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PRODUCTS OF RADIAL DERIVATIVE AND MULTIPLICATION
OPERATORS FROM F (p, q, s) TO WEIGHTED-TYPE

SPACES ON THE UNIT BALL

Jie Zhou and Yongmin Liu*

Abstract. In this paper, we obtain the complete characterizations of the bounded-
ness and compactness of the products of the radial derivative and the multiplication
operator RMu from F (p, q, s) to weighted-type spaces on the unit ball.

1. INTRODUCTION

Let z = (z1, · · · , zn) and w = (w1, · · · , wn) be points in the complex vector space
C

n and zw := 〈z, w〉 = z1w1 + z2w2 + · · ·+ znwn. We also write

|z| =
√

〈z, z〉 =

√√√√ n∑
j=1

|zj|2.

Let B = {z ∈ C
n : |z| < 1} be the open unit ball in C

n, S = ∂B its boundary, and
H(B) denote the class of all holomorphic functions on B. For f ∈ H(B)with the Taylor
expansion f(z) =

∑
|β|≥0 aβzβ , let Rf(z) =

∑
|β|≥0

|β|aβzβ be the radial derivative of

f at z, where β = (β1, β2, · · · , βn) is a multi-index, |β| = β1 + β2 + · · · + βn and
zβ = zβ1

1 zβ2
2 · · · zβn

n . It is easy to see that (see, e.g., [20, 48])

Rf(z) =
n∑

j=1

zj
∂f

∂zj
(z).

The iterated radial derivative operator Rmf is defined inductively by ([4, 5, 27]):
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Rmf = R (Rm−1f
)
, m ∈ N − {1}.

A positive continuous function μ on [0, 1) is called normal, if there is a δ ∈ [0, 1) and
a and b, 0 < a < b such that (see, e.g., [13, 21])

μ(r)
(1− r)a

is decreasing on [δ, 1) and lim
r→1

μ(r)
(1− r)a

= 0,

μ(r)
(1− r)b

is increasing on [δ, 1) and lim
r→1

μ(r)
(1− r)b

= ∞.

If we say that a function μ: B → [0,∞) is normal, we also assume that it is radial,
that is, μ(z) = μ(|z|), z ∈ B. The weighted-type space H∞

μ (B) = H∞
μ consists of all

f ∈ H(B) such that
‖f‖H∞

μ
:= sup

z∈B

μ(z)|f(z)| < ∞,

where μ is a weight (see, e.g., [2] as well as [1] for a related class of spaces).
The little weighted-type space H∞

μ,0(B) = H∞
μ,0 is a subspace of H∞

μ consisting of all
f ∈ H(B) such that

lim
|z|→1

μ(|z|)|f(z)| = 0.

The Bloch-type space Bα (α > 0) consists of all f ∈ H(B) such that

‖f‖Bα = |f(0)|+ sup
z∈B

(1− |z|2)α|Rf(z)| < ∞.

Let 0 < p, s < ∞, −n − 1 < q < ∞. A function f ∈ H(B) is said to belong to
F (p, q, s) = F (p, q, s)(B) (see, e.g., [6, 43, 46]) if

‖f‖p
F (p,q,s)

= |f(0)|p + sup
a∈B

∫
B

|Rf(z)|p(1− |z|2)qgs(z, a)dV (z) < ∞,

where g(z, a) = log |ϕa(z)|−1is the Green’s function for B with logarithmic singularity
at a, dV is the normalized Lebesguemeasure on C

n. We call F (p, q, s) general function
space because we can get many function spaces, such as BMOA space, Qp space,
Bergman space, Hardy space, Bloch space, if we take special parameters of p, q, s. If
q + s � −1, then F (p, q, s) is the space of constant functions.
The weighted iterated radial-derivative composition operator is defined by S. Stević

in [27] and [30] as follows:

Rm
u,ϕf(z) = (MuCϕRm)f(z) = u(z)Rmf(ϕ(z)), z ∈ B.

Some characterization for the boundedness and compactness of the operator Rm
u,ϕ be-

tween various spaces of holomorphic function on the unit ball can be found in [27, 30].
Some related operators between F (p, q, s) spaces and various spaces on the unit ball, are
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treated, for example (see, e.g., [10, 13, 18, 24, 31, 33, 35, 38, 39, 40, 41, 45, 47, 50]),
whenm = 1 and ϕ(z) = z, we can get the operatorMuR. For related one-dimensional
operators, see, for example [7, 8, 9, 11, 12, 14, 15, 16, 25, 26, 28, 29, 32, 37, 42, 49],
as well as the related references therein. The boundedness and compactness of the
operator MuR from mixed norm spaces H(p, q, φ) to Zygmund-type spaces on the
unit ball have been studied, for example, in [17]. The boundedness and compactness of
the operator MuR from mixed norm spaces H(p, q, φ) to the nth weighted-type space
on the unit ball have been studied, for example, in [34]. Inspired by these results, we
can define the operator RMu as follows:

RMuf(z) = R(u(z)f(z))

= u(z)
n∑

j=1

zj
∂f

∂zj
(z) +

n∑
j=1

zj
∂u

∂zj
(z)f(z)

= u(z)Rf(z) + Ru(z)f(z)
= MuRf(z) + Ru(z)f(z).

The purpose of this paper is to study the boundedness and compactness of the operator
RMu from F (p, q, s) spaces to weighted-type spaces on the unit ball.

2. AUXILIARY RESULTS

Here we state several auxiliary results most of which will be used in the proofs of
the main results. The following lemma can be found in [43].

Lemma 1. Assume that 0 < p, s < ∞,−n − 1 < q < ∞, q + s > −1 and f ∈
F (p, q, s), then f ∈ B n+1+q

p and ‖f‖
B

n+1+q
p

≤ C‖f‖F (p,q,s).

The next folklore lemma can be found in [22].

Lemma 2. Assume that f ∈ Bα, α > 0, then for any z ∈ B

|f(z)| ≤ C

⎧⎪⎨
⎪⎩

|f(0)|+ ‖f‖Bα , 0 < α < 1.

|f(0)|+ ‖f‖Bα · log 2
1−|z|2 , α = 1.

|f(0)|+ ‖f‖Bα

(1−|z|2)α−1 , α > 1.

To investigate the compactness of the operator RMu, we also need the next lemma.
For the case μ(z) = 1− |z|2, the lemma was proved in [19]. For the general case the
proof is similar, we omit the details.

Lemma 3. Let μ be a normal function. A closed set K in H∞
μ,0(B) is compact if

and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

μ(|z|)|f(z)| = 0.
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The next Schwartz-type lemma ([41]) is proved in a standard way (see, e.g. [23,
Lemma 3]).

Lemma 4. Assume that 0 < p, s < ∞,−n − 1 < q < ∞, μ is a normal
function on [0, 1), then RMu : F (p, q, s) → H∞

μ (H∞
μ,0) is compact if and only if

RMu : F (p, q, s) → H∞
μ (H∞

μ,0) is bounded, and for any bounded sequence {fk}k∈N

in F (p, q, s) which converges to zero uniformly on the compact subsets of B as k → ∞,

we have
lim

k→∞
‖RMufk‖H∞

μ
= 0.

Lemma 5. (see [10, 18]). Let p = n + 1 + q, ∀w ∈ B, |gw(z)| ≤ C
|1−〈z,w〉| , then∫

B

|gw(z)|p(1− |z|2)qgs(z, a)dV (z) ≤ C.

3. THE BOUNDEDNESS AND COMPACTNESS OF RMu : F (p, q, s) → H∞
μ (H∞

μ,0)

In this section we characterize the boundedness and compactness ofRMu : F (p, q, s)
→ H∞

μ (H∞
μ,0).

Case 3.1. p < q + n + 1

Theorem 1. Assume that 0 < p, s < ∞,−n−1 < q < ∞, q+s > −1, p < q+n+1
and μ is a normal weight. Then RMu : F (p, q, s) → H∞

μ is bounded if and only if

(1) sup
z∈B

μ(|z|)|Ru(z)|
(1 − |z|2)n+1+q

p
−1

< ∞,

and

(2) sup
z∈B

μ(|z|)|u(z)|
(1− |z|2)n+1+q

p

< ∞.

Proof. First let us assume that conditions (1) and (2) hold. For any f ∈ F (p, q, s),
by Lemma 1 and Lemma 2, we have

(3)

μ(|z|)|RMuf(z)|
= μ(|z|)|Ru(z)f(z)+ u(z)Rf(z)|

≤ C‖f‖
B

n+1+q
p

(
μ(|z|)|Ru(z)|

(1− |z|2)n+1+q
p

−1
+

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

)

≤ C‖f‖F (p,q,s)

(
μ(|z|)|Ru(z)|

(1− |z|2)n+1+q
p

−1
+

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

)
.
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From this, conditions (1) and (2), we can get the operator RMu: F (p, q, s) → H∞
μ is

bounded. Conversely, assume that the operator RMu : F (p, q, s) → H∞
μ is bounded.

Then for any f ∈ F (p, q, s), there is a positive constant C independent of f such
that ‖RMuf‖H∞

μ
≤ C‖f‖F (p,q,s). Taking the test function f(z) ≡ 1 ∈ F (p, q, s), we

see that

sup
z∈B

μ(|z|)|Ru(z)| < ∞.(4)

For ω ∈ B, set

fω(z) =
(1 − |ω|2)1+n+1+q

p

(1 − 〈z, ω〉) 2(n+1+q)
p

− (1 − |ω|2)
(1− 〈z, ω〉)n+1+q

p

, z ∈ B,(5)

then

Rfω(z) = 2A
(1− |ω|2)1+n+1+q

p · (zω)

(1− 〈z, ω〉)
2(n+1+q)

p
+1

− A
(1 − |ω|2) · (zω)

(1 − 〈z, ω〉)n+1+q
p

+1
, z ∈ B,(6)

where A = n+1+q
p . It is easy to see that fω ∈ F (p, q, s) for each ω ∈ B and

sup
ω∈B

‖fω‖F (p,q,s) ≤ C by using the same methods as in [43], and

fω(ω) = 0, Rfω(ω) = A
|ω|2

(1 − |ω|2)n+1+q
p

.(7)

Thus for any w ∈ B, we get

(8)

|A|μ(|ω|)|u(ω)||ω|2
(1 − |ω|2)n+1+q

p

= μ(|ω|)|u(ω)Rfω(ω)|

≤ μ(|ω|)|Ru(ω)fω(ω) + u(ω)Rfω(ω)|
≤ ‖RMu(fω)‖H∞

μ
≤ C‖RMu‖F (p,q,s)→H∞

μ
.

Let r ∈ (0, 1), we have

(9)

sup
r<|ω|<1

μ(|ω|)|u(ω)|
(1 − |ω|2)n+1+q

p

<
1
r2

sup
r<|ω|<1

μ(|ω|)|u(ω)| · |ω|2
(1 − |ω|2)n+1+q

p

≤ C‖RMufω‖H∞
μ

≤ C‖RMu‖F (p,q,s)→H∞
μ

.
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Using the fact

(10)

sup
|ω|≤r

μ(|ω|)|u(ω)|
(1 − |ω|2)n+1+q

p

≤ 1

(1 − r2)
n+1+q

p

sup
|ω|≤r

μ(|ω|)|u(ω)| < C.

Combining (9) and (10), we get (2). To prove (1), let ω ∈ B and set

gω(z) =
1 − |ω|2

(1− 〈z, ω〉)n+1+q
p

.(11)

Then

Rgω(z) = A
(1 − |ω|2)(zω)

(1 − 〈z, ω〉)n+1+q
p

+1
.

It is well known gω ∈ F (p, q, s) and sup
ω∈B

‖gω‖F (p,q,s) ≤ C (see, e.g., [43]), and we

have

gω(ω) =
1

(1− |ω|2)n+1+q
p

−1
, Rgω(ω) = A

|ω|2
(1 − |ω|2)n+1+q

p

.(12)

For any ω ∈ B, by using (2), (12) and the triangle inequality we get

(13)

μ(|ω|)|Ru(ω)|
(1 − |ω|2)n+1+q

p
−1

≤ μ(|ω|)|Ru(ω)gω(ω) + u(ω)Rgω(ω)|+ |A|μ(|ω|)|u(ω)||ω|2
(1 − |ω|2)n+1+q

p

≤ ‖RMugω‖H∞
μ

+ C ≤ C‖RMu‖F (p,q,s)→H∞
μ

+ C.

From this, we can get (1), finishing the proof of the theorem.

Theorem 2. Assume that 0 < p, s < ∞,−n−1 < q < ∞, q+s > −1, p < q+n+1
and μ is a normal weight, then the following statements are equivalent:

(A) RMu : F (p, q, s) → H∞
μ is compact;

(B) RMu : F (p, q, s) → H∞
μ,0 is compact;

(C)

(14) lim
|z|→1

μ(|z|)|Ru(z)|
(1− |z|2)n+1+q

p
−1

= 0
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and

(15) lim
|z|→1

μ(|z|)|u(z)|
(1− |z|2)n+1+q

p

= 0.

Proof. (B) ⇒ (A). This implication is obvious.
(A) ⇒ (C). Suppose that the operator RMu : F (p, q, s) → H∞

μ is compact, then
RMu : F (p, q, s) → H∞

μ is bounded. Let {zk} be a sequence in B such that |zk| → 1
as k → ∞. Set fk(z) = fzk

(z), and we can have

fk(z) =
(1− |zk|2)

n+1+q
p

+1

(1− 〈z, zk〉)
2(n+1+q)

p

− (1 − |zk|2)
(1 − 〈z, zk〉)

n+1+q
p

, k ∈ N.(16)

It is easy to see fk ∈ F (p, q, s), sup
k∈N

‖fk‖F (p,q,s) ≤ C and fk converges to zero

uniformly on the compact subsets of B, using Lemma 4, we get lim
k→∞

‖RMufk‖H∞
μ

= 0.

By (7), we have

fk(zk) = 0, Rfk(zk) = A
|zk|2

(1 − |zk|2)
n+1+q

p

,

so

(17)

|A|μ(|zk|)|u(zk)||zk|2
(1 − |zk|2)

n+1+q
p

= μ(|zk|)|Rfk(zk)u(zk) + fk(zk)Ru(zk)|
≤ ‖RMufk‖H∞

μ
→ 0, as k → ∞.

Hence
lim

k→∞
μ(|zk|)|u(zk)|

(1− |zk|2)
n+1+q

p

= lim
k→∞

μ(|zk|)|u(zk)||zk|2
(1− |zk|2)

n+1+q
p

= 0,

which means that (15) holds. To prove (14), we set gk(z) = gzk
(z), that is

gk(z) =
1 − |zk|2

(1− 〈z, zk〉)
n+1+q

p

, z ∈ B.(18)

It is obvious gk ∈ F (p, q, s), sup
k∈N

‖gk‖F (p,q,s) ≤ C and gk converges to zero uniformly

on the compact subsets of B. By Lemma 4, we have lim
k→∞

‖RMugk‖H∞
μ

= 0.

By (12), we have

gk(zk) =
1

(1− |zk|2)
n+1+q

p
−1

, Rgk(zk) = A
|zk|2

(1 − |zk|2)
n+1+q

p

,
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so

(19)

μ(|zk|)|Ru(zk)|
(1− |zk|2)

n+1+q
p

−1

≤ ‖RMu(gk)‖H∞
μ

+ |A|μ(|zk|)|u(zk)||zk|2

(1−|zk|2)
n+1+q

p

→ 0, as k → ∞,

hence (14) holds.
(C) ⇒ (B) Assume that (14) and (15) hold. Then by using (3), for every f ∈

F (p, q, s), we have
μ(|z|)|RMuf(z)| → 0, as |z| → 1.

Hence RMuf ∈ H∞
μ,0. By Theorem 1, the operator RMu : F (p, q, s) → H∞

μ is
bounded, so that the operator RMu : F (p, q, s) → H∞

μ,0 is bounded. And for every
ε > 0, there is a δ ∈ (0, 1), such that

μ(|z|)|Ru(z)|
(1− |z|2) q+n+1

p
−1

< ε,(20)

and

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

< ε,(21)

for δ < |z| < 1. Let {ak} ⊂ F (p, q, s), sup
k∈N

‖ak‖F (p,q,s) ≤ C and ak converge to zero

uniformly on the compact subsets of B, by the Cauchy integral estimates, we have that
Rak also converges to zero uniformly on the compact subsets of B. Hence, we have

(22)

‖(RMu)ak‖H∞
μ

= sup
z∈B

μ(|z|)|(RMuak)(z)|
= sup

z∈B

μ(|z|)|Ru(z)ak(z) + u(z)Rak(z)|

≤ ( sup
|z|≤δ

+ sup
δ<|z|<1

)μ(|z|)|Ru(z)ak(z) + u(z)Rak(z)|

≤ sup
|z|≤δ

μ(|z|) |Ru(z)ak(z) + u(z)Rak(z)|

+ sup
δ<|z|<1

(
μ(|z|)|Ru(z)|

(1 − |z|2) q+n+1
p

−1
+

μ(|z|)|u(z)|
(1− |z|2)n+1+q

p

)
‖ak‖F (p,q,s).

By (20)-(22) and since the sequences ak(z) and Rak(z) converge to zero uniformly
on the compact set {z ∈ B : |z| ≤ δ}, we have that for sufficiently large k

‖(RMu)ak‖H∞
μ

≤ ε + Cε.
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Applying Lemma 4, we can get the operator RMu : F (p, q, s) → H∞
μ,0 is compact.

Case 3.2. p = q + n + 1

Theorem 3. Assume that 0 < p, s < ∞,−n−1 < q < ∞, q+s > −1, p = q+n+1
and μ is a normal weight, then, RMu : F (p, q, s) → H∞

μ is bounded if and only if

(23) sup
z∈B

μ(|z|)|u(z)|
1 − |z|2 < ∞,

and

(24) sup
z∈B

μ(|z|)|Ru(z)| · log
2

1− |z|2 < ∞.

Proof. First we assume that conditions (23) and (24) hold. For any f ∈ F (p, q, s),
by Lemma 1 and Lemma 2, we have

(25)

μ(|z|)|RMuf(z)|
= μ(|z|)|u(z)Rf(z)+ Ru(z)f(z)|

≤ C‖f‖B
(

μ(|z|)|u(z)|
1 − |z|2 + μ(|z|)|Ru(z)| · log

2
1 − |z|2

)

≤ C‖f‖F (p,q,s)

(
μ(|z|)|u(z)|

1 − |z|2 + μ(|z|)|Ru(z)| · log
2

1 − |z|2
)

,

so that the operator RMu : F (p, q, s) → H∞
μ is bounded. Conversely, assume that the

operator RMu : F (p, q, s) → H∞
μ is bounded. Then for any f ∈ F (p, q, s), there is a

positive constant C independent of f such that ‖RMuf‖ ≤ C‖f‖F (p,q,s). Given any
ω ∈ B, set

hω(z) = log
2

1 − 〈zω〉 −
(
log 2

1−〈zω〉
)2

log 2
1−|ω|2

, z ∈ B,(26)

then

Rhω(z) =
zω

1 − zω
−

(
2 log 2

1−zω

)
(zω)(

log 2
1−|ω|2

)
(1− zω)

.

It is known that hω(z) ∈ F (p, q, s) and sup
ω∈B

‖hω‖F (p,q,s) ≤ C < ∞ (see [31, 43]), and

moreover we have that

hω(ω) = 0, Rhω(ω) = − |ω|2
1 − |ω|2 .
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Hence

(27)

μ(|ω|)|u(ω)||ω|2
(1 − |ω|2)n+1+q

p

= μ(|ω|)|Rhω(ω)u(ω)|

≤ μ(|ω|)|Rhω(ω)u(ω) + Ru(ω)hω(ω)|
≤ ‖RMuhω‖H∞

μ
≤ C‖RMu‖F (p,q,s)→H∞

μ
.

Similar to the proof of (2) in Theorem 1, (23) holds. To prove (24), we set

lω(z) = log
2

1− 〈zω〉 , z ∈ B,(28)

then
Rlω(z) =

zω

1 − zω
.

It is known that lω(z) ∈ F (p, q, s), by Lemma 5, we can see sup
ω∈B

‖lω‖F (p,q,s) ≤ C,

and we have

lω(ω) = log
2

1− |ω|2 , Rlω(ω) =
|ω|2

1 − |ω|2 ,

so

(29)

μ(|ω|)|Ru(ω)| · log
2

1 − |ω|2
≤ μ(|ω|)|Ru(ω)lω(ω) + Rlω(ω)u(ω)|+ μ(|ω|)|u(ω)| · |ω|2

1 − |ω|2
≤ ‖RMulω‖H∞

μ
+ C

≤ ‖RMu‖F (p,q,s)→H∞
μ

+ C,

which means that (24) holds.

Theorem 4. Assume that 0 < p, s < ∞,−n−1 < q < ∞, q+s > −1, p = q+n+1
and μ is a normal weight, then the following statements are equivalent:

(A)RMu : F (p, q, s) → H∞
μ is compact;

(B)RMu : F (p, q, s) → H∞
μ,0 is compact;

(C)

(30) lim
|z|→1

μ(|z|)|u(z)|
1− |z|2 = 0,

and

(31) lim
|z|→1

μ(|z|)|Ru(z)| · log
2

1 − |z|2 = 0.
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Proof. (B) ⇒ (A). This implication is obvious.
(A) ⇒ (C) Suppose that the operator RMu : F (p, q, s) → H∞

μ is compact, then
RMu : F (p, q, s) → H∞

μ is bounded. Let {zk} be a sequence in B such that |zk| → 1
as k → ∞. Set hk(z) = hzk

(z), that is

hk(z) =

(
log 2

1−〈z,zk〉
)2

log 2
1−|zk|2

−
(
log 2

1−〈z,zk〉
)3

(
log 2

1−|zk |2
)2 , k ∈ N.(32)

Then, hk ∈ F (p, q, s) , sup
k∈N

‖hk‖F (p,q,s) ≤ C and hk converges to zero uniformly on

the compact subsets of B as k → ∞. By Lemma 4, we have lim
k→∞

‖RMuhk‖H∞
μ

= 0,
and we can get

hk(zk) = 0, Rhk(zk) = − |zk|2
1 − |zk|2 .

So

(33)

μ(|zk|)|u(zk)||zk|2
1 − |zk|2

≤ μ(|zk|)|Rhk(zk)u(zk) + hk(zk)Ru(zk)|
≤ ‖RMuhk‖H∞

μ
→ 0, as k → ∞,

hence, (30) holds. To prove (31), we set

lk(z) =

(
log 2

1−〈z,zk〉
)2

log 2
1−|zk|2

, k ∈ N.(34)

Then, lk ∈ F (p, q, s) , sup
k∈N

‖lk‖F (p,q,s) ≤ C and lk converges to zero uniformly on the

compact subsets of B as k → ∞. By Lemma 4, we have lim
k→∞

‖(RMu)lk‖H∞
μ

= 0,
and moreover we have that

lk(zk) = log
2

1 − |zk|2 , Rlk(zk) = 2
|zk|2

1− |zk|2 ,

so

(35)

μ(|zk|)|Ru(zk)| · log
2

1− |zk|2
≤ μ(|zk|)|Rlk(zk)u(zk) + lk(zk)Ru(zk)| + 2

μ(|zk|)|u(zk)||zk|2
1 − |zk|2

≤ ‖RMu(lk)‖H∞
μ

+ 2
μ(|zk|)|u(zk)||zk|2

1 − |zk|2
→ 0, as k → ∞,
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which means that (31) holds.
(C) ⇒ (B) Assume that (30) and (31) hold. Similar to Theorem 2, the operator

RMu : F (p, q, s) → H∞
μ,0 is bounded. And for every ε > 0, there is a δ ∈ (0, 1), such

that

μ(|z|)|Ru(z)| · log
2

1 − |z|2 < ε,(36)

and

μ(|z|)|u(z)|
1 − |z|2 < ε,(37)

whenever δ < |z| < 1. Let bk ⊂ F (p, q, s), sup
k∈N

‖bk‖F (p,q,s) ≤ C and bk converge to

zero uniformly on the compact subsets of B, by the Cauchy integral estimates, we have
that Rbk also converges to zero uniformly on the compact subsets of B. Hence,

(38)

‖(RMu)bk‖H∞
μ

= sup
z∈B

μ(|z|)|(RMu)bk(z)|
≤ sup

z∈B

μ(|z|)|Ru(z)bk(z) + u(z)Rbk(z)|
≤ sup

|z|≤δ

μ(|z|)|Ru(z)bk(z) + u(z)Rbk(z)|
+ sup

δ<|z|<1
μ(|z|)|Ru(z)bk(z) + u(z)Rbk(z)|

≤ sup
|z|≤δ

μ(|z|)|Ru(z)bk(z) + u(z)Rbk(z)|

+C sup
δ<|z|<1

(
μ(|z|)|Ru(z)| · log

2
1 − |z|2 +

μ(|z|)|u(z)|
1− |z|2

)
.

By (36)-(38), since the sequences bk(z) and Rbk(z) converge to zero uniformly on the
compact set {z ∈ B : |z| ≤ δ}, we have

lim
k→∞

‖(RMu)bk‖H∞
μ

= 0.

Applying Lemma 4, we get RMu : F (p, q, s) → H∞
μ,0 is compact.

Case 3.3. p > q + n + 1

Theorem 5. Assume that 0 < p, s < ∞,−n−1 < q < ∞, q+s > −1, p > q+n+1
and μ is a normal weight, then RMu : F (p, q, s) → H∞

μ is bounded if and only if
u ∈ Bμ and

sup
z∈B

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

< ∞.(39)
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Proof. First let us assume that conditions u ∈ Bμ and (39) hold. For any f ∈
F (p, q, s), by Lemma 1 and Lemma 2, we have

(40)

μ(|z|)|(RMuf)(z)|
= μ(|z|)|Ru(z)f(z) + u(z)Rf(z)|

≤ C‖f‖
B

n+1+q
p

(
μ(|z|)|Ru(z)|+ μ(|z|)|u(z)|

(1 − |z|2)n+1+q
p

)

≤ C‖f‖F (p,q,s)

(
μ(|z|)|Ru(z)|+ μ(|z|)|u(z)|

(1− |z|2)n+1+q
p

)
.

It follows that the operator RMu: F (p, q, s) → H∞
μ is bounded. Conversely, suppose

the operator RMu : F (p, q, s) → H∞
μ is bounded. Then for any f ∈ F (p, q, s), there

is a positive constant C independent of f such that ‖(RMu)f‖H∞
μ

≤ C‖f‖F (p,q,s).
For f ≡ 1, we have that u ∈ Bμ. Similar to the proof of (2), (39) follows.

Theorem 6. Assume that 0 < p, s < ∞,−n − 1 < q < ∞, q + s > −1,
p > q + n + 1, μ is a normal weight, then the following statements are equivalent:

(A)RMu : F (p, q, s) → H∞
μ is compact;

(B) u ∈ Bμ and

lim
|z|→1

μ(z)|u(z)|
(1 − |z|2)n+1+q

p

= 0.(41)

Proof. (A) ⇒ (B). We assume that RMu : F (p, q, s) → H∞
μ is compact. Then

for f ≡ 1, we obtain that u ∈ Bμ. Exploiting the test function in (16), similarly to the
proof of Theorem 2, we obtain (41) holds.

(B) ⇒ (A).Assume that {ck}k∈N is a sequence in F (p, q, s) such that sup
k∈N

‖ck‖F (p,q,s) ≤
C, and ck → 0 uniformly on the compact subsets of B as k → ∞. By (41), we have
for any ε > 0, there is a δ ∈ (0, 1), when δ < |z| < 1,

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

< ε.(42)

From (42) we have that for sufficiently large k

(43)

‖(RMu)ck‖H∞
μ

= sup
z∈B

μ(|z|)|(RMuck)(z)|
= sup

z∈B

μ(|z|)|Rck(z)u(z) + Ru(z)ck(z)|
≤ sup

|z|≤δ
μ(|z|)|Rck(z)u(z) + Ru(z)ck(z)|

+ sup
δ<|z|<1

μ(|z|)|Rck(z)u(z)|+ ‖u‖Bμ sup
z∈B

|ck(z)|
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≤ ε + C sup
δ<|z|<1

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

+ ‖u‖Bμ sup
z∈B

|ck(z)|

≤ ε + Cε + ‖u‖Bμ sup
z∈B

|ck(z)|.

Since p > q + n + 1 then ∫ 1

0

dt

(1 − t2)
n+1+q

p

< +∞.

Applying the corresponding result for the μ-Bloch space (see [36, Lemma 4.2]), we
also have

lim
k→∞

sup
z∈B

|ck(z)| = 0.

From (43) it follows that lim
k→∞

‖RMuck‖H∞
μ

= 0, so that the operator RMu : F (p, q, s)

→ H∞
μ is compact, finishing the proof of the theorem.

Theorem 7. Assume that 0 < p, s < ∞,−n − 1 < q < ∞, q + s > −1,
p > q + n + 1 and μ is a normal weight, then the following statements are equivalent:

(A) RMu : F (p, q, s) → H∞
μ,0 is compact;

(B) u ∈ Bμ,0 and

lim
|z|→1

μ(|z|)|u(z)|
(1 − |z|2)n+1+q

p

= 0.(44)

Proof. (A) ⇒ (B). We assume that RMu : F (p, q, s) → H∞
μ,0 is compact. For

f ≡ 1, we obtain that u ∈ Bμ,0. In the same way as in Theorem 6, we obtain that (44)
holds.

(B) ⇒ (A). By Lemma 1 and Lemma 2, we have

μ(|z|)|(RMuf)(z)| = μ(|z|)|Rf(z)u(z) + Ru(z)f(z)|
≤ C‖f‖F (p,q,s)

μ(|z|)|u(z)|
(1− |z|2)n+1+q

p

+ C‖f‖F (p,q,s)μ(|z|)|Ru(z)|.(45)

This along with Theorem 5 implies that RMu{f : ‖f‖F (p,q,s) ≤ 1} is bounded.
Taking the supremum over the unit ball in F (p, q, s). Letting |z| → 1 in (45), using
the condition (B), and by applying Lemma 3, we get the compactness of the operator
RMu : F (p, q, s) → H∞

μ,0. This completes the proof of the theorem.
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9. S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch
type spaces, J. Math. Anal. Appl., 338(2) (2008), 1282-1295.
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11. S. Li and S. Stević, Composition followed by differentiation between H∞ and α-Bloch
spaces (English summary), Houston J. Math., 35(1) (2009), 327-340.

12. X. Liu and Y. Yu, The product of differentiation operator and multiplication operator
from H∞ to Zygmund spaces, J. Xuzhou Norm. Univ. Nat. Sci. Ed., 29(1) (2011),
37-39.

13. Y. Liu, Boundedness of the Bergman type operators on mixed norm spaces, Proc. Amer.
Math. Soc., 130(8) (2002), 2363-2367 (electronic).

14. Y. Liu and Y. Yu, Weighted differentiation composition operators from mixed-norm to
Zygmund spaces, Numer. Funct. Anal. Optim., 31(8) (2010), 936-954.

15. Y. Liu and Y. Yu, On compactness for iterated commutators, Acta Math. Sci. Ser. B
Engl. Ed., 31B(2) (2011), 491-500.

16. Y. Liu and Y. Yu, Composition followed by differentiation between H∞ and Zygmund
spaces, Complex. Anal. Oper. Theory, 6(1) (2012), 121-137.

17. Y. Liu and J. Zhou, On an operator MuR from mixed norm spaces to Zygmund-type
spaces on the unit ball, Complex. Anal. Oper. Theory, DOI 10.1007/s11785-012-0237-7.



176 Jie Zhou and Yongmin Liu
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25. S. Stević, Weighted differentiation composition operators from mixed-norm spaces to
weighted-type spaces, Appl. Math. Comput., 211(1) (2009), 222-233.
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