THE INDEPENDENCE NUMBER OF CONNECTED (claw, K_{4})-FREE 4-REGULAR GRAPHS

Liying Kang, Dingguo Wang and Erfang Shan

Abstract

An independent set of a graph G is a subset of the vertices of G such that no two vertices in the subset are joined by an edge in G. The independence number of G is the cardinality of a maximum independent set of G, and is denoted by $\alpha(G)$. In this paper we show that every 2 -connected (claw, K_{4})-free 4-regular graph G on n vertices has independence number exactly $\lfloor n / 3\rfloor$.

1. Introduction

All graphs considered here are finite, simple and nonempty. For standard terminology not given here we refer the reader to [2]. Let $G=(V, E)$ be a graph with vertex set V and edge set E. For a vertex $v \in V$, the open neighborhood $N(v)$ of v is defined as the set of vertices adjacent to v, i.e., $N(v)=\{u \mid u v \in E\}$. The closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The degree of v is equal to $|N(v)|$, denoted by $d_{G}(v)$ or simply $d(v)$. The maximum and minimum degrees of G will be denoted by $\Delta(G)$ and $\delta(G)$, respectively. If $d_{G}(v)=k$ for all $v \in V$, then we call G k-regular. In particular, a 3-regular graph is also called a cubic graph. For a subset $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. A cut vertex of G is a vertex v such that $c(G-v)>c(G)$. where $c(G)$ is the number of components of G. A cut edge can similarly defined. The line graph $L(G)$ of G is the graph on E in which $x, y \in E$ are adjacent as vertices if and only if they are adjacent as edges in G. As usual, K_{n} denotes the complete graph on n vertices, and P_{n} denotes the path on n vertices,. The graph $K_{1,3}$ is also called a claw and K_{3} a triangle. For a given graph F, we say that a graph G is F-free if it does not contain F as an induced subgraph. In particular, $K_{1,3}$-free is called claw-free. For a family of graphs $\left(F_{1}, \ldots, F_{k}\right)$, we say that G is $\left(F_{1}, \ldots, F_{k}\right)$-free if it is F_{i}-free for all $i=1, \ldots, k$. Two distinct edges in a

[^0]graph G are independent if they are not adjacent in G. A set of pairwise independent edges in G is called a matching of G. The matching number of G, denoted by $\alpha^{\prime}(G)$, is the largest cardinality among all matchings of G.

An independent set I of G is a subset of the vertices of G such that no two vertices of I are joined by an edge in G. The independence number of G, denoted by $\alpha(G)$, is the cardinality of a maximum independent set of G. The independence ratio of G, denoted by $i(G)$, is $\alpha(G) / n$, where G has n vertices. Independent sets in graphs is now well studied in graph theory.

For a connected graph G on n vertices with m edges, Harant and Schiermeyer [11] proved $\alpha(G) \geq\left[(2 m+n+1)-\sqrt{(2 m+n+1)^{2}-4 n^{2}}\right] / 2$ and discussed its algorithmic realization. Li and Virlouvet [16] showed that for every claw-free graph G on n vertices, $\alpha(G) \leq 2 n /(\Delta(G)+2)$. In [5] this result on claw-free graphs was extended to $K_{1, r+1}$ free graphs. Ryjácek and Schiermeyer [20] used the degree sequence, order, size and vertex connectivity of a $K_{1, r+1}$-free graph or of an almost claw-free graph to obtain several upper bounds on its independence number.

Brooks [3] proved that every connected graph G which is neither a complete graph nor odd cycle must be $\Delta(G)$-colorable. Thus, such a graph must have $i(G) \geq 1 / \Delta(G)$. Albertson, Bollobás and Tucker [1] proved that $i(G) \geq 1 / k$ for a K_{k}-free graph G with $\Delta(G)=k=3$ or $\Delta(G)=k \geq 6$. Fajtlowics [4] proved that $i(G) \geq 2 /(\Delta(G)+k)$ for a K_{k}-free graph G. In 1979, Staton [21] proved that every triangle-free graph G with maximum degree k has $i(G) \geq 5 /(5 k-1)$. In particular, Fraughnaugh [6] and Heckman and Thomas [13] provided shorter proofs of this result for the case when G is a triangle-free graph with maximum degree three. Heckman [12] discussed the tightness of the $5 / 14$ independence ratio of the triangle-free graphs with maximum degree at most three. Harant et al. [10] proved that every K_{4}-free graph G on n vertices, size m and maximum degree at most three has $\alpha(G) \geq(4 n-m-\lambda-t r) / 7$, where λ counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and $t r$ is the maximum number of vertex-disjoint triangles in G. This result generalizes the bound due to Heckman and Thomas [13]. Fraughnaugh and Locke [8] proved that every connected triangle-free 3-regular graph G on n vertices has $\alpha(G) \geq 11 n / 30-2 / 15$; and Heckman and Thomas [14] proved that every triangle-free planar graph on n vertices with maximum degree three has $\alpha(G) \geq 3 n / 8$. Fraughnaugh [7] proved that for every triangle-free 4-regular graph G on n vertices, $\alpha(G) \geq 4 n / 13$. Kreher and Radziszowski [15] further extended this result to triangle-free graphs with average degree 4. Fraughnaugh and Locke [9] found a shorter proof of the result.

In 1997, Locke and Lou [17] gave a lower bound on the independence number of a connected K_{4}-free 4-regular graph.

Theorem 1. ([17]). If G is a connected K_{4}-free 4-regular graph on n vertices, then $\alpha(G) \geq(7 n-4) / 26$.

In this paper we continue to investigate the independence number in K_{4}-free 4regular graphs. We shall show that every 2 -connected (claw, K_{4})-free 4-regular graph has independence number exactly $\lfloor n / 3\rfloor$, where G has n vertices.

2. Main Results

Let us introduce some more notation and terminology. If the graphs G and G^{\prime} are disjoint, we denote by $G * G^{\prime}$ the graph obtained from $G \cup G^{\prime}$ by joining all the vertices of G to all the vertices of G^{\prime}. The graph $C_{n} * K_{1}$ is called an n-wheel and the graph $C_{n} * \bar{K}_{2}(n \geq 4)$ a double wheel, where $\overline{K_{2}}$ is the complement of K_{2}.

The well-known Petersen Theorem will be useful.
Lemma 1. ([19]). Every cubic graph without cut edges has a perfect matching.
Let \mathcal{G} denote the class of 2-connected (claw, K_{4})-free 4-regular graphs. To obtain our main result, we first give a lower bound on the independence number for graphs in \mathcal{G}.

Theorem 2. For $G \in \mathcal{G}$ and $|V(G)|=n, \alpha(G) \geq(n-2) / 3$.
Proof. We may assume that G is 2-connected. Since G is a K_{4}-free 4-regular graph, we have $n \geq 6$. We prove by induction on n. For $n=6$, it is easy to see that G is the double wheel $C_{4} * \bar{K}_{2}$. Clearly $\alpha(G)=2 \geq(n-2) / 3$, and the assertion holds. Now let G be given with $n>6$, and assume the assertion holds for graphs with fewer vertices.

For each $v \in V(G)$, by the claw-freeness and K_{4}-freeness of G, we see that the induced subgraph $G[N(v)]$ is triangle-free and has $\alpha(G[N(v)])=2$. Hence $G[N(v)]$ is isomorphic to one of the three graphs $K_{2} \cup K_{2}, P_{4}$ and C_{4}. We distinguish the following three cases.

(a) G

(b) G^{*}

Fig. 1. Case 1.1.
Case 1. There exists a vertex $v \in V(G)$ such that $G[N(v)]$ is isomorphic to C_{4}. In this case, clearly $G[N[v]]$ is a 4 -wheel. Let $C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$ be the cycle induced by $N(v)$ in G. We consider the fourth neighbor, say v_{5}, of v_{1}. Note that
$G \neq C_{4} * \bar{K}_{2}$ as $n>6$. This implies that v_{5} is adjacent to exactly one of v_{2} and v_{4} by the claw-freeness of G. Without loss of generality, assume $v_{5} v_{2} \in E(G)$. Then $v_{5} v_{4} \notin E(G)$. Now let v_{6} be the fourth neighbor of v_{4}. Similarly, we have $v_{6} v_{3} \in E(G)$. Further, let $v_{5}^{\prime}, v_{5}^{\prime \prime} \in N\left(v_{5}\right) \backslash\left\{v_{1}, v_{2}\right\}$ and $v_{6}^{\prime}, v_{6}^{\prime \prime} \in N\left(v_{6}\right) \backslash\left\{v_{3}, v_{4}\right\}$. Then $v_{5}^{\prime} v_{5}^{\prime \prime} \in E(G)$ and $v_{6}^{\prime} v_{6}^{\prime \prime} \in E(G)$ by the claw-freeness of G.

Fig. 2. Case 1.2.

Case 1.1. $N\left(v_{5}\right) \cap N\left(v_{6}\right)=\emptyset$ (see Fig. 1 (a)).
Let G^{*} be the graph obtained from G by deleting the vertices $v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ and adding one new vertex u and new edges $u v_{5}^{\prime}, u v_{5}^{\prime \prime}, u v_{6}^{\prime}, u v_{6}^{\prime \prime}$ (see Fig. 1 (b)). Since G is 2-connected, both v_{5} and v_{6} are not cut-vertices of G, so u is not a cut-vertex of G^{*}. Hence $G^{*} \in \mathcal{G}$. Let $\left|V\left(G^{*}\right)\right|=n^{*}$. Then $n^{*}=n-6$. By applying the induction hypothesis to G^{*}, we have $\alpha\left(G^{*}\right) \geq\left(n^{*}-2\right) / 3$. Let I^{*} be a maximum independent set of G^{*}. If $u \notin I^{*}$, then let $I=I^{*} \cup\left\{v_{1}, v_{3}\right\}$ or $I^{*} \cup\left\{v_{2}, v_{4}\right\}$. Otherwise, let $I=\left(I^{*}-\{u\}\right) \cup\left\{v, v_{5}, v_{6}\right\}$. It is easy to see that I is an independent set of G. So

$$
\alpha(G) \geq \alpha\left(G^{*}\right)+2 \geq \frac{n^{*}-2}{3}+2=\frac{n-2}{3},
$$

and the desired result follows.
Case 1.2. $N\left(v_{5}\right) \cap N\left(v_{6}\right) \neq \emptyset$ (see Fig. 2 (a)).
Let $v_{5}^{\prime}=v_{6}^{\prime} \in N\left(v_{5}\right) \cap N\left(v_{6}\right)$. We claim that $v_{5}^{\prime \prime} \neq v_{6}^{\prime \prime}$. Otherwise, it would produce a claw centered at v_{5}^{\prime} or $v_{5}^{\prime \prime}$. Furthermore, suppose $v_{5}^{\prime \prime} v_{6}^{\prime \prime} \in E(G)$. Then the fourth neighbor, say v_{7}, of $v_{5}^{\prime \prime}$ must be adjacent to $v_{6}^{\prime \prime}$. This implies that v_{7} is a cut-vertex of G, which contradicts that G is 2 -connected. So $v_{5}^{\prime \prime} v_{6}^{\prime \prime} \notin E(G)$. Let x_{1}, x_{2} and y_{2}, y_{2} be the other two neighbors of $v_{5}^{\prime \prime}$ and $v_{6}^{\prime \prime}$, respectively. By the claw-freeness of G, we have $x_{1} x_{2}, y_{1} y_{2} \in E(G)$ and $\left|N\left(v_{5}^{\prime \prime}\right) \cap N\left(v_{6}^{\prime \prime}\right)\right| \leq 2$. Hence $\left|\left\{x_{1}, x_{2}\right\} \cap\left\{y_{1}, y_{2}\right\}\right| \leq 1$.

Now let G^{*} be the graph obtained from G by deleting the vertices $v_{5}^{\prime}\left(v_{6}^{\prime}\right), v_{5}^{\prime \prime}, v_{6}^{\prime \prime}$ and adding the edges $v_{5} x_{1}, v_{5} x_{2}, v_{6} y_{1}$ and $v_{6} y_{2}$ (see Fig. 2 (b)). Clearly, $G^{*} \in \mathcal{G}$. Let
$\left|V\left(G^{*}\right)\right|=n^{*}$. Then $n^{*}=n-3$. By the induction hypothesis, we have $\alpha\left(G^{*}\right) \geq$ $\left(n^{*}-2\right) / 3$.

Let I^{*} be a maximum independent set of G^{*} and let $B=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. We construct an independent set of G as follows.
(1) If $v_{5}, v_{6} \in I^{*}$, then $v \in I^{*}$ and $\left|I^{*} \cap B\right|=3$. Let $I=\left\{v_{5}^{\prime \prime}, v_{6}^{\prime \prime}, v_{1}, v_{3}\right\} \cup$ $\left(I^{*}-\left(I^{*} \cap B\right)\right)$.
(2) If $v_{5} \in I^{*}, v_{6} \notin I^{*}$, then $\left|I^{*} \cap B\right|=2$. Let $I=\left\{v_{5}^{\prime \prime}, v_{1}, v_{3}\right\} \cup\left(I^{*}-\left(I^{*} \cap B\right)\right)$.
(3) If $v_{5} \notin I^{*}, v_{6} \in I^{*}$, then $\left|I^{*} \cap B\right|=2$. Let $I=\left\{v_{6}^{\prime \prime}, v_{1}, v_{3}\right\} \cup\left(I^{*}-\left(I^{*} \cap B\right)\right)$.
(4) If $v_{5}, v_{6} \notin I^{*}$, then $\left|I^{*} \cap B\right|=2$. Let $I=\left\{v, v_{5}, v_{6}\right\} \cup\left(I^{*}-\left(I^{*} \cap B\right)\right)$.

In all cases, it is easy to check that I is an independent set of G. So

$$
\alpha(G) \geq \alpha\left(G^{*}\right)+1 \geq \frac{n^{*}-2}{3}+1=\frac{n-2}{3}
$$

and the assertion holds.

(a). $n=7$.

(c). $n=9$.

(b). $n=8$

(d). $n=10$.

Fig. 3. $n=7,8,9,10$.

In what follows we may assume that
$(* 1)$ there is no vertex $v \in V(G)$ such that $G[N(v)]$ is isomorphic to C_{4}, i.e., $G[N[v]]$ is not a 4 -wheel.

Case 2. There exists a vertex $v \in V(G)$ such that $G[N(v)]$ is isomorphic to P_{4}.
Let $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $P_{4}=v_{1} v_{2} v_{3} v_{4}$ be the path induced by $N(v)$. We consider the fourth neighbor, say v_{5}, of v_{2}. Then, by the claw-freeness of G and $(* 1), v_{5}$ is adjacent to exactly one of v_{1} and v_{3}. We consider the following two subcases depending on $v_{1} v_{5} \in E(G)$ or $v_{3} v_{5} \in E(G)$.

(a). G

(b). G^{*}

Fig. 4. Case 2.1.
Case 2.1. $v_{1} v_{5} \in E(G)$.
Then $v_{3} v_{5} \notin E(G)$. By the claw-freeness, the fourth neighbor, say v_{6}, of v_{3} must be adjacent to v_{4}, and the fourth neighbor, say v_{7}, of v_{1} must be adjacent to v_{5}. Suppose $v_{7}=v_{6}$. Then $v_{4} v_{5} \in E(G)$ for otherwise a claw would occur centered at v_{4}. This means that G is the graph of order 7 shown in Fig. 3 (a) that satisfies the conditions of theorem. It is easy to check that $\alpha(G)=2 \geq(n-2) / 3$. So we may assume $v_{7} \neq v_{6}$. Similarly, the fourth neighbor, say v_{8}, of v_{4} must be adjacent to v_{6}. Suppose $v_{8}=v_{7}$. Then $v_{5} v_{6} \in E(G)$ for otherwise a claw would occur centered at v_{5}. This means that G is the graph of order 8 shown in Fig. 3. (b) that satisfies the conditions of theorem. It is not difficult to check that $\alpha(G)=2 \geq(n-2) / 3$. So we may assume $v_{8} \neq v_{7}$. Note that the fourth neighbor, say v_{9}, of v_{5} is adjacent to v_{7}, for otherwise it would create a claw centered at v_{5}. Suppose $v_{9}=v_{8}$. To avoid a claw centered at v_{6} or v_{7}, it must be the case that $v_{7} v_{6} \in E(G)$. So G is the graph of order 9 shown in Fig. 3 (c). It is easy to check $\alpha(G)=3 \geq(n-2) / 3$. So we may assume $v_{9} \neq v_{8}$. Note that the fourth neighbor, say v_{10}, of v_{6} must be adjacent to v_{8}. Suppose $v_{10}=v_{9}$. Then $v_{7} v_{8} \in E(G)$. So G is the graph of order 10 shown in Fig. 3. (d). It is easy to check that $\alpha(G)=3 \geq(n-2) / 3$. So we may assume $v_{10} \neq v_{9}$ (see Fig. 4 (a)).

Now let G^{*} be the graph obtained from G by deleting v, v_{2}, v_{3} and adding edges $v_{1} v_{4}, v_{1} v_{6}, v_{4} v_{5}$ (see Fig. 4 (b)). Clearly, $G^{*} \in \mathcal{G}$ and $\left|V\left(G^{*}\right)\right|=n^{*}=n-3$. By the induction hypothesis, we have $\alpha\left(G^{*}\right) \geq\left(n^{*}-2\right) / 3$. Let I^{*} be a maximum independent set of G^{*}. Note that $\left|I^{*} \cap\left\{v_{1}, v_{4}, v_{5}\right\}\right| \leq 1$; we construct an independent set of G as follows.
(1) If $v_{1} \in I^{*}$, then $v_{4}, v_{6} \notin I^{*}$ and let $I=I^{*} \cup\left\{v_{3}\right\}$.
(2) If $v_{4} \in I^{*}$, then then $v_{1}, v_{5} \notin I^{*}$ and let $I=I^{*} \cup\left\{v_{2}\right\}$.
(3) If $v_{1}, v_{4} \notin I^{*}$, then let $I=I^{*} \cup\{v\}$.

In all cases, clearly I is an independent set of G. So

$$
\alpha(G) \geq \alpha\left(G^{*}\right)+1 \geq \frac{n^{*}-2}{3}+1=\frac{n-2}{3},
$$

and the assertion follows.
Case 2.2. $v_{3} v_{5} \in E(G)$.
Then $v_{1} v_{5} \notin E(G)$. By $(* 1)$, we have $G\left[N\left(v_{3}\right)\right]$ is not isomorphic to C_{4}, so $v_{4} v_{5} \notin E(G)$.

Fig. 5. Case 2.2.1.
Case 2.2.1. Suppose that v_{1}, v_{4}, v_{5} have no common neighbors other than v, v_{2}, v_{3} (see Fig. 5(a)).

Let $v_{i}^{\prime}, v_{i}^{\prime \prime}$ be the other two neighbors of v_{i}. Clearly, v_{i}^{\prime} and $v_{i}^{\prime \prime}$ must be adjacent by claw-freeness, for $i=1,4,5$. To complete our inductive proof, let G^{*} be the graph obtained from G by deleting the vertices v, v_{2}, v_{3} and adding edges $v_{1} v_{4}, v_{1} v_{5}, v_{4} v_{5}$ (see Fig. 5(b)). Clearly, $G^{*} \in \mathcal{G}$ and $\left|V\left(G^{*}\right)\right|=n^{*}=n-3$. Applying the induction hypothesis to G^{*}, we have $\alpha\left(G^{*}\right) \geq\left(n^{*}-2\right) / 3$. Let I^{*} be a maximum independent set of G^{*}. Note that $\left|I^{*} \cap\left\{v_{1}, v_{4}, v_{5}\right\}\right| \leq 1$. We construct an independent set of G as follows.
(1) If $v_{1} \in I^{*}$, then $v_{4}, v_{5} \notin I^{*}$ and let $I=I^{*} \cup\left\{v_{3}\right\}$.
(2) If $v_{4} \in I^{*}$, then $v_{1}, v_{5} \notin I^{*}$ and let $I=I^{*} \cup\left\{v_{2}\right\}$.
(3) If $v_{5} \in I^{*}$, then $v_{1}, v_{4} \notin I^{*}$ and let $I=I^{*} \cup\{v\}$.
(4) If $v_{1}, v_{4}, v_{5} \notin I^{*}$, then let $I=I^{*} \cup\{v\}$.

Clearly I is an independent set of G. So

$$
\alpha(G) \geq \alpha\left(G^{*}\right)+1 \geq \frac{n^{*}-2}{3}+1=\frac{n-2}{3},
$$

and the assertion follows.
Case 2.2.2. By symmetry, we may assume that $N\left(v_{4}\right) \cap N\left(v_{5}\right) \backslash\left\{v_{3}\right\} \neq \emptyset$.

Fig. 6. Case 2.2.2.
Let $x \in N\left(v_{4}\right) \cap N\left(v_{5}\right) \backslash\left\{v_{3}\right\}$. By the claw-freeness of $G, v_{1} x \notin E(G)$. We claim that $N\left(v_{4}\right) \cap N\left(v_{5}\right)=\left\{v_{3}, x\right\}$. Indeed, if there exists $y \in N\left(v_{4}\right) \cap N\left(v_{5}\right) \backslash\left\{v_{3}, x\right\}$, then $x y \in E(G)$ by the claw-freeness. Let $z \in N(x)$ be the fourth neighbor of x except for v_{4}, v_{5} and y. Recall that $v_{4} v_{5} \notin E(G)$. Hence $G\left[\left\{v_{4}, v_{5}, x, z\right\}\right]$ is a claw centered at x, a contradiction. The fourth neighbor of v_{4}, v_{5} is denoted by $v_{4}^{\prime}, v_{5}^{\prime}$, respectively. Then $v_{4}^{\prime} x, v_{5}^{\prime} x \in E(G)$ by the claw-freeness.

Suppose $v_{4}^{\prime} v_{5}^{\prime} \notin E(G)$. Then v_{1} is adjacent to at most one of $v_{4}^{\prime}, v_{5}^{\prime}$ by the clawfreeness. In fact, regardless of whether v_{1} is adjacent to v_{4}^{\prime} or v_{5}^{\prime}, let G^{*} be the graph obtained from G by deleting the vertices v, v_{2}, v_{3} and adding edges $v_{1} v_{4}, v_{1} v_{5}, v_{4} v_{5}$ (see, Fig. 6 (b)). Clearly, $G^{*} \in \mathcal{G}$ and $\left|V\left(G^{*}\right)\right|=n^{*}=n-3$. The remaining proof is the same as that of Case 2.2.1.

On the other hand, suppose $v_{4}^{\prime} v_{5}^{\prime} \in E(G)$. If $v_{1} v_{4}^{\prime} \in E(G)$, then, since G is claw-free, we have $v_{1} v_{5}^{\prime} \in E(G)$. Similarly, if $v_{1} v_{5}^{\prime} \in E(G)$, we have $v_{1} v_{4}^{\prime} \in E(G)$. Thus G is the graph of order 9 shown in Fig. 6 (c). It is easy to check that $\alpha(G)=$ $3 \geq(n-2) / 3$. Hence, we may suppose $v_{1} v_{4}^{\prime}, v_{1} v_{5}^{\prime} \notin E(G)$. Now we construct the graph G^{*} described as in Case 2.2.1, the remaining proof is the same as that of Case 2.2.1.

In the following, we therefore may assume that
$(* 2)$ there is no vertex $v \in V(G)$ such that $G[N(v)]$ is isomorphic to P_{4}. By $(* 1)$ and $(* 2)$, we consider the following final case.

Case 3. For any $v \in V(G), G[N(v)]$ is isomorphic to $K_{2} \cup K_{2}$.
Then, for every vertex $v \in V(G), G[N[v]]$ consists of two edge-disjoint triangles
with only v in common. This implies that every edge of G exactly lies in one triangle. Let H be the graph whose vertices are the triangles of G, such that two vertices of H are adjacent if and only if the corresponding triangles of G intersect (at a vertex). Clearly, H is a 3 -regular graph. For the graph H, we have
Claim 1. H is 2-connected.
Suppose not, then there exists a vertex x which is a cut-vertex of H. For x, the corresponding triangle of G is denoted by A_{x}. Thus G is disconnected by deleting A_{x} in G. This implies that there exists a vertex v in A_{x} such that v is a cut-vertex of G, which contradicts that G is 2 -connected.

By Claim 1 and Lemma 1, H has a perfect matching. Let M be a perfect matching of H. Then $|M|=|V(H)| / 2$. Note that $|V(H)|=2 n / 3$. Hence $|M|=n / 3$. Let $I=\{x \in V(G) \mid x$ is the only common vertex of two triangles in G corresponding to u and v of H, for all $u v \in M\}$. Clearly, I is a independent set of vertices of G. So $\alpha(G) \geq|I|=|M|=n / 3 \geq(n-2) / 3$.

This completes the proof of Theorem 2.
Li and Virlouvet [16] proved the following result involving the independence number of a claw-free graph.

Lemma 2. ([16]). For any claw-free graph G on n vertices, $\Delta(G) \leq 2(n-$ $\alpha(G)) / \alpha(G)$.

By Lemma 2, we know that $\alpha(G) \leq n / 3$ for a claw-free 4-regular graph G on n vertices. By Theorem 2, we immediately obtain our main result.

Theorem 3. If $G \in \mathcal{G}$ and $|V(G)|=n$, then $\alpha(G)=\lfloor n / 3\rfloor$.

3. Concluding Remarks

In this paper we determine the exact value of the independence number $\alpha(G)$ for (claw, K_{4})-free 4-regular graphs without cut vertices. For (claw, K_{4})-free 4-regular graphs with cut vertices, we propose the following conjecture.

Conjecture 1. If G is a connected (claw, K_{4})-free 4-regular graph on n vertices, then $\alpha(G) \geq(8 n-3) / 27$.

By using the following known result, it is easy to show that the conjecture is true for the line graph of a cubic graph.

Lemma 3. ([18]) If G is a connected cubic graph on n vertices, then $\alpha^{\prime}(G) \geq$ $(4 n-1) / 9$, and this is sharp infinitely often.

Theorem 4. If G is a connected cubic graph on n vertices, then $\alpha(L(G)) \geq$ $(8|E(G)|-3) / 27$, and this is sharp infinitely often.

By Theorem 4, if the Conjecture 1 is true, then the lower bound is sharp. This also means that the condition "without cut vertices" in Theorem 2 and Theorem 3 is necessary.

Acknowledgments

The authors are grateful to the referee for the valuable comments, which have led to improvements in the presentation of the paper.

References

1. M. O. Albertson, B. Bollobás and S. Tucker, The independence ratio and the maximum degree of a graph, Congr. Numer, 17 (1976), 43-50.
2. B. Bollobás, Modern Graph Theory, New York: Springer-Verlag, 2001.
3. R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc., $\mathbf{3 7}$ (1941), 194-197.
4. S. Fajtlowicz, On the size of independent sets in graphs, Congr. Numer, 21 (1978), 269-274.
5. R. J. Faudree, R. J. Gould, M. S. Jacobson, L. M. Lesniak and T. E. Lindquester, On independent generalized degrees and independence numbers in $K(1, m)$-free graphs, Discrete Math., 103 (1992), 17-24.
6. K. L. Fraughnaugh, Size and independence in triangle-free graphs with maximum degree three, J. Graph Theory, 14 (1990), 525-535.
7. K. L. Fraughnaugh, Independence in graphs with maximum degree four, J. Combin. Theory Ser. B, 37 (1984), 254-269.
8. K. L. Fraughnaugh and S. C. Locke, 11/30 (finding large independent sets in connected triangle-free 3-regular graphs), J. Combin. Theory Ser. B, 65 (1995), 51-72.
9. K. L. Fraughnaugh and S. C. Locke, Finding independent sets in triangle-free graphs, SIAM J. Discrete Math., 9 (1996), 674-681.
10. J. Harant, M. A. Henning, D. Rautenbach and I. Schiermeyer, The independence number in graphs of maximum degree three, Discrete Math., 308 (2008), 5829-5833.
11. J. Harant and I. Schiermeyer, On the independence number of a graph in terms of order and size, Discrete Math., 232 (2001), 131-138.
12. C. C. Heckman, On the tightness of the $\frac{5}{14}$ independence ratio, Discrete Math., 308 (2008), 3169-3179.
13. C. C. Heckman and R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math., 233 (2001), 233-237.
14. C. C. Heckman and R. Thomas, Independent sets in triangle-free cubic planar graphs, J. Combin. Theory, Ser. B, 96 (2006), 253-275.
15. D. L. Kreher and S. P. Radziszowski, Minimum triangle-free graphs, Ars Combinatoria, 31 (1991), 65-92.
16. H. Li and C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin., 29A (1990), 109-116.
17. S. C. Locke and F. Lou, Finding independent sets in K_{4}-free 4-regular connected graphs, J. Combin. Theory, Series B, 71 (1997), 85-110.
18. S. O. Suil and D. B. West, Balloons, cut-edges, matchings, and total domination in regular graphs of odd degree, J. Graph Theory, 64 (2010), 116-131.
19. J. Petersen, Die theorie der regulăren graph, Acta Math., 15 (1891), 193-220.
20. Z. Ryjácek and I. Schiermeyer, On the independence number in $K_{1, r+1}$-free graphs, Discrete Math., 138 (1995), 365-374.
21. W. Staton, Some Ramsey-type numbers and the independence ratio, Trans. Amer. Math. Soc., 256 (1979), 353-370.

Liying Kang ${ }^{1}$, Dingguo Wang ${ }^{1,3}$ and Erfang Shan ${ }^{2}$
${ }^{1}$ Department of Mathematics
Shanghai University
Shanghai 200444
P. R. China

E-mail: efshan@shu.edu.cn
${ }^{2}$ School of Management
Shanghai University
Shanghai 200444
P. R. China
${ }^{3}$ College of Mathematics Science
Chongqing Normal University
Chongqing 400047
P. R. China

[^0]: Received July 8, 2012, accepted July 17, 2012.
 Communicated by Gerard Jennhwa Chang.
 2010 Mathematics Subject Classification: 05C69.
 Key words and phrases: Independent set, Independence number, 4-Regular graph, Claw-free.
 Research was partially supported by the National Nature Science Foundation of China (Nos. 11171207, 10971131,91130032) and Shanghai Leading Academic Discipline Project (No. S30104).

