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GENERALIZATIONS OF STURM-PICONE THEOREM FOR
SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

J. Tyagi

Abstract. The goal of this paper is to show a generalization to Sturm–Picone
theorem for a pair of second-order nonlinear differential equations

(p1(t)x′(t))′ + q1(t)f1(x(t)) = 0.

(p2(t)y′(t))′ + q2(t)f2(y(t)) = 0, t1 < t < t2.

This work generalizes well-known comparison theorems [C. Sturm, J. Math. Pu
res. Appl. 1 (1836), 106–186; M. Picone,Ann. Scoula Norm. Sup. Pisa 11 (1909)
39; W. Leighton, Proc. Amer.Math. Soc.13 (1962), 603–610], which play a key
role in the qualitative behavior of solutions. We establish the generalization to
a pair of nonlinear singular differential equations and elliptic partial differential
equations also. We show generalization via the quadratic functionals associated
to the above pair of equations. The celebrated Sturm–Picone theorem for a pair
of linear differential equations turns out to be a particular case of our result.

1. INTRODUCTION

In the qualitative theory of ordinary differential equations (ODEs), celebrated Sturm–
Picone theorem plays a crucial role. In 1836, the first important comparison theorem
was established by C.Sturm [19], which deals with a pair of linear ODEs

(p1(t)x′(t))′ + q1(t)x(t) = 0.(1.1)

(p2(t)y′(t))′ + q2(t)y(t) = 0,(1.2)

on a bounded interval (t1, t2), where p1, p2, q1, q2 are real-valued continuous functions
and p1(t) > 0, p2(t) > 0 on [t1, t2]. The original Sturm’s comparison theorem [19]
reads as
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Theorem 1.1. (Sturm’s comparison theorem). Suppose p1(t) = p2(t) and q1(t) >

q2(t), ∀ t ∈ (t1, t2). If there exists a nontrivial real solution y of (1.2) such that
y(t1) = 0 = y(t2), then every real solution of (1.1) has at least one zero in (t1, t2).

In 1909, M.Picone [17] modified Sturm’s theorem. The modification reads as

Theorem 1.2. (Sturm-Picone theorem). Suppose that p2(t) ≥ p1(t) and q1(t) ≥
q2(t), ∀ t ∈ (t1, t2). If there exists a nontrivial real solution y of (1.2) such that
y(t1) = 0 = y(t2), then every real solution of (1.1) unless a constant multiple of y

has at least one zero in (t1, t2).

Theorem1.2 is in fact a special case of Leighton’s theorem (see [15]). For a de-
tailed study and earlier developments of this subject, we refer the reader to Swanson’s
book [20]. Though Sturm–Picone theorem is extended in several directions, see, S.
Ahmad and A. C.Lazer [2] and S. Ahmad [3] for linear systems, E.Müller–Pfeiffer [16]
for non-selfadjoint differential equations, the present author and V.Raghavendra [22]
for implicit differential equations, W.Allegretto[6] for degenerate elliptic equations,
C.Zhang and S.Sun [25] for linear equations on time scales, there is no natural gen-
eralization of Sturm–Picone theorem for a pair of nonlinear differential equations. To
obtain nonoscillation results for perturbed nonlinear differential equations, J.Graef and
P.Spikes [11] established Sturm–Picone type comparison theorem for the same class
of equations. This comparison theorem works nicely in getting nonoscillation results
but it cannot be viewed as a natural generalization of Sturm–Picone theorem as the
zeros of the solutions of a pair of equations may coincide. We emphasize that the
classical proof of Sturm–Picone theorem heavily depends on a variational lemma due
to W.Leighton[15] (see [20] also). Since when it was proved, it has been extended
in different contexts, see, for instance, Jaros et. al. [12], V.Komkov [14], O.Doslý and
J.Jaros [8]. As far as our understanding goes, there is no natural generalization of
Leighton’s variational lemma for nonlinear differential equations.
Since 1962, when W.Leighton proved a theorem ([15]), so called “Leighton’s the-

orem”, there has been a good interest to generalize Leighton’s theorem for a class
of nonlinear differential equations. In this article, we prove a nonlinear analogue of
Leighton’s theorem. In fact, via this analogue, we give a generalization to Sturm–
Picone theorem. In order to give a nonlinear analogue of Leighton’s theorem, our
strategy is to first establish a nonlinear version of Leighton’s variational lemma.
When p1, p2, q1, q2 (some of them or all) are not continuous at t1 or t2 or at

t1 and t2 both, then (1.1), (1.2) are called singular differential equations. Analogs of
Theorems1.1, 1.2 and other related theorems for singular differential equations have
been obtained earlier (see [20]). Recently, D.Aharonov and U.Elias [1] proved Sturm’s
theorem for a pair of singular linear differential equations assuming that the solution of
minorant equation is principal at both end points of the interval. By the older approach,
we give the generalization of these theorems to a pair of nonlinear singular differential
equations also.
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There is also a good amount of interest in the qualitative theory of PDEs to determine
whether the given equation is oscillatory or not. In this direction, Sturm–Picone theorem
plays an important role. We also give a generalization to Sturm–Picone comparison
theorem to nonlinear elliptic equations. There is an enormous excellent work about
Sturm’s comparison theorem/oscillation theory but for convenience, we just name a
few articles. For the earlier developments about Sturm–Picone comparison theorem
and oscillation theory, we refer to [17, 19, 20] and for recent developments, we refer
to Yoshida’s book [23]. For sturm comparison theorem to quasilinear elliptic equation,
we refer to [4, 5, 6] and for Picone type identities, we refer to [7, 10, 13, 21, 24].
Let us consider a pair of second-order nonlinear ODEs

lx ≡ (p1(t)x′(t))′ + q1(t)f1(x(t)) = 0.(1.3)

Ly ≡ (p2(t)y′(t))′ + q2(t)f2(y(t)) = 0, t1 < t < t2,(1.4)

where p1, p2 ∈ C1([t1, t2], (0, ∞)), q1, q2 ∈ C([t1, t2], R), f1, f2 ∈ C(R, R), l
and L are differential operators or mappings whose domains consist of all real-valued
functions x ∈ C1[t1, t2] such that p1x

′ and p2x
′ ∈ C1[t1, t2], respectively.

We make the following hypotheses on nonlinearity f1, f2 and q2:
(H1) Let f1 ∈ C1(R, R) and there exist α1 > 0, M > 0 such that

0 < α1 ≤ f ′
1(y) ≤ M, ∀ 0 �= y ∈ R.

(H2) f1(y) �= 0, ∀ 0 �= y ∈ R, f1(0) = 0.

(H3) Let f2 ∈ C(R, R) and there exist α2, α3 ∈ (0, ∞) such that
α3y

2 ≤ f2(y)y ≤ α2y
2, ∀ 0 �= y ∈ R.

Remark 1.3. (H1) motivates us to take the nonlinearity of the form

f1(y) = “linear part in y” ± “nonlinear part in y”,

where “nonlinear” part is decaying at ∞. One can take the following examples of f1

like, f1(y) = 2y − y
y2+1 ; y + ye−y2 etc.

Remark 1.4. (H3) simply says that f2(y)
y is bounded, ∀ 0 �= y ∈ R.

We organize this paper as follows. Section 2 deals with the generalizations of
comparison theorems to nonlinear ODEs.
Section 3 contains the generalizations to singular ODEs. In Section 4, we show

the generalizations to nonlinear elliptic equations.

2. GENERALIZATIONS

We begin with the following quadratic functionals corresponding to (1.3) and (1.4),
respectively
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j[u] =
∫ t2

t1

[p1(t)(u′(t))2 − α1q1(t)(u(t))2]dt.

J[u] =
∫ t2

t1

[p2(t)(u′(t))2 − (α2q
+
2 (t) − α3q

−
2 (t))(u(t))2]dt,

where the domain D of j and J is defined to be the set of all real-valued functions
u ∈ C1[t1, t2] such that u(t1) = u(t2) = 0 (t1, t2 are consecutive zeros ofu) and
q+
2 = max{q2, 0} and q−2 = max{−q2, 0}. The variation V (u) is defined as V [u] =

J[u] − j[u], i.e.,

(2.1)
V [u]

=
∫ t2

t1

[(p2(t)−p1(t))(u′(t))2+(α1q1(t)−(α2q
+
2 (t)−α3q

−
2 (t)))(u(t))2]dt.

The next lemma deals with a generalization of Leighton’s variational lemma.

Lemma 2.1. (Generalization of Leighton’s variational lemma). Let u ∈ D and
j[u] ≤ 0. Let x be a nontrivial solution of (1.3), then under hypotheses (H1)-(H2), x
vanishes at least once in (t1, t2) unless f1(x) is a constant multiple of u.

Proof. We establish this result by contradiction. Suppose x(t) �= 0, ∀ t ∈ (t1, t2).
By (H2), f1(x(t)) �= 0, ∀ t ∈ (t1, t2). We observe that the following is valid on
(t1, t2) :

(2.2)

[
(u(t))2

f1(x(t))
p1(t)x′(t)

]′

=
(u(t))2

f1(x(t))
(p1(t)x′(t))′ + p1(t)x′(t)

[
2f1(x(t))u(t)u′(t) − (u(t))2f ′

1(x(t))x′(t)
(f1(x(t)))2

]

= −q1(t)(u(t))2 +
2p1(t)u(t)u′(t)x′(t)

f1(x(t))
− p1(t)(u(t))2(x′(t))2f ′

1(x(t))
(f1(x(t)))2

= −q1(t)(u(t))2 − p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

+
p1(t)(u′(t))2

f ′
1(x(t))

≤ −q1(t)(u(t))2 − p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

+
p1(t)(u′(t))2

α1
.

This implies that

(2.3)

p1(t)(u′(t))2 − α1q1(t)(u(t))2

≥ α1

[
(u(t))2

f1(x(t))
p1(t)x′(t)

]′
+ α1 p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

.
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So an integration of (2.3) over (t1, t2) yields

(2.4)

∫ t2

t1

(p1(t)(u′(t))2 − α1 q1(t)(u(t))2)dt

≥ α1

[
(u(t))2p1(t)x′(t)

f1(x(t))

]t2

t1

+α1

∫ t2

t1

p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

dt.

Now there are three cases.
Case 1. If x(t1) �= 0 and x(t2) �= 0, it follows from (2.4) and u(t1) = 0 = u(t2)

that j[u] ≥ 0 and

∫ t2

t1

p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

dt = 0 if and only if

u(t)x′(t)
√

f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

≡ 0.

This implies that [
u(t)

f1(x(t))

]′
= 0, i.e.,

u(t) = Cf1(x(t)), ∀ t ∈ (t1, t2) for some constant C.

u ∈ C1[t1, t2] is such that u(t1) = u(t2) = 0 (t1, t2 are consecutive zeros ofu). This
implies that u(t) �= 0, ∀ t ∈ (t1, t2). So C is a non-zero constant. Using this fact,
one can obtain that

(2.5) f1(x(t))=C1u(t), ∀ t ∈ (t1, t2) for some another non-zero constant C1 =
1
C

.

Now as t → t1 or t → t2, L.H. S of (2.5) is non-zero while R. H. S. is zero. Therefore,
j[u] > 0, which leads a contradiction. This contradiction shows that x vanishes at
least once in (t1, t2).

Case 2. If x(t1) = 0 and x(t2) = 0 then x′(t1) �= 0 and x′(t2) �= 0. Suppose
if x′(t1) = 0 or x′(t2) = 0, then by (H2), x(t) = 0 is a solution of (1.3) and by
uniqueness theorem (in view of (H1)), x(t) ≡ 0, which is not possible as x is a
nontrivial solution of (1.3). An application of L’Hospital rule implies that

lim
t→t+1

(u(t))2p1(t)x′(t)
f1(x(t))

= lim
t→t+1

(u(t))2(p1(t)x′(t))′ + 2p1(t)x′(t)u(t)u′(t)
f ′
1(x(t))x′(t)

= 0

and

lim
t→t−2

(u(t))2p1(t)x′(t)
f1(x(t))

= lim
t→t−2

(u(t))2(p1(t)x′(t))′ + 2p1(t)x′(t)u(t)u′(t)
f ′
1(x(t))x′(t)

= 0.
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Therefore, we obtain from (2.4) that j[u] ≥ 0 and hence we get a contradiction j[u] > 0
unless f1(x) is a constant multiple of u.

Case 3. If x(t1) = 0, x(t2) �= 0 or x(t1) �= 0, x(t2) = 0, then from the proof of
Case 1, it is clear that j[u] > 0, which leads a contradiction and hence x vanishes at
least once in (t1, t2). This completes the proof.

Corollary 2.2. Let f1(x) = x in (1.3) and∫ t2

t1

[p1(t)(u′(t))2 − q1(t)(u(t))2]dt ≤ 0,

where u ∈ C1[t1, t2] such that u(t1) = u(t2) = 0 (t1, t2 are consecutive zeros ofu).
Let x be any nontrivial solution of (1.3), then x vanishes at least once in (t1, t2) unless
x is a constant multiple of u.

Proof. It is trivial to see that f1 satisfies (H1)–(H2). In this case, α1 = 1 = M

and j[u] ≤ 0. An application of Lemma2.1 implies that x vanishes at least once in
(t1, t2) unless x is a constant multiple of u. For a proof of this corollary, we refer the
reader to [15, 20].

Lemma2.1 plays a very crucial role to establish the following

Theorem 2.3. (Generalization of Leighton’s theorem). Suppose there exists a
nontrivial solution u of Lu = 0 in (t1, t2) such that u(t1) = 0 = u(t2). Let (H1)–
(H3) hold and V [u] ≥ 0, then every nontrivial solution v of lv = 0 has at least one
zero in (t1, t2) unless f1(v) is a constant multiple of u.

Proof. Since u(t1) = 0 = u(t2) and Lu = 0, so by an application of Green’s
identity, we have

(2.6)
∫ t2

t1

(q2(t)f2(u(t))u(t)− p2(t)(u′(t))2)dt = 0.

In view of (H3), one can see that

(2.7)
∫ t2

t1

(q2(t)f2(u(t))u(t)− (α2q
+
2 (t) − α3q

−
2 (t))(u(t))2)dt ≤ 0.

By (2.6), (2.7), we get J[u] ≤ 0. Since V [u] ≥ 0, so this implies that

j[u] ≤ J[u] ≤ 0

and hence by an application of Lemma2.1, every nontrivial solution v of lv = 0 has at
least one zero in (t1, t2) unless f1(v) is a constant multiple of u. This completes the
proof.
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Corollary 2.4. (Leighton’s theorem). Let us consider (1.3) and (1.4) with f1(u) =
u = f2(u). Let

(2.8) V1[u] =
∫ t2

t1

[(p2(t) − p1(t))(u′(t))2 + (q1(t) − q2(t))(u(t))2]dt ≥ 0.

If there exists a nontrivial solution u of (1.4) in (t1, t2) such that u(t1) = 0 = u(t2),
then every nontrivial solution v of (1.3) has at least one zero in (t1, t2) unless v is a
constant multiple of u.

Proof. Since f1(u) = u = f2(u), it is easy to see that α1 = α2 = α3 = 1 = M.
In view of (2.8), V [u] ≥ 0 and hence by an application of Theorem2.3, the required

conclusion follows. For a proof of this corollary, we refer the reader to [15].

The following generalization is a special case of Theorem2.3.

Theorem 2.5. (Generalization of Sturm-Picone theorem). Suppose there exists a
nontrivial solution u of Lu = 0 in (t1, t2) such that u(t1) = 0 = u(t2). Let (H1)–(H3)
hold. Suppose p2(t) ≥ p1(t) and

(2.9) α1q1(t) − (α2q2(t) − (α3 − α2)q−2 (t)) ≥ 0, ∀ t ∈ (t1, t2),

then every nontrivial solution v of lv = 0 has at least one zero in (t1, t2) unless f1(v)
is a constant multiple of u.

Proof. In view of (2.9), it is easy to see that V [u] ≥ 0 and the proof of this
theorem follows from Theorem 2.3.

The celebrated Sturm-Picone theorem can be seen as a particular case of Theo-
rem2.5 in

Corollary 2.6. (Celebrated Sturm–Picone theorem). Consider (1.3) and (1.4) with
f1(u) = u = f2(u). Let p2(t) ≥ p1(t) and q1(t) ≥ q2(t), ∀ t ∈ (t1, t2). If there exists
a nontrivial solution u of (1.4) in (t1, t2) such that u(t1) = 0 = u(t2), then every
nontrivial solution v of (1.3) has at least one zero in (t1, t2) unless v is a constant
multiple of u.

Proof. Since f1(y) = y = f2(y) in (1.3) and (1.4) so in this case α1 = α2 =
α3 = 1 = M. It is easy to see that f1 and f2 satisfy (H1)–(H2).
An application of Theorem2.5 leads the required conclusion. For a proof of Corol-

lary2.6, we refer the reader to [17] or Theorem1.6 [20].

Remark 2.7. Let p1(t) = p2(t), q1(t) > q2(t), ∀ t ∈ (t1, t2) in Corollary 2.6, then
Corollary2.6 is indeed original Sturm’s theorem (see [19]).
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3. SINGULAR STURM-PICONE THEOREM FOR NONLINEAR EQUATIONS

In this section, we consider a pair of singular equations (1.3) and (1.4). More
precisely, we consider a pair of singular nonlinear ODEs

lsx ≡ (p1(t)x′(t))′ + q1(t)f1(x(t)) = 0.(3.1)

Lsy ≡ (p2(t)y′(t))′ + q2(t)f2(y(t)) = 0, t1 < t < t2,(3.2)

where p1, p2 ∈ C1((t1, t2), (0, ∞)), q1, q2 ∈ C((t1, t2), R), p1, p2, q1, q2 (some of
them or all) may not be continuous at t1 or t2 or at t1 and t2 both. Let f1, f2 ∈
C(R, R), ls and Ls are differential operators or mappings whose domains consist of all
real-valued functions x ∈ C1(t1, t2) such that p1x

′ and p2x
′ ∈ C1(t1, t2), respectively.

We make the following hypotheses on nonlinearity f1:
(H1)’ Let f1 ∈ C1(R, R) and there exists α1 > 0 such that

0 < α1 ≤ f ′
1(y), ∀ 0 �= y ∈ R.

(H2)’ f1(y) �= 0, ∀ 0 �= y ∈ R.

We begin with the following quadratic functionals corresponding to (3.1) and (3.2),
respectively. Let t1 < ξ < η < t2 and let

jξη[u] =
∫ η

ξ
[p1(t)(u′(t))2 − α1q1(t)(u(t))2]dt and

Jξη[u] =
∫ η

ξ
[p2(t)(u′(t))2 − (α2q

+
2 (t) − α3q

−
2 (t))(u(t))2]dt.

Let us define js[u] = limξ→t+1 , η→t−2
jξη[u], Js[u] = limξ→t+1 , η→t−2

Jξη[u], whenever
the limits exist. The domain Djs of js and DJs of Js are defined to be the set of
all real-valued continuous functions u ∈ C1(t1, t2) with u(t1) = 0 = u(t2) such that
js[u] and Js[u] exist. Let us define

At1t2[u, x] = lim
t→t−2

(u(t))2p1(t)x′(t)
f1(x(t))

− lim
t→t+1

(u(t))2p1(t)x′(t)
f1(x(t))

,

whenever the limits on the right side exist. The variation Vs(u) is defined as Vs[u] =
Js[u] − js[u], i.e.,

(3.3)
Vs[u]

=
∫ t2

t1

[(p2(t)−p1(t))(u′(t))2+(α1q1(t)−(α2q
+
2 (t)−α3q

−
2 (t)))(u(t))2]dt.

The next lemma deals with a generalization of Leighton’s variational lemma.
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Lemma 3.1. (Generalization of singular Leighton’s variational lemma). Sup-
pose there exists a function u ∈ Djs not identically zero in any open subinterval of
(t1, t2) such that js[u] ≤ 0. Let x be any nontrivial solution of (3.1) (lsx = 0) and
At1t2[u, x] ≥ 0, then under hypotheses (H1)’, (H2)’, x has at least one zero in (t1, t2)
unless f1(x) is a constant multiple of u.

Proof. We establish this result by contradiction. Suppose x(t) �= 0, ∀ t ∈ (t1, t2).
By (H2)’, f1(x(t)) �= 0, ∀ t ∈ (t1, t2). Along the same lines of proof of Lemma2.1,
we see that the following is valid on (t1, t2) :

(3.4)

p1(t)(u′(t))2 − α1q1(t)(u(t))2

≥ α1

[
(u(t))2

f1(x(t))
p1(t)x′(t)

]′
+ α1 p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

.

An integration of (3.4) over (ξ, η) yields∫ η

ξ

(p1(t)(u′(t))2 − α1 q1(t)(u(t))2)dt

≥ α1

[
(u(t))2p1(t)x′(t)

f1(x(t))

]η

ξ

+ α1

∫ η

ξ

p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

dt

or we have

jξη [u] ≥ α1

[
(u(t))2p1(t)x′(t)

f1(x(t))

]η

ξ

+ α1

∫ η

ξ

p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

dt.

Letting ξ → t+1 , η → t−2 and using At1t2[u, x] ≥ 0, we get

(3.5) js[u] ≥ α1

∫ t2

t1

p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

dt

and
∫ t2

t1

p1(t)

(
u(t)x′(t)

√
f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

)2

dt = 0 if and only if

u(t)x′(t)
√

f ′
1(x(t))

f1(x(t))
− u′(t)√

f ′
1(x(t))

≡ 0.

This implies that [
u(t)

f1(x(t))

]′
= 0, i.e.,
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u(t) = Cf1(x(t)), ∀ t ∈ (t1, t2) for some constant C.

Since u ∈ C1(t1, t2) such that u(t1) = u(t2) = 0 (t1, t2 are consecutive zeros ofu).
This implies that u(t) �= 0, ∀ t ∈ (t1, t2). So C is a non-zero constant. Using this
fact, one can obtain that

f1(x(t)) = C1u(t), ∀ t ∈ (t1, t2) for some another non-zero constant C1 =
1
C

and unless f1(x) is a constant multiple of u, by (3.5), we have js[u] > 0, which leads
a contradiction. This contradiction shows that x vanishes at least once in (t1, t2). This
completes the proof.

Corollary 3.2. Let f1(x) = x in (3.1) and

lim
ξ→t+1 , η→t−2

∫ η

ξ
[p1(t)(u′(t))2 − q1(t)(u(t))2]dt

exists and is nonpositive, where u ∈ C1(t1, t2) not identically zero in any open
subinterval of (t1, t2) with u(t1) = 0 = u(t2). Let x be any nontrivial solution of
(3.1) and At1t2[u, x] ≥ 0, then x vanishes at least once in (t1, t2) unless x is a
constant multiple of u.

Proof. It is trivial to see that f1 satisfies (H1)’, (H2)’. In this case, α1 = 1 and
js[u] ≤ 0. An application of Lemma3.1 implies that x vanishes at least once in (t1, t2)
unless x is a constant multiple of u. For a proof of this corollary, we refer the reader
to [15, 20].

Lemma3.1 plays an important role to establish the following

Theorem 3.3. (Generalization of singular Leighton’s theorem). Suppose there exists
a nontrivial solution u of (3.2) (Lsu = 0) in (t1, t2) such that u(t1) = 0 = u(t2). Let
x be any nontrivial solution of (3.1) (lsx = 0). Let At1t2[u, x] ≥ 0, and

(3.6) lim
t→t+1

p2(t)u(t)u′(t) ≥ 0, lim
t→t−2

p2(t)u(t)u′(t) ≤ 0.

Let (H1)’, (H2)’, (H3), hold and Vs[u] ≥ 0, then x has at least one zero in (t1, t2)
unless f1(x) is a constant multiple of u.

Proof. Since u is a solution of Lsu = 0, so by an application of Green’s identity,
we have

(3.7)
∫ η

ξ
uLsu dt=[u(t)p2(t)u′(t)]ηξ−

∫ η

ξ
p2(t)(u′(t))2dt+

∫ η

ξ
q2(t)f2(u(t))u(t)dt.



Sturm-Picone Theorem 371

In view of (H3), one can see that

(3.8)
∫ η

ξ
q2(t)f2(u(t))u(t)dt ≤

∫ η

ξ
(α2q

+
2 (t) − α3q

−
2 (t))(u(t))2dt.

From (3.7) and (3.8), we get

(3.9) Jξη[u] ≤ [u(t)p2(t)u′(t)]ηξ .

Letting ξ → t+1 , η → t−2 in (3.9) and by (3.6), we get Js[u] ≤ 0. Since Vs[u] ≥ 0, we
get js[u] ≤ 0 and hence by an application of Lemma3.1, every solution x of lsx = 0
has at least one zero in (t1, t2) unless f1(x) is a constant multiple of u. This completes
the proof.

Corollary 3.4. (Singular Leighton’s theorem). Let us consider (3.1) and (3.2) with
f1(u) = u = f2(u). Let x be any nontrivial solution of (3.1). Let

At1t2[u, x] ≥ 0, lim
t→t+1

p2(t)u(t)u′(t) ≥ 0, lim
t→t−2

p2(t)u(t)u′(t) ≤ 0 and

V̄s[u] =
∫ t2

t1

[(p2(t) − p1(t))(u′(t))2 + (q1(t) − q2(t))(u(t))2]dt ≥ 0.
(3.10)

Suppose there exists a nontrivial solution u of (3.2) in (t1, t2) such that u(t1) = 0 =
u(t2), then x has at least one zero in (t1, t2) unless x is a constant multiple of u.

Proof. Since f1(u) = u = f2(u), it is easy to see that α1 = α2 = α3 = 1
and (H1)’, (H2)’, (H3) are satisfied. In view of (3.10), Vs[u] ≥ 0 and hence by
an application of Theorem3.3, the required conclusion follows. For a proof of this
corollary, we refer the reader to [15], Theorem1.19[20].

The following generalization is a special case of Theorem3.3.

Theorem 3.5. (Generalization of singular Sturm-Picone theorem). Suppose there
exists a nontrivial solution u of (3.2) in (t1, t2) such that u(t1) = 0 = u(t2). Let
(H1)’, (H2)’, (H3), hold. Suppose p2(t) ≥ p1(t). Let x be any nontrivial solution of
(3.1).

Let At1t2[u, x] ≥ 0, lim
t→t+1

p2(t)u(t)u′(t) ≥ 0, lim
t→t−2

p2(t)u(t)u′(t) ≤ 0 and

α1q1(t) − (α2q2(t)− (α3 − α2)q−2 (t)) ≥ 0, ∀ t ∈ (t1, t2),
(3.11)

then every solution x of (3.1) has at least one zero in (t1, t2) unless f1(x) is a constant
multiple of u.

Proof. In view of (3.11), it is easy to see that Vs[u] ≥ 0 and the proof of this
theorem follows from Theorem 3.3.

The singular Sturm-Picone theorem can be seen as a particular case of Theorem3.5
in next corollary.
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Corollary 3.6. (Singular Sturm-Picone theorem). Consider (3.1) and (3.2) with
f1(u) = u = f2(u). Let p2(t) ≥ p1(t) and q1(t) ≥ q2(t), ∀ t ∈ (t1, t2). Let x be any
nontrivial solution of (3.1). Let At1t2[u, x] ≥ 0 and

lim
t→t+1

p2(t)u(t)u′(t) ≥ 0, lim
t→t−2

p2(t)u(t)u′(t) ≤ 0.

Suppose there exists a nontrivial solution u of (3.2) in (t1, t2) such that u(t1) = 0 =
u(t2), then every solution x of (3.1) has at least one zero in (t1, t2) unless x is a
constant multiple of u.

Proof. Since f1(u) = u = f2(u) in (3.1) and (3.2) so in this case α1 = α2 =
α3 = 1. It is easy to see that f1 and f2 satisfy (H1)’, (H2)’, (H3) and Inequality(3.11)
is also satisfied. An application of Theorem3.5 leads the required conclusion. For a
proof of Corollary3.6, we refer the reader to [17] or a singular version of Theorem1.6
[20].

4. NONLINEAR ELLIPTIC VERSION OF STURM-PICONE THEOREM

In this section, we give a nonlinear analogue of Leighton’s theorem to n-dimensions.
In fact, via this analogue, we give a generalization to Sturm–Picone theorem for semilin-
ear elliptic PDEs in n-dimensions. In order to prove a nonlinear analogue of Leighton’s
theorem, we first establish a nonlinear version of Leighton’s variational lemma.
Let Ω be a bounded domain in R

n with boundary ∂Ω having a piecewise continuous
unit normal. Let ai, bi ∈ Cμ(Ω̄, R), fi, gi ∈ C1(R, R), ∀ i = 1, 2 where 0 < μ ≤
1, a′is are of indefinite sign ∀ i = 1, 2 and b1(x) ≥ 0, ∀x ∈ Ω̄.
Let us consider a pair of second-order nonlinear elliptic PDEs

−Δu = a1(x)f1(u) + b1(x)g1(u).(4.1)

−Δv = a2(x)f2(v) + b2(x)g2(v),(4.2)

where fi and gi satisfy the following assumptions:

(A1) ∃ β ≥ 0 such that g1(u)
f1(u) ≥ β, ∀ 0 �= u ∈ R.

(A2) There exist α2, α3, α4 ∈ (0, ∞) such that
g2(u)u ≤ α4u

2, α3u
2 ≤ f2(u)u ≤ α2u

2, ∀ 0 �= u ∈ R.

In this study, we are interested in non-trivial classical solutions of (4.1) and (4.2).
(4.1) and (4.2) can be rewritten in the operator form leu = 0 = Leu, where

leu ≡ Δu + a1(x)f1(u) + b1(x)g1(u), Leu ≡ Δu + a2(x)f2(u) + b2(x)g2(u).
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Let us consider the following quadratic functionals corresponding to (4.1) and (4.2),
respectively

je[u] =
∫

Ω

[|∇u(x)|2 − α1(u(x))2(a1(x) + βb1(x))]dx.(4.3)

Je[u] =
∫

Ω
[|∇u(x)|2 − (α2a

+
2 (x)− α3a

−
2 (x) + α4b2(x))(u(x))2]dx,(4.4)

where the domain De of je and Je is defined to be the set of all real-valued continuous
functions defined on Ω̄ which vanish on ∂Ω and have uniformly continuous first partial
derivatives on Ω.
The variation Ve[u] is defined as Ve[u] = Je[u]− je[u], i.e.,

(4.5) Ve[u] =
∫

Ω

(u(x))2[α1(a1(x)+βb1(x))− (α2a
+
2 (x)−α3a

−
2 (x)+α4b2(x))]dx.

The next lemma deals with a generalization of Leighton’s variational lemma.

Lemma 4.1. (Generalization of n-dimensional Leighton’s variational lemma). As-
sume that there exists a nontrivial function u ∈ De such that je[u] ≤ 0. Then under
the hypotheses/assumption (H1)′, (H2)′, (A1), every solution v of lev = 0 vanishes
at some point of Ω̄.

Proof. Suppose to the contrary that there exists a solution v of (4.1) such that
v(x) �= 0, ∀x ∈ Ω̄. By (H2)’, we have f1(v(x)) �= 0, ∀x ∈ Ω̄. Then for u ∈ De, we
have

(4.6)

∇.

[
(u(x))2

f1(v(x))
∇v(x)

]

=
(u(x))2

f1(v(x))
Δv(x)+

∇v(x)
(f1(v(x)))2

.[2f1(v(x))u(x)∇u(x)−(u(x))2f ′
1(v(x))∇v(x)]

=
(u(x))2

f1(v(x))
Δv(x) +

2u(x)∇u(x).∇v(x)
f1(v(x))

− (u(x))2|∇v(x)|2f ′
1(v(x))

(f1(v(x)))2

= −a1(x)(u(x))2 − b1(x)(u(x))2
g1(v(x))
f1(v(x))

−
[
(u(x))2|∇v(x)|2f ′

1(v(x))
(f1(v(x)))2

+
|∇u(x)|2
f ′
1(v(x))

− 2u(x)∇u(x).∇v(x)
f1(v(x))

]
+

|∇u(x)|2
f ′
1(v(x))

= −a1(x)(u(x))2 − b1(x)(u(x))2
g1(v(x))
f1(v(x))

−
(

u(x)∇v(x)
√

f ′
1(v(x))

f1(v(x))
− ∇u(x)√

f ′
1(v(x))

)2

+
|∇u(x)|2
f ′
1(v(x))

≤ −a1(x)(u(x))2 − βb1(x)(u(x))2

−
(

u(x)∇v(x)
√

f ′
1(v(x))

f1(v(x))
− ∇u(x)√

f ′
1(v(x))

)2

+
|∇u(x)|2

α1
(by (H1)′, (A1)).
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This implies that

(4.7)

|∇u(x)|2 − α1(u(x))2(a1(x) + βb1(x))

≥ α1∇.

[
(u(x))2

f1(v(x))
∇v(x)

]
+ α1

(
u(x)∇v(x)

√
f ′
1(v(x))

f1(v(x))
− ∇u(x)√

f ′
1(v(x))

)2

.

An integration of (4.7) yields

(4.8)

∫
Ω
(|∇u(x)|2 − α1(u(x))2(a1(x) + βb1(x)))dx

≥ α1

∫
Ω
∇.

[
(u(x))2

f1(v(x))
∇v(x)

]
dx

+ α1

∫
Ω

(
u(x)∇v(x)

√
f ′
1(v(x))

f1(v(x))
− ∇u(x)√

f ′
1(v(x))

)2

dx.

Since u vanishes on ∂Ω, so an application of Gauss–Green’s theorem (see, [9]) implies
that ∫

Ω
∇.

[
(u(x))2

f1(v(x))
∇v(x)

]
dx = 0

and ∫
Ω

(
u(x)∇v(x)

√
f ′
1(v(x))

f1(v(x))
− ∇u(x)√

f ′
1(v(x))

)2

dx = 0 if and only if

u(x)∇v(x)
√

f ′
1(v(x))

f1(v(x))
≡ ∇u(x)√

f ′
1(v(x))

, i.e.,

∇.

(
u(x)

f1(v(x))

)
≡ 0 or u(x) ≡ Cf1(v(x)), ∀x ∈ Ω̄ for some non-zero constant C.

This is not possible because u = 0 on ∂Ω but f1(v) �= 0 on ∂Ω (v �= 0 on ∂Ω). This
implies that

je[u] > 0, which is a contradiction

and hence every solution v of lev = 0 vanishes at some point of Ω̄. This completes the
proof.

Corollary 4.2. (n-dimensional Leighton’s variational lemma). Let f1(u) = u and
either b1(x) = 0 or g1(u) = 0 in (4.1). Let∫

Ω
[|∇u(x)|2 − a1(x)(u(x))2]dx ≤ 0,

where u is a real-valued continuous functions defined on Ω̄ which vanish on ∂Ω and
have uniformly continuous first partial derivatives on Ω, then every nontrivial solution
v of lev = 0 vanishes at some point of Ω̄.
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Proof. In this case α1 = 1 and it is easy to see that f1 satisfies (H1)’, (H2)’ and
je[u] ≤ 0. By an application of Lemma4.1, the conclusion follows easily. For a proof
of this corollary, we refer the reader to Lemma 5.3 [20].

Remark 4.3. In fact, one can consider the following nonlinear PDE with nonlinear
damping

(4.9) −Δu = a1(x)f1(u) + b1(x)g1(u) + c1(x)H(∇u),

where a1, b1, f1, g1 are defined earlier. Let c1 ∈ Cμ(Ω̄, R
+ = [0, ∞)), where 0 <

μ ≤ 1 and H ∈ C1(M, R
+), M ⊆ R

N . For the existence of classical solutions to
Eq. (4.9), we refer the reader to a survey paper [18] and references cited therein. In this
case, let us assume that f1(s) > 0, ∀ 0 �= s ∈ R. Assume that there exists a nontrivial
function u ∈ De such that je[u] ≤ 0. Then every solution v of (4.9) vanishes at some
point of Ω̄. The proof goes exactly same as the proof of Lemma2.1 in view of the
positivity of c1, H and f1. For the sake of brevity, we omit the details.

Lemma2.1 plays a crucial role to establish the following

Theorem 4.4. (Generalization of n-dimensional Leighton’s theorem). Suppose there
exists a nontrivial solution u of Leu = 0 in Ω̄ such that u = 0 on ∂Ω. Let (H1)’,
(H2)’, (A1) -(A2) hold and Ve[u] ≥ 0, then every nontrivial solution v of lev = 0
vanishes at some point of Ω̄.

Proof. Since u is a solution of Leu = 0 and u = 0 on ∂Ω, so by an application
of Green’s theorem, we have

(4.10)
∫

Ω
[a2(x)f2(u)u + b2(x)g2(u)u− |∇u(x)|2]dx = 0.

In view of (A2), one can see that

(4.11)

∫
Ω
(a2(x)f2(u(x))u(x) + b2(x)g2(u(x))u(x)

−(α2a
+
2 (x) − α3a

−
2 (x) + α4b2(x))(u(x))2)dx ≤ 0.

By (4.10), (4.11), we get Je[u] ≤ 0. Since Ve[u] ≥ 0, so this implies that

je[u] ≤ Je[u] ≤ 0

and hence by an application of Lemma4.1, every nontrivial solution v of lev = 0
vanishes at some point of Ω̄. This completes the proof.
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Corollary 4.5. (n-dimensional Leighton’s theorem). Let us consider (4.1) and (4.2)
with f1(u) = u = f2(u), g1(u) = g2(u) = 0. Let

(4.12) V̄e[u] =
∫

Ω
(u(x))2[a1(x) − (α2a

+
2 (x) − α3a

−
2 (x))]dx ≥ 0.

If there exists a nontrivial solution u of (4.2) in Ω such that u = 0 on ∂ Ω, then every
nontrivial solution v of (4.1) vanishes at some point of Ω̄.

Proof. Since f1(u) = u = f2(u), it is easy to see that α1 = 1, α2 = α3 =
1, α4 = 0, β = 0 and therefore (H1)’, (H2)’, (A1), (A2) of Theorem4.4 are satisfied.
In view of (4.12), Ve[u] ≥ 0 and hence by an application of Theorem4.4, the required
conclusion follows.
The following generalization is a special case of Theorem4.4.

Theorem 4.6. (Generalization of n-dimensional Sturm-Picone theorem). Suppose
there exists a nontrivial solution u of Leu = 0 in Ω̄ such that u = 0 on ∂Ω. Let
(H1)’, (H2)’, (A1)-(A2) hold and

(4.13) α(a1(x) + βb1(x))− (α2a2(x)− (α2 − α3)a−2 (x) + α1b2(x)) ≥ 0, ∀x ∈ Ω̄,

then every nontrivial solution v of lev = 0 vanishes at some point of Ω̄.

Proof. In view of (4.13), it is easy to observe that Ve[u] ≥ 0 and therefore the
conclusion follows from Theorem4.4.

n-dimensional Sturm–Picone theorem can be seen as a particular case of Theo-
rem4.6 in

Corollary 4.7. (n-dimensional Sturm-Picone theorem). Consider (4.1) and (4.2)
with f1(u) = u = f2(u), g1(u) = 0 = g2(u). Let a1(x) ≥ a2(x), ∀x ∈ Ω̄. If there
exists a nontrivial solution u of (4.2) in Ω̄ such that u = 0 on ∂Ω, then every nontrivial
solution v of (4.1) vanishes at some point of Ω̄.

Proof. Since f1(u) = u = f2(u) in (4.1) and (4.2) so in this case α1 = 1, α2 =
α3 = 1, α4 = 0 = β. It is easy to see that f1 and f2 satisfy (H1)’, (H2)’, (A1), (A2)
and Inequality(4.13) is also satisfied. An application of Theorem4.6 leads the required
conclusion. For a proof of Corollary4.7, we refer the reader to Theorem5.5 [20].
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8. O. Došlý and J. Jaroš, A singular version of Leighton’s comparison theorem for forced
quasilinear second-order differential equations, Arch. Math. (BRNO), 39 (2003), 335-
345.

9. L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, AMS, 19
(1999).
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