TAIWANESE JOURNAL OF MATHEMATICS Vol. 17, No. 1, pp. 275-285, February 2013 DOI: 10.11650/tjm.17.2013.2189 This paper is available online at http://journal.taiwanmathsoc.org.tw

THE INDEPENDENCE NUMBER OF CONNECTED (claw, K_4)-FREE 4-REGULAR GRAPHS

Liying Kang, Dingguo Wang and Erfang Shan

Abstract. An *independent set* of a graph G is a subset of the vertices of G such that no two vertices in the subset are joined by an edge in G. The *independence number* of G is the cardinality of a maximum independent set of G, and is denoted by $\alpha(G)$. In this paper we show that every 2-connected (claw, K_4)-free 4-regular graph G on n vertices has independence number exactly $\lfloor n/3 \rfloor$.

1. INTRODUCTION

All graphs considered here are finite, simple and nonempty. For standard terminology not given here we refer the reader to [2]. Let G = (V, E) be a graph with *vertex set* V and *edge set* E. For a vertex $v \in V$, the open neighborhood N(v) of v is defined as the set of vertices adjacent to v, i.e., $N(v) = \{u \mid uv \in E\}$. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. The degree of v is equal to |N(v)|, denoted by $d_G(v)$ or simply d(v). The maximum and minimum degrees of G will be denoted by $\Delta(G)$ and $\delta(G)$, respectively. If $d_G(v) = k$ for all $v \in V$, then we call G k-regular. In particular, a 3-regular graph is also called a cubic graph. For a subset $S \subseteq V$, the subgraph induced by S is denoted by G[S]. A cut vertex of G is a vertex v such that c(G - v) > c(G), where c(G) is the number of components of G. A cut edge can similarly defined. The line graph L(G) of G is the graph on E in which $x, y \in E$ are adjacent as vertices if and only if they are adjacent as edges in G. As usual, K_n denotes the complete graph on n vertices, and P_n denotes the path on n vertices,. The graph $K_{1,3}$ is also called a *claw* and K_3 a *triangle*. For a given graph F, we say that a graph G is F-free if it does not contain F as an induced subgraph. In particular, $K_{1,3}$ -free is called *claw-free*. For a family of graphs (F_1, \ldots, F_k) , we say that G is (F_1, \ldots, F_k) -free if it is F_i -free for all $i = 1, \ldots, k$. Two distinct edges in a

Received July 8, 2012, accepted July 17, 2012.

Communicated by Gerard Jennhwa Chang.

²⁰¹⁰ Mathematics Subject Classification: 05C69.

Key words and phrases: Independent set, Independence number, 4-Regular graph, Claw-free.

Research was partially supported by the National Nature Science Foundation of China (Nos. 11171207, 10971131, 91130032) and Shanghai Leading Academic Discipline Project (No. S30104).

graph G are independent if they are not adjacent in G. A set of pairwise independent edges in G is called a *matching* of G. The *matching number* of G, denoted by $\alpha'(G)$, is the largest cardinality among all matchings of G.

An *independent set* I of G is a subset of the vertices of G such that no two vertices of I are joined by an edge in G. The *independence number* of G, denoted by $\alpha(G)$, is the cardinality of a maximum independent set of G. The *independence ratio* of G, denoted by i(G), is $\alpha(G)/n$, where G has n vertices. Independent sets in graphs is now well studied in graph theory.

For a connected graph G on n vertices with m edges, Harant and Schiermeyer [11] proved $\alpha(G) \geq [(2m + n + 1) - \sqrt{(2m + n + 1)^2 - 4n^2}]/2$ and discussed its algorithmic realization. Li and Virlouvet [16] showed that for every claw-free graph G on n vertices, $\alpha(G) \leq 2n/(\Delta(G) + 2)$. In [5] this result on claw-free graphs was extended to $K_{1,r+1}$ -free graphs. Ryjácek and Schiermeyer [20] used the degree sequence, order, size and vertex connectivity of a $K_{1,r+1}$ -free graph or of an almost claw-free graph to obtain several upper bounds on its independence number.

Brooks [3] proved that every connected graph G which is neither a complete graph nor odd cycle must be $\Delta(G)$ -colorable. Thus, such a graph must have $i(G) \geq 1/\Delta(G)$. Albertson, Bollobás and Tucker [1] proved that $i(G) \ge 1/k$ for a K_k -free graph G with $\Delta(G) = k = 3$ or $\Delta(G) = k \ge 6$. Fajtlowics [4] proved that $i(G) \ge 2/(\Delta(G) + k)$ for a K_k -free graph G. In 1979, Staton [21] proved that every triangle-free graph G with maximum degree k has $i(G) \ge 5/(5k-1)$. In particular, Fraughnaugh [6] and Heckman and Thomas [13] provided shorter proofs of this result for the case when G is a triangle-free graph with maximum degree three. Heckman [12] discussed the tightness of the 5/14 independence ratio of the triangle-free graphs with maximum degree at most three. Harant et al. [10] proved that every K_4 -free graph G on n vertices, size m and maximum degree at most three has $\alpha(G) \geq (4n - m - \lambda - tr)/7$, where λ counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and tr is the maximum number of vertex-disjoint triangles in G. This result generalizes the bound due to Heckman and Thomas [13]. Fraughnaugh and Locke [8] proved that every connected triangle-free 3-regular graph G on n vertices has $\alpha(G) \ge 11n/30 - 2/15$; and Heckman and Thomas [14] proved that every triangle-free planar graph on nvertices with maximum degree three has $\alpha(G) \geq 3n/8$. Fraughnaugh [7] proved that for every triangle-free 4-regular graph G on n vertices, $\alpha(G) \geq 4n/13$. Kreher and Radziszowski [15] further extended this result to triangle-free graphs with average degree 4. Fraughnaugh and Locke [9] found a shorter proof of the result.

In 1997, Locke and Lou [17] gave a lower bound on the independence number of a connected K_4 -free 4-regular graph.

Theorem 1. ([17]). If G is a connected K_4 -free 4-regular graph on n vertices, then $\alpha(G) \ge (7n-4)/26$.

In this paper we continue to investigate the independence number in K_4 -free 4-regular graphs. We shall show that every 2-connected (claw, K_4)-free 4-regular graph has independence number exactly $\lfloor n/3 \rfloor$, where G has n vertices.

2. MAIN RESULTS

Let us introduce some more notation and terminology. If the graphs G and G' are disjoint, we denote by G * G' the graph obtained from $G \cup G'$ by joining all the vertices of G to all the vertices of G'. The graph $C_n * K_1$ is called an *n*-wheel and the graph $C_n * \overline{K_2}$ $(n \ge 4)$ a double wheel, where $\overline{K_2}$ is the complement of K_2 .

The well-known Petersen Theorem will be useful.

Lemma 1. ([19]). Every cubic graph without cut edges has a perfect matching.

Let \mathcal{G} denote the class of 2-connected (claw, K_4)-free 4-regular graphs. To obtain our main result, we first give a lower bound on the independence number for graphs in \mathcal{G} .

Theorem 2. For $G \in \mathcal{G}$ and |V(G)| = n, $\alpha(G) \ge (n-2)/3$.

Proof. We may assume that G is 2-connected. Since G is a K_4 -free 4-regular graph, we have $n \ge 6$. We prove by induction on n. For n = 6, it is easy to see that G is the double wheel $C_4 * \overline{K}_2$. Clearly $\alpha(G) = 2 \ge (n-2)/3$, and the assertion holds. Now let G be given with n > 6, and assume the assertion holds for graphs with fewer vertices.

For each $v \in V(G)$, by the claw-freeness and K_4 -freeness of G, we see that the induced subgraph G[N(v)] is triangle-free and has $\alpha(G[N(v)]) = 2$. Hence G[N(v)] is isomorphic to one of the three graphs $K_2 \cup K_2$, P_4 and C_4 . We distinguish the following three cases.

Fig. 1. Case 1.1.

Case 1. There exists a vertex $v \in V(G)$ such that G[N(v)] is isomorphic to C_4 . In this case, clearly G[N[v]] is a 4-wheel. Let $C_4 = v_1 v_2 v_3 v_4 v_1$ be the cycle induced by N(v) in G. We consider the fourth neighbor, say v_5 , of v_1 . Note that

 $G \neq C_4 * \overline{K}_2$ as n > 6. This implies that v_5 is adjacent to exactly one of v_2 and v_4 by the claw-freeness of G. Without loss of generality, assume $v_5v_2 \in E(G)$. Then $v_5v_4 \notin E(G)$. Now let v_6 be the fourth neighbor of v_4 . Similarly, we have $v_6v_3 \in E(G)$. Further, let $v'_5, v''_5 \in N(v_5) \setminus \{v_1, v_2\}$ and $v'_6, v''_6 \in N(v_6) \setminus \{v_3, v_4\}$. Then $v'_5v''_5 \in E(G)$ and $v'_6v''_6 \in E(G)$ by the claw-freeness of G.

Fig. 2. Case 1.2.

Case 1.1. $N(v_5) \cap N(v_6) = \emptyset$ (see Fig. 1 (a)).

Let G^* be the graph obtained from G by deleting the vertices $v, v_1, v_2, v_3, v_4, v_5, v_6$ and adding one new vertex u and new edges uv'_5 , uv''_5 , uv''_6 , uv''_6 (see Fig. 1 (b)). Since G is 2-connected, both v_5 and v_6 are not cut-vertices of G, so u is not a cut-vertex of G^* . Hence $G^* \in \mathcal{G}$. Let $|V(G^*)| = n^*$. Then $n^* = n - 6$. By applying the induction hypothesis to G^* , we have $\alpha(G^*) \ge (n^* - 2)/3$. Let I^* be a maximum independent set of G^* . If $u \notin I^*$, then let $I = I^* \cup \{v_1, v_3\}$ or $I^* \cup \{v_2, v_4\}$. Otherwise, let $I = (I^* - \{u\}) \cup \{v, v_5, v_6\}$. It is easy to see that I is an independent set of G. So

$$\alpha(G) \ge \alpha(G^*) + 2 \ge \frac{n^* - 2}{3} + 2 = \frac{n - 2}{3},$$

and the desired result follows.

Case 1.2. $N(v_5) \cap N(v_6) \neq \emptyset$ (see Fig. 2 (a)).

Let $v'_5 = v'_6 \in N(v_5) \cap N(v_6)$. We claim that $v''_5 \neq v''_6$. Otherwise, it would produce a claw centered at v'_5 or v''_5 . Furthermore, suppose $v''_5v''_6 \in E(G)$. Then the fourth neighbor, say v_7 , of v''_5 must be adjacent to v''_6 . This implies that v_7 is a cut-vertex of G, which contradicts that G is 2-connected. So $v''_5v''_6 \notin E(G)$. Let x_1 , x_2 and y_2 , y_2 be the other two neighbors of v''_5 and v''_6 , respectively. By the claw-freeness of G, we have $x_1x_2, y_1y_2 \in E(G)$ and $|N(v''_5) \cap N(v''_6)| \leq 2$. Hence $|\{x_1, x_2\} \cap \{y_1, y_2\}| \leq 1$.

Now let G^* be the graph obtained from G by deleting the vertices $v'_5(v'_6), v''_5, v''_6$ and adding the edges v_5x_1, v_5x_2, v_6y_1 and v_6y_2 (see Fig. 2 (b)). Clearly, $G^* \in \mathcal{G}$. Let $|V(G^*)| = n^*$. Then $n^* = n - 3$. By the induction hypothesis, we have $\alpha(G^*) \ge (n^* - 2)/3$.

Let I^* be a maximum independent set of G^* and let $B = \{v, v_1, v_2, v_3, v_4, v_5, v_6\}$. We construct an independent set of G as follows.

(1) If $v_5, v_6 \in I^*$, then $v \in I^*$ and $|I^* \cap B| = 3$. Let $I = \{v_5'', v_6'', v_1, v_3\} \cup (I^* - (I^* \cap B))$.

(2) If $v_5 \in I^*$, $v_6 \notin I^*$, then $|I^* \cap B| = 2$. Let $I = \{v_0'', v_1, v_3\} \cup (I^* - (I^* \cap B))$. (3) If $v_5 \notin I^*$, $v_6 \in I^*$, then $|I^* \cap B| = 2$. Let $I = \{v_0'', v_1, v_3\} \cup (I^* - (I^* \cap B))$. (4) If $v_5, v_6 \notin I^*$, then $|I^* \cap B| = 2$. Let $I = \{v, v_5, v_6\} \cup (I^* - (I^* \cap B))$.

In all cases, it is easy to check that I is an independent set of G. So

$$\alpha(G) \ge \alpha(G^*) + 1 \ge \frac{n^* - 2}{3} + 1 = \frac{n - 2}{3},$$

and the assertion holds.

Fig. 3. n = 7, 8, 9, 10.

In what follows we may assume that

(*1) there is no vertex $v \in V(G)$ such that G[N(v)] is isomorphic to C_4 , i.e., G[N[v]] is not a 4-wheel.

Case 2. There exists a vertex $v \in V(G)$ such that G[N(v)] is isomorphic to P_4 .

Let $N(v) = \{v_1, v_2, v_3, v_4\}$ and let $P_4 = v_1v_2v_3v_4$ be the path induced by N(v). We consider the fourth neighbor, say v_5 , of v_2 . Then, by the claw-freeness of G and (*1), v_5 is adjacent to exactly one of v_1 and v_3 . We consider the following two subcases depending on $v_1v_5 \in E(G)$ or $v_3v_5 \in E(G)$.

Fig. 4. Case 2.1.

Case 2.1. $v_1v_5 \in E(G)$.

Then $v_3v_5 \notin E(G)$. By the claw-freeness, the fourth neighbor, say v_6 , of v_3 must be adjacent to v_4 , and the fourth neighbor, say v_7 , of v_1 must be adjacent to v_5 . Suppose $v_7 = v_6$. Then $v_4 v_5 \in E(G)$ for otherwise a claw would occur centered at v_4 . This means that G is the graph of order 7 shown in Fig. 3 (a) that satisfies the conditions of theorem. It is easy to check that $\alpha(G) = 2 \ge (n-2)/3$. So we may assume $v_7 \ne v_6$. Similarly, the fourth neighbor, say v_8 , of v_4 must be adjacent to v_6 . Suppose $v_8 = v_7$. Then $v_5v_6 \in E(G)$ for otherwise a claw would occur centered at v_5 . This means that G is the graph of order 8 shown in Fig. 3. (b) that satisfies the conditions of theorem. It is not difficult to check that $\alpha(G) = 2 \ge (n-2)/3$. So we may assume $v_8 \ne v_7$. Note that the fourth neighbor, say v_9 , of v_5 is adjacent to v_7 , for otherwise it would create a claw centered at v_5 . Suppose $v_9 = v_8$. To avoid a claw centered at v_6 or v_7 , it must be the case that $v_7v_6 \in E(G)$. So G is the graph of order 9 shown in Fig. 3 (c). It is easy to check $\alpha(G) = 3 \ge (n-2)/3$. So we may assume $v_9 \ne v_8$. Note that the fourth neighbor, say v_{10} , of v_6 must be adjacent to v_8 . Suppose $v_{10} = v_9$. Then $v_7v_8 \in E(G)$. So G is the graph of order 10 shown in Fig. 3. (d). It is easy to check that $\alpha(G) = 3 \ge (n-2)/3$. So we may assume $v_{10} \ne v_9$ (see Fig. 4 (a)).

Now let G^* be the graph obtained from G by deleting v, v_2 , v_3 and adding edges v_1v_4 , v_1v_6 , v_4v_5 (see Fig. 4 (b)). Clearly, $G^* \in \mathcal{G}$ and $|V(G^*)| = n^* = n - 3$. By the induction hypothesis, we have $\alpha(G^*) \ge (n^* - 2)/3$. Let I^* be a maximum independent set of G^* . Note that $|I^* \cap \{v_1, v_4, v_5\}| \le 1$; we construct an independent set of G as follows.

(1) If $v_1 \in I^*$, then v_4 , $v_6 \notin I^*$ and let $I = I^* \cup \{v_3\}$.

280

281

(2) If v₄ ∈ I*, then then v₁, v₅ ∉ I* and let I = I* ∪ {v₂}.
(3) If v₁, v₄ ∉ I*, then let I = I* ∪ {v}. In all cases, clearly I is an independent set of G. So

$$\alpha(G) \ge \alpha(G^*) + 1 \ge \frac{n^* - 2}{3} + 1 = \frac{n - 2}{3},$$

and the assertion follows.

Case 2.2. $v_3v_5 \in E(G)$.

Then $v_1v_5 \notin E(G)$. By (*1), we have $G[N(v_3)]$ is not isomorphic to C_4 , so $v_4v_5 \notin E(G)$.

Fig. 5. Case 2.2.1.

Case 2.2.1. Suppose that v_1, v_4, v_5 have no common neighbors other than v, v_2, v_3 (see Fig. 5(a)).

Let v'_i , v''_i be the other two neighbors of v_i . Clearly, v'_i and v''_i must be adjacent by claw-freeness, for i = 1, 4, 5. To complete our inductive proof, let G^* be the graph obtained from G by deleting the vertices v, v_2, v_3 and adding edges v_1v_4, v_1v_5, v_4v_5 (see Fig. 5(b)). Clearly, $G^* \in \mathcal{G}$ and $|V(G^*)| = n^* = n - 3$. Applying the induction hypothesis to G^* , we have $\alpha(G^*) \ge (n^* - 2)/3$. Let I^* be a maximum independent set of G^* . Note that $|I^* \cap \{v_1, v_4, v_5\}| \le 1$. We construct an independent set of Gas follows.

(1) If $v_1 \in I^*$, then v_4 , $v_5 \notin I^*$ and let $I = I^* \cup \{v_3\}$. (2) If $v_4 \in I^*$, then v_1 , $v_5 \notin I^*$ and let $I = I^* \cup \{v_2\}$. (3) If $v_5 \in I^*$, then v_1 , $v_4 \notin I^*$ and let $I = I^* \cup \{v\}$. (4) If v_1 , v_4 , $v_5 \notin I^*$, then let $I = I^* \cup \{v\}$. Clearly I is an independent set of G. So

$$\alpha(G) \ge \alpha(G^*) + 1 \ge \frac{n^* - 2}{3} + 1 = \frac{n - 2}{3},$$

and the assertion follows.

Case 2.2.2. By symmetry, we may assume that $N(v_4) \cap N(v_5) \setminus \{v_3\} \neq \emptyset$.

Fig. 6. Case 2.2.2.

Let $x \in N(v_4) \cap N(v_5) \setminus \{v_3\}$. By the claw-freeness of G, $v_1x \notin E(G)$. We claim that $N(v_4) \cap N(v_5) = \{v_3, x\}$. Indeed, if there exists $y \in N(v_4) \cap N(v_5) \setminus \{v_3, x\}$, then $xy \in E(G)$ by the claw-freeness. Let $z \in N(x)$ be the fourth neighbor of xexcept for v_4, v_5 and y. Recall that $v_4v_5 \notin E(G)$. Hence $G[\{v_4, v_5, x, z\}]$ is a claw centered at x, a contradiction. The fourth neighbor of v_4 , v_5 is denoted by v'_4 , v'_5 , respectively. Then v'_4x , $v'_5x \in E(G)$ by the claw-freeness.

Suppose $v'_4v'_5 \notin E(G)$. Then v_1 is adjacent to at most one of v'_4, v'_5 by the clawfreeness. In fact, regardless of whether v_1 is adjacent to v'_4 or v'_5 , let G^* be the graph obtained from G by deleting the vertices v, v_2, v_3 and adding edges v_1v_4, v_1v_5, v_4v_5 (see, Fig. 6 (b)). Clearly, $G^* \in \mathcal{G}$ and $|V(G^*)| = n^* = n - 3$. The remaining proof is the same as that of Case 2.2.1.

On the other hand, suppose $v'_4v'_5 \in E(G)$. If $v_1v'_4 \in E(G)$, then, since G is claw-free, we have $v_1v'_5 \in E(G)$. Similarly, if $v_1v'_5 \in E(G)$, we have $v_1v'_4 \in E(G)$. Thus G is the graph of order 9 shown in Fig. 6 (c). It is easy to check that $\alpha(G) = 3 \ge (n-2)/3$. Hence, we may suppose $v_1v'_4, v_1v'_5 \notin E(G)$. Now we construct the graph G^* described as in Case 2.2.1, the remaining proof is the same as that of Case 2.2.1.

In the following, we therefore may assume that

(*2) there is no vertex $v \in V(G)$ such that G[N(v)] is isomorphic to P_4 . By (*1) and (* 2), we consider the following final case.

Case 3. For any $v \in V(G)$, G[N(v)] is isomorphic to $K_2 \cup K_2$. Then, for every vertex $v \in V(G)$, G[N[v]] consists of two edge-disjoint triangles with only v in common. This implies that every edge of G exactly lies in one triangle. Let H be the graph whose vertices are the triangles of G, such that two vertices of H are adjacent if and only if the corresponding triangles of G intersect (at a vertex). Clearly, H is a 3-regular graph. For the graph H, we have

Claim 1. *H* is 2-connected.

Suppose not, then there exists a vertex x which is a cut-vertex of H. For x, the corresponding triangle of G is denoted by A_x . Thus G is disconnected by deleting A_x in G. This implies that there exists a vertex v in A_x such that v is a cut-vertex of G, which contradicts that G is 2-connected.

By Claim 1 and Lemma 1, *H* has a perfect matching. Let *M* be a perfect matching of *H*. Then |M| = |V(H)|/2. Note that |V(H)| = 2n/3. Hence |M| = n/3. Let $I = \{x \in V(G) \mid x \text{ is the only common vertex of two triangles in$ *G*corresponding to*u*and*v*of*H* $, for all <math>uv \in M$. Clearly, *I* is a independent set of vertices of *G*. So $\alpha(G) \ge |I| = |M| = n/3 \ge (n-2)/3$.

This completes the proof of Theorem 2.

Li and Virlouvet [16] proved the following result involving the independence number of a claw-free graph.

Lemma 2. ([16]). For any claw-free graph G on n vertices, $\Delta(G) \leq 2(n - \alpha(G))/\alpha(G)$.

By Lemma 2, we know that $\alpha(G) \leq n/3$ for a claw-free 4-regular graph G on n vertices. By Theorem 2, we immediately obtain our main result.

Theorem 3. If $G \in \mathcal{G}$ and |V(G)| = n, then $\alpha(G) = \lfloor n/3 \rfloor$.

3. CONCLUDING REMARKS

In this paper we determine the exact value of the independence number $\alpha(G)$ for (claw, K_4)-free 4-regular graphs without cut vertices. For (claw, K_4)-free 4-regular graphs with cut vertices, we propose the following conjecture.

Conjecture 1. If G is a connected (claw, K_4)-free 4-regular graph on n vertices, then $\alpha(G) \ge (8n-3)/27$.

By using the following known result, it is easy to show that the conjecture is true for the line graph of a cubic graph.

Lemma 3. ([18]) If G is a connected cubic graph on n vertices, then $\alpha'(G) \ge (4n-1)/9$, and this is sharp infinitely often.

Theorem 4. If G is a connected cubic graph on n vertices, then $\alpha(L(G)) \ge (8|E(G)|-3)/27$, and this is sharp infinitely often.

By Theorem 4, if the Conjecture 1 is true, then the lower bound is sharp. This also means that the condition "without cut vertices" in Theorem 2 and Theorem 3 is necessary.

ACKNOWLEDGMENTS

The authors are grateful to the referee for the valuable comments, which have led to improvements in the presentation of the paper.

References

- M. O. Albertson, B. Bollobás and S. Tucker, The independence ratio and the maximum degree of a graph, *Congr. Numer.*, 17 (1976), 43-50.
- 2. B. Bollobás, Modern Graph Theory, New York: Springer-Verlag, 2001.
- 3. R. L. Brooks, On colouring the nodes of a network, *Proc. Cambridge Philos. Soc.*, **37** (1941), 194-197.
- 4. S. Fajtlowicz, On the size of independent sets in graphs, *Congr. Numer.*, **21** (1978), 269-274.
- 5. R. J. Faudree, R. J. Gould, M. S. Jacobson, L. M. Lesniak and T. E. Lindquester, On independent generalized degrees and independence numbers in K(1, m)-free graphs, *Discrete Math.*, **103** (1992), 17-24.
- 6. K. L. Fraughnaugh, Size and independence in triangle-free graphs with maximum degree three, J. Graph Theory, 14 (1990), 525-535.
- 7. K. L. Fraughnaugh, Independence in graphs with maximum degree four, J. Combin. Theory Ser. B, 37 (1984), 254-269.
- 8. K. L. Fraughnaugh and S. C. Locke, 11/30 (finding large independent sets in connected triangle-free 3-regular graphs), J. Combin. Theory Ser. B, 65 (1995), 51-72.
- 9. K. L. Fraughnaugh and S. C. Locke, Finding independent sets in triangle-free graphs, *SIAM J. Discrete Math.*, 9 (1996), 674-681.
- 10. J. Harant, M. A. Henning, D. Rautenbach and I. Schiermeyer, The independence number in graphs of maximum degree three, *Discrete Math.*, **308** (2008), 5829-5833.
- 11. J. Harant and I. Schiermeyer, On the independence number of a graph in terms of order and size, *Discrete Math.*, **232** (2001), 131-138.
- 12. C. C. Heckman, On the tightness of the $\frac{5}{14}$ independence ratio, *Discrete Math.*, **308** (2008), 3169-3179.
- 13. C. C. Heckman and R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, *Discrete Math.*, **233** (2001), 233-237.
- 14. C. C. Heckman and R. Thomas, Independent sets in triangle-free cubic planar graphs, J. Combin. Theory, Ser. B, 96 (2006), 253-275.

284

- D. L. Kreher and S. P. Radziszowski, Minimum triangle-free graphs, Ars Combinatoria, 31 (1991), 65-92.
- H. Li and C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin., 29A (1990), 109-116.
- 17. S. C. Locke and F. Lou, Finding independent sets in K₄-free 4-regular connected graphs, *J. Combin. Theory, Series B*, **71** (1997), 85-110.
- 18. S. O. Suil and D. B. West, Balloons, cut-edges, matchings, and total domination in regular graphs of odd degree, *J. Graph Theory*, **64** (2010), 116-131.
- 19. J. Petersen, Die theorie der regulären graph, Acta Math., 15 (1891), 193-220.
- 20. Z. Ryjácek and I. Schiermeyer, On the independence number in $K_{1,r+1}$ -free graphs, *Discrete Math.*, **138** (1995), 365-374.
- 21. W. Staton, Some Ramsey-type numbers and the independence ratio, *Trans. Amer. Math. Soc.*, **256** (1979), 353-370.

Living Kang¹, Dingguo Wang^{1,3} and Erfang Shan²

- Department of Mathematics Shanghai University Shanghai 200444
 P. R. China E-mail: efshan@shu.edu.cn
- ² School of Management Shanghai University Shanghai 200444
 P. R. China
- ³ College of Mathematics Science Chongqing Normal University Chongqing 400047
 P. R. China