) (resp., (4.7)) starting
at x̃0, and let uε(t) (resp., ũε(t)) denote the solution along xε(t) (resp., x̃ε(t)). We
define

(4.21) U ε(t) ≡
(

xε(t)
uε(t)

)
, Ũ ε(t) ≡

(
x̃ε(t)
ũε(t)

)
, U ε

0 (x) ≡
(

x

uε
0(x)

)
,



Balance Law with Singular Source Term 457

and

(4.22) F (U ε(t)) ≡
(

f ′(uε(t))

bεg(uε(t))

)
,

(4.23) F̃ (Ũ ε(t)) ≡
(

f ′(ũε(t))

(bε + δ′ε(x̃ε(t)))g(ũε(t))

)
.

We have the following theorem regarding to the stability of classical perturbed Riemamm
solutions.

Theorem 4.2. We consider perturbed Riemann problems (4.6), (4.7) where g(u),
uε

0(x), uL, uR and δε(x) satisfy the hypotheses in Lemma 4.1. Given x̃0 ≡ (x0, 0),
suppose U ε(t), Ũ ε(t) are the vector functions given in (4.21). Then U ε(t) → Ũ ε(t)
as ε → 0 for each t > 0. It means that the classical perturbed Riemann solution of
(4.6) in Case (i) (resp., Case (iii)) is stable with respect to the perturbation satisfying
(4.8)-(4.10) (resp., (4.8), (4.10) and (4.14)).

Proof. According to the characteristic method to (4.6), (4.7), we see that U ε(t),
Ũ ε(t) satisfy initial value problems

(4.24)

{
U̇ ε = F (U ε),

U ε(0) = U ε
0 (x0),

(4.25)

⎧⎨
⎩

˙̃U ε = F̃ (Ũ ε),

Ũ ε(0) = U ε
0 (x0),

where ” ·” denotes the derivative with respect to t, and U ε
0 (x0) is given in (4.21).

When x0 > ε, since bε = δ′ε(x) = 0, the proof is trivial. Next we consider
x0 ∈ [−ε, ε]. Suppose that xε(t; x̃0), x̃ε(t; x̃0) intersect the line x = ε at t = tε, t = t̃ε
respectively. Then we define β ≡ min{tε, t̃ε}, α ≡ max{tε, t̃ε}. Note that tε, t̃ε, α

and β are of order ε. Next, by change of variable z =
t

ε
and letting U ε(t) ≡ V ε(z),

Ũ ε(t) ≡ Ṽ ε(z), initial value problems (4.24), (4.25) can be transformed into

(4.26)

⎧⎨
⎩

dV ε

dz
= εF1(V ε),

V ε(0) = U ε
0 (x0),

(4.27)

⎧⎨
⎩

dṼ ε

dz
= εF̃1(Ṽ ε),

Ṽ ε(0) = U ε
0 (x0),
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where F1(V ε) ≡ F (U ε) and F̃1(Ṽ ε) ≡ F̃ (Ũ ε). Then by (4.26), (4.27) and that

g(Ṽ ε(z)) is uniformly bounded for z ∈ [0,
β

ε
], we obtain

(4.28)

|V ε(z)− Ṽ ε(z)|

≤
∫ z

0
|εF1(V ε(s))−εF1(Ṽ ε(s))|ds+

∫ z

0
|εF1(Ṽ ε(s))−εF̃1(Ṽ ε(s))|ds

≤
∫ z

0
φ(s) · |V ε(s)− Ṽ ε(s)|ds +

∫ z

0
|εδ′ε(x̃ε(s))g(Ṽ ε(s))|ds

≤
∫ z

0
φ(s) · |V ε(s)− Ṽ ε(s)|ds + K‖εδ′ε(x̃ε(s))‖

L1([0, β
ε
])

≤
∫ z

0

φ(s) · |V ε(s)− Ṽ ε(s)|ds + O(1)K‖εδ′ε(x)‖L1([−ε,ε])

for z ∈ [0,
β

ε
]. Here K ≡ max

z∈[0, β
ε
]
|g(Ṽ ε(z))|, and φ(s) ≡ ε‖DF1(V̄ ε(s))‖ where

DF1 ≡
[

0 f ′′

0 bεg′

]
and V̄ ε(s) lies between V ε(s), Ṽ ε(s) for s ∈ [0,

β

ε
]. The last

inequality in (4.28) holds due to the fact that x̃ε(t) ∈ [−ε, ε] is monotone in t. Then,

by Gronwall’s inequality and that φ(s) is uniformly bounded in [0,
β

ε
], we obtain

(4.29)

|V ε(z) − Ṽ ε(z)|
≤ K1ε‖δ′ε(x)‖L1([−ε,ε]) + K1ε

∫ z

0
‖δ′ε(x)‖L1([−ε,ε])φ(s)e

∫ z
s φ(τ )dτds

≤ K1 (1 +
Mβ

ε
e

Mβ
ε ) ε‖δ′ε(x)‖L1([−ε,ε])

for z ∈ [0,
β

ε
] and some positive constants K1, M . Since

Mβ

ε
is of order O(1), it

follows that |V ε(z) − Ṽ ε(z)| → 0 as ε → 0 for z ∈ [0,
β

ε
] if δε(x) satisfies (4.10). It

is sufficient to say that U ε(t) → Ũ ε(t) as ε → 0 for each t ∈ [0, β] if δε(x) satisfies
(4.10). Next, since α, β are of order ε, we have α → β (or tε → t̃ε) as ε → 0. Finally,
by the vanishing of source term when t > α, it implies that U ε(t) → Ũ ε(t) as ε → 0
for each t > α. We just proved the case of x0 ∈ [−ε, ε]. To case x0 < −ε, the proof
is similar. We complete the proof.

We have established the stability of classical perturbed Riemann solutions. Next,
we study the stability of shocks for perturbed Riemann problem of Cases (ii) and (iv),
which is given in the following theorem.
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Theorem 4.3. Consider perturbed Riemann problems (4.6) and (4.7) where g(u),
uL, uR and uε

0(x) are either in Case (ii) or (iv), and δε(x) in (4.7) satisfies (4.8)-
(4.10) (resp., (4.8), (4.10) and (4.14)) in Case (ii) (resp., Case (iv)). Let Sε(x(t), t),
S̃ε(x(t), t), t ≥ 0, denote the location of shocks to problems (4.6), (4.7) respectively.
Then Sε(x(t), t) tends to S̃ε(x(t), t) as ε → 0. Furthermore, we have lim

ε→0
|uε(x, t)−

ũε(x, t)| = 0 a.e. in R
+ × R.

Proof. We only prove Case (ii). The proof of Case (iv) is similar. First, since
δ = |uL −uR| satisfies (4.12), by Lemma 3.1 we obtain that the shock waves of (4.6),
(4.7) exist globally.
Let Lε denote the characteristic curve of (4.6), (4.7) starting at (ε, 0), and xε(t; (x̄0, 0))

(resp., x̃ε(t; (x̃0, 0))) be the characteristic curve intersecting Lε and Sε(x(t), t) (resp.,
S̃ε(x(t), t)) at some point (x̄, t̄) (resp., (x̃, t̃)). Also, let R̄ε (resp., R̃ε) be the region
bounded by Lε, xε(t; (x̄0, 0)) and line {(x, 0) : x̄0 ≤ x ≤ ε} (resp., Lε, x̃ε(t; (x̃0, 0))
and line {(x, 0) : x̃0 ≤ x ≤ ε}). Then, by the proof in Theorem 3.2 and (4.10), we
obtain that x̄, t̄, x̃, t̃ are of order ε, which means that {Sε(x(t), t) : 0 < t < t̄},
{S̃ε(x(t), t) : 0 < t < t̃} and regions R̄ε, R̃ε tend to (0, 0) as ε → 0.
Next, by Theorem 3.2 we observe that uε(t; (x1, 0)) = u∗ at x = ε for any x1 < x̄0

where u∗ is in (2.25). Now we claim that ũε(t; (x1, 0)) = u∗ at x = ε for any x1 < x̃0.
Indeed, by Theorem 3.3 and that aε(x), ãε(x) are monotone functions, we obtain that
uε(t; (x1, 0)) = vε(aε(x)), ũε(t; (x1, 0)) = ṽε(ãε(x)) in Ωε for some C1 functions vε

and ṽε satisfying

(4.30)

⎧⎨
⎩

dvε

daε
=

g(vε)
f ′(vε)

,

vε(aL) = uL,

(4.31)

⎧⎨
⎩

dṽε

dãε
=

g(ṽε)
f ′(ṽε)

,

ṽε(aL) = uL.

Since problems (4.30) and (4.31) are identical, by existence and uniqueness theorem
of ODEs, it follows that vε = ṽε. Then, by aε(ε) = ãε(ε) = aR and Lemma 2.1, we
obtain that

ũε(t; (x1, 0))|{x=ε} = ṽε(aR) = vε(aR) = u∗,

where u∗ is in (2.25). It follows that the states on both sides of {Sε(x(t), t) : t > t̄}
and {S̃ε(x(t), t) : t > t̃} are the same. Therefore, by Rankine-Hugoniot condition and
the fact that (x̃, t̃) → (x̄, t̄), we obtain that Sε(x(t), t) tends to S̃ε(x(t), t) as ε → 0.
Finally, letting ε approach 0, we have lim

ε→0
|uε(x, t) − ũε(x, t)| = 0 for any (x, t) not

in Sε(x(t), t)
⋃

S̃ε(x(t), t). The proof is complete.
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We have established the stability of perturbed Riemann solutions. Therefore, the
generalized entropy solution of (1.1)-(1.3) under Definition 1.2 is unique with respect
to {ãε(x)}. Here we emphasize that, in the proof of Theorem 4.2, condition (4.10) can
be relaxed to

ε‖δ′ε(x)‖L1([−ε,ε]) → 0 as ε → 0

in the case of classical solutions (see (4.29)). But (4.10) is required in the case of
shocks.

To state the main theorem of this paper, we define the following constants for given
0 < ε 
 1, f(u), g(u), δε(x) and constants aL, aR, uL, uR:

(4.32) δ ≡ |uL − uR|, κ1 ≡ |aL − aR

f ′(uL)
|, κ2 ≡ |aL − aR

f ′(uR)
|,

(4.33) β1 ≡ (2κ1 + ‖δ′ε(x)‖L1([−ε,ε])) max
u∈[0,uL]

|g(u)|,

(4.34) β2 ≡ (κ2 + ‖δ′ε(x)‖L1([−ε,ε])) max
u∈[uL,uR]

|g(u)|,

(4.35) β3 ≡ (κ2 + ‖δ′ε(x)‖L1([−ε,ε])) max
u∈[uR,uL]

|g(u)|,

(4.36) β4 ≡ (κ1 + ‖δ′ε(x)‖L1([−ε,ε])) max
u∈[uL,uR]

|g(u)|,

(4.37) β5 ≡ (2κ2 + ‖δ′ε(x)‖L1([−ε,ε])) max
u∈[uR,0]

|g(u)|,

(4.38) β6 ≡ (κ1 + ‖δ′ε(x)‖L1([−ε,ε])) max
u∈[uR,uL]

|g(u)|.

Main Theorem. We consider Riemann problem (1.1)-(1.3) where f , g are smooth
functions satisfying f ′(0) = g(0) = 0 and f ′(u) �= 0, f ′′(u) > 0 for u �= 0.
Also, given 0 < ε 
 1, let (4.7) be a corresponding perturbed Riemann problem of
(1.1)-(1.3) with

ãε(x) = aε(x) + δε(x),

where aε(x) is in (2.3) and δε(x) satisfies (4.8)-(4.10) (resp., (4.8), (4.10) and (4.14))
when (aR − aL)g(u) < 0 (resp., (aR − aL)g(u) > 0) for u �= 0. We assume that
uL, uR and uε

0(x) in (4.7) are in either one of the following cases:

(1) (aR − aL)g(u) < 0, uR > uL and uε
0(x) is in (2.2). Also uL > β1 (resp.,

δ > β2) when uL > 0 (resp., uR < 0).
(2) (aR − aL)g(u) < 0, uL >uR and uε

0(x) is in (3.1). Also δ>β3 when uR > 0.
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(3) (aR−aL)g(u) > 0, uR >uL and uε
0(x) is in (2.2). Also δ>β4 (resp., |uR| > β5)

when uL > 0 (resp., uR <0).
(4) (aR − aL)g(u) > 0, uL > uR and uε

0(x) is in (3.1). Also δ > β6 when uL < 0.

Here {βi}, i = 1, · · · , 6, are given in (4.33)-(4.38), and δ, κ1, κ2 are in (4.32).
Then there exists a unique generalized entropy solution u(x, t) of Lax-type to Riemann
problem (1.1)-(1.3), which is given by

u(x, t) = lim
ε→0

uε(x, t),

where uε(x, t) is the solution of (4.7). Furthermore, solution u(x, t) consists of at most
three constant states separated by a standing wave discontinuity and an elementary
wave (rarefaction wave or shock wave).

5. APPENDIX

In the appendix, we construct the generalized entropy solutions without proof to
some Riemann problems (1.1)-(1.3) when uL, uR or δ in (4.32) are not in the cases
given in Main Theorem. The generalized entropy solutions are constructed based on
the corresponding perturbed Riemann problem where ãε(x) in Main Theorem is a
piecewise linear function (δε(x) = 0). We consider the following cases:

(A) If (aR − aL)g(u) < 0, uR > γ1 > uL > 0 where γ1 ≡ aL − aR

f ′(uR)
max
[0,uL]

g(u).

In this case, perturbed Riemann solution uε(x, t) is a classical solution. When
uL is sufficiently close to 0, there exists some x0 < ε such that characteristic curves
{xε(t; (x, 0)) : x < x0} do not intersect ΓR, but {xε(t; (x, 0)) : x0 < x < ε}
still pass through ΓR. Therefore, when ε → 0, the generalized entropy solution of
(1.1)-(1.3) can be expressed as

(5.1) u(x, t) =

⎧⎪⎨
⎪⎩

uL, x < 0, t > 0,

(f ′)−1(
x

t
), 0 ≤ x ≤ f ′(uR)t, t > 0,

uR, f ′(uR)t < x, t > 0.

(B) If (aR − aL)g(u) < 0, uL > uR > 0 and 0 < δ <
aL − aR

f ′(uL)
max

[uR ,uL]
g(u).

In this case, perturbed Riemann solution uε(x, t) consists of a shock. But when
δ is sufficiently small and |(aR − aL)g(u)| is sufficiently large for u ∈ [uR, uL], the
time for the existence of shock is only of order O(1)ε. It implies that the generalized
entropy solution u(x, t) of (1.1)-(1.3) is a rarefaction wave which can be expressed as
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(5.2) u(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uL, x < 0, t > 0,

u∗, 0 ≤ x ≤ f ′(u∗)t, t > 0,

(f ′)−1(
x

t
), f ′(u∗)t < x ≤ f ′(uR)t, t > 0,

uR, f ′(uR)t < x, t > 0,

where 0 ≤ u∗ < uR < uL, and u∗ is in (2.25).

(C) If (aR − aL)g(u) > 0, uR > uL > 0 and δ <
aR − aL

f ′(uL)
max

[uL,uR ]
g(u).

In this case, the value of uε(x, t) is increasing along each characteristic curve in
Ωε. It follows that, if δ is sufficiently small and (aR − aL)g(u) is sufficiently large
for u ∈ [uL, uR], then uε(x, t)|x=ε and f ′(uε(x, t))|x=ε are increasing functions of t.
It implies that there exists t∗ > 0 such that the shock occurs when t ≥ t∗. By letting
ε → 0 and the fact that t∗ = O(1)ε, we obtain the generalized entropy solution

(5.3) u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uL, x < 0, t > 0,

u∗, 0 ≤ x ≤ f(uR) − f(u∗)
uR − u∗ t, t > 0,

uR,
f(uR) − f(u∗)

uR − u∗ t < x, t > 0,

where u∗ is in (2.25).
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