TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 1, pp. 143-159, February 2013
DOI: 10.11650/tjm.17.2013.1710
This paper is available online at http://journal.taiwanmathsoc.org.tw

MILD WELL-POSEDNESS OF SECOND ORDER DIFFERENTIAL EQUATIONS ON THE REAL LINE

Shangquan Bu* and Gang Cai

Abstract

We study the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posedness of the second order differential equation $\left(P_{2}\right): u^{\prime \prime}=A u+f$ on the real line \mathbb{R}, where A is a densely defined closed operator on a Banach space X. We completely characterize the ($W^{2, p}, W^{1, p}$)-mild well-posedness of $\left(P_{2}\right)$ by L^{p}-Fourier multipliers defined by the resolvent of A.

1. Introduction

Recently, Bu considered the $\left(W^{1, p}, L^{p}\right)$-mild well-posedness of the following problem:

$$
\left(P_{1}\right): \quad u^{\prime}(t)=A u(t)+f(t)
$$

on the real line \mathbb{R}, where A is a closed operator on a complex Banach space X and $1 \leq p<\infty$ [6]. He has shown that $\left(P_{1}\right)$ is $\left(W^{1, p}, L^{p}\right)$-mildly well-posed if and only if $i \mathbb{R} \subset \rho(A)$ and the function m given by $m(x)=(i x-A)^{-1}$ defines an L^{p} Fourier multiplier, where $\rho(A)$ denotes the resolvent set of A. On the other hand, the corresponding mild well-posedness for the periodic problem:

$$
\left(P_{1, \text { per }}\right):\left\{\begin{array}{l}
u^{\prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq 2 \pi \\
u(0)=u(2 \pi)
\end{array}\right.
$$

has been studied by Keyantuo and Lizama, where $f \in L^{p}(0,2 \pi ; X), 1 \leq p<\infty$ [8]. They have shown that $\left(P_{1, \text { per }}\right)$ is $\left(W^{1, p}, L^{p}\right)$-mild well-posed if and only if $i \mathbb{Z} \subset \rho(A)$ and $\left((i n-A)^{-1}\right)_{n \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier. In the same paper, they also considered the second order inhomogeneous problem of the form:

$$
\left(P_{2, \text { per }}\right):\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq 2 \pi \\
u(0)=u(2 \pi) \\
u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

[^0]in the space $L^{p}(0,2 \pi ; X), 1 \leq p<\infty$. They introduced two notions of mild wellposedness for $\left(P_{2, \text { per }}\right)$ and they completely characterized the mild well-posedness of $\left(P_{2, \text { per }}\right)$ by L^{p}-Fourier multipliers. More precisely, they proved that $\left(P_{2, \mathrm{per}}\right)$ is $\left(W^{2, p}, L^{p}\right)$ mildly well-posed if and only if $\left\{-k^{2}: k \in \mathbb{Z}\right\} \subset \rho(A)$ and $\left(\left(k^{2}+A\right)^{-1}\right)_{k \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier; $\left(P_{2, \text { per }}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed if and only if $\left\{-k^{2}: k \in \mathbb{Z}\right\} \subset \rho(A)$ and $\left(i k\left(k^{2}+A\right)^{-1}\right)_{k \in \mathbb{Z}}$ is an L^{p}-Fourier multiplier. We note that the mild well-posedness of $\left(P_{1, \text { per }}\right)$ was initially studied by Staffans in the special case when X is a Hilbert space and $p=2$ [11].

In this paper, we study the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posedness of the following problem:

$$
\left(P_{2}\right): \quad u^{\prime \prime}(t)=A u(t)+f(t)
$$

on the real line \mathbb{R}, where A is a closed operator in a complex Banach space X and $1 \leq$ $p<\infty$. Our main result is a characterization of the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posedness for $\left(P_{2}\right)$: when A is densely defined, then $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mild well-posed if and only if $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} given by $m_{1}(x)=-\left(x^{2}+A\right)^{-1}$ and $m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers. We also introduce and study the $\left(W^{2, p}, W^{1+\theta, p}\right)$-mild well-posedness for $\left(P_{2}\right)$ when $0 \leq \theta \leq 1$. When $\theta=0$, we recover our main result.

We recall that the regularity of the problems $\left(P_{1}\right)$ and $\left(P_{2}\right)$ have been extensively studied in recent years. See e.g. [4-11] and references therein. Weis obtained a characterization of L^{p}-well-posedness for $\left(P_{1}\right)$ using his operator-valued Fourier multiplier theorem on $L^{p}(\mathbb{R} ; X)$ when X is a UMD Banach space and $1<p<\infty$ [12]. Arendt and Bu studied L^{p}-well-posedness in interpolation spaces between X and $D(A)$ and mild well-poseness for $\left(P_{1}\right)$ using the method of sum of bisectorial operators [4]. Schweiker studied the L^{p}-mild well-posedness and the well-posedness in the space $\operatorname{BUC}(\mathbb{R} ; X)$ of X-valued bounded and uniformly continuous functions for $\left(P_{1}\right)$ and $\left(P_{2}\right)$ [10]. Arendt, Batty and Bu obtained a characterization of the well-posedness of $\left(P_{1}\right)$ in Hölder continuous function space [2] (see also [1] for a systematic study of $\left(P_{1}\right)$ and $\left(P_{2}\right)$).

2. Mild-Well-Posedness and L^{p}-Fourier Multipliers

Let X be a complex Banach space and $1 \leq p<\infty$, we define as usual the first order Sobolev spaces by

$$
\begin{equation*}
W^{1, p}(\mathbb{R} ; X):=\left\{f \in L^{p}(\mathbb{R} ; X): f^{\prime} \in L^{p}(\mathbb{R} ; X)\right\} \tag{1}
\end{equation*}
$$

where f^{\prime} is the distributional derivative of f, equipped with the norm

$$
\|f\|_{W^{1, p}}:=\|f\|_{L^{p}}+\left\|f^{\prime}\right\|_{L^{p}}
$$

and the second order Sobolev spaces by

$$
\begin{equation*}
W^{2, p}(\mathbb{R} ; X):=\left\{f \in L^{p}(\mathbb{R} ; X): f^{\prime}, f^{\prime \prime} \in L^{p}(\mathbb{R} ; X)\right\} \tag{2}
\end{equation*}
$$

equipped with the norm

$$
\|f\|_{W^{2, p}}:=\|f\|_{L^{p}}+\left\|f^{\prime}\right\|_{L^{p}}+\left\|f^{\prime \prime}\right\|_{L^{p}} .
$$

It is well known that $W^{1, p}(\mathbb{R} ; X)$ and $W^{2, p}(\mathbb{R} ; X)$ are Banach spaces.
Let A be a densely defined closed operator on X, we will always consider $D(A)$ as a Banach space equipped with its graph norm and we will consider the $D(A)$-valued Sobolev space $W^{2, p}(\mathbb{R} ; D(A))$ which is a dense subspace of $L^{p}(\mathbb{R} ; X)$ (see Lemma 2.3).

If $f \in L^{p}(\mathbb{R} ; X), u \in W^{2, p}(\mathbb{R} ; X) \cap L^{p}(\mathbb{R} ; D(A))$ is called a strong L^{p}-solution of $\left(P_{2}\right)$, if the equation $\left(P_{2}\right)$ is satisfied a.e. on \mathbb{R}. We say that $\left(P_{2}\right)$ is L^{p}-well-posed if for each $f \in L^{p}(\mathbb{R} ; X)$, there exists a unique strong L^{p}-solutuion of $\left(P_{2}\right)$. When $\left(P_{2}\right)$ is L^{p}-well-posed, we let $\mathcal{B} f:=u$, then \mathcal{B} is linear and \mathcal{B} maps continuously $L^{p}(\mathbb{R} ; X)$ into $W^{2, p}(\mathbb{R} ; X)$ by the Closed Graph Theorem. Therefore the image of $L^{p}(\mathbb{R} ; X)$ by \mathcal{B} is contained in $W^{1, p}(\mathbb{R} ; X)$. On the other hand, it is easy to verify that $\mathcal{A B} u=\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$ by the L^{p}-well-posedness of $\left(P_{2}\right)$, where \mathcal{A} is defined by $\mathcal{A} u=u^{\prime \prime}-A u$ with domain $D(\mathcal{A}):=W^{2, p}(\mathbb{R} ; D(A))$.

For the characterization of the L^{p}-well-posedness of $\left(P_{2}\right)$, strong conditions on the geometry of the underlying Banach space X and the Rademacher boundedness of the resolvent of A are needed [5]. This is the reason we consider in this paper a mild well-posedness for $\left(P_{2}\right)$: besides other conditions on the closed operator A, we assume that there exists a strong L^{p}-solution of (P_{2}) only for f in a dense subspace (namely $W^{1, p}(\mathbb{R} ; D(A))$) of $L^{p}(\mathbb{R} ; X)$ (see [8] for a similar notion for $\left(P_{2, p e r}\right)$).

Definition 2.1. Let $1 \leq p<\infty$ and let A be a densely defined closed operator on X with domain $D(A)$. We say that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed, if there exists a bounded linear operator \mathcal{B} that maps $L^{p}(\mathbb{R} ; X)$ continuously into itself with range contained in $W^{1, p}(\mathbb{R} ; X), \mathcal{B}\left(W^{1, p}(\mathbb{R} ; D(A))\right) \subset W^{2, p}(\mathbb{R} ; D(A))$ and $\mathcal{A B} u=$ $\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$, where $\mathcal{A} u=u^{\prime \prime}-A u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. We call \mathcal{B} the solution operator of the problem $\left(P_{2}\right)$.

Remarks 2.1.

1. When $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed, if \mathcal{B} is the solution operator, for each $u \in W^{2, p}(\mathbb{R} ; D(A))$, we have $(\mathcal{B} u)^{\prime \prime}-A(\mathcal{B} u)=u$ by assumption. Suppose that $v \in W^{2, p}(\mathbb{R} ; D(A))$ also satisfies $v^{\prime \prime}-A v=u$, i.e., $\mathcal{A} v=u$. Then $\mathcal{B A} v=\mathcal{B} u=v$ by assumption. This shows that for each $u \in W^{2, p}(\mathbb{R} ; D(A))$, there exists a unique solution $v \in W^{2, p}(\mathbb{R} ; D(A))$ satisfying $v^{\prime \prime}-A v=u$ and this solution is given by $\mathcal{B} u$.
2. When $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed, if \mathcal{B} is the solution operator, then \mathcal{B} is a bounded linear operator from $L^{p}(\mathbb{R} ; X)$ into $W^{1, p}(\mathbb{R} ; X)$. Indeed, if $u_{n}, u \in L^{p}(\mathbb{R} ; X), u_{n} \rightarrow u$ in $L^{p}(\mathbb{R} ; X)$ and $\mathcal{B} u_{n} \rightarrow v$ in $W^{1, p}(\mathbb{R} ; X)$, then $\mathcal{B} u_{n} \rightarrow v$ in $L^{p}(\mathbb{R} ; X)$ as $W^{1, p}(\mathbb{R} ; X) \subset L^{p}(\mathbb{R} ; X)$ and the inclusion is
obviously continuous, therefore $v=\mathcal{B} u$ by the boundedness of \mathcal{B} on $L^{p}(\mathbb{R} ; X)$. This implies that \mathcal{B} is a bounded linear operator from $L^{p}(\mathbb{R} ; X)$ into $W^{1, p}(\mathbb{R} ; X)$ by the Closed Graph Theorem. A similar argument shows that \mathcal{B} is a bounded linear operator from $W^{1, p}(\mathbb{R} ; D(A))$ into $W^{2, p}(\mathbb{R} ; D(A))$. This implies that \mathcal{B} acts also boundedly on $W^{2, p}(\mathbb{R} ; D(A))$ by the Closed Graph Theorem.

In this paper, we will show that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mild well-posed if and only if $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} given by $m_{1}(x)=-\left(x^{2}+A\right)^{-1}$ and $m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers. This may be considered as the parallel result for $\left(P_{2}\right)$ of Keyantuo and Lizama's result obtained in [8] for the periodic problem ($P_{2 \text {,per }}$).

In order to study the ($W^{2, p}, W^{1, p}$)-mild well-posedness, we need to introduce the Fourier transform for vector-valued functions. Let X be a complex Banach space, we denote by $\mathcal{S}(\mathbb{R} ; X)$ the Schwartz class consisting of all X-valued rapidly decreasing smooth functions on \mathbb{R}, more precisely an X-valued function ϕ on \mathbb{R} is in $\mathcal{S}(\mathbb{R} ; X)$ if ϕ is infinitely differentiable and for all $m, n \in \mathbb{N} \cup\{0\}$, we have

$$
\sup _{s \in \mathbb{R}}(1+|s|)^{m}\left\|\phi^{(n)}(s)\right\|<\infty
$$

It is well-known that the Fourier transform \mathcal{F} defined on $L^{1}(\mathbb{R} ; X)$ by

$$
(\mathcal{F} \phi)(t):=\int_{\mathbb{R}} e^{-i t s} \phi(s) d s, \quad(t \in \mathbb{R})
$$

is an isomorphism on $\mathcal{S}(\mathbb{R} ; X)$ and its inverse on $\mathcal{S}(\mathbb{R} ; X)$ is given by

$$
\left(\mathcal{F}^{-1} \phi\right)(t):=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i t s} \phi(s) d s, \quad(t \in \mathbb{R})
$$

It is well known that $\mathcal{S}(\mathbb{R} ; X)$ is dense in $L^{p}(\mathbb{R} ; X), W^{1, p}(\mathbb{R} ; X)$ and $W^{2, p}(\mathbb{R} ; X)$ when $1 \leq p<\infty$ (see Lemma 2.3). Thus $W^{1, p}(\mathbb{R} ; X)\left(\right.$ resp. $W^{2, p}(\mathbb{R} ; X)$) is the completion of $\mathcal{S}(\mathbb{R} ; X)$ under the norm $\|\cdot\|_{W^{1, p}}$ (resp. $\|\cdot\|_{W^{2, p}}$).

Let $m: \mathbb{R} \rightarrow \mathcal{L}(X)$ be a bounded measurable function and $1 \leq p<\infty$, where $\mathcal{L}(X)$ is the space of all bounded linear operators on X. We say that m defines an L^{p}-Fourier multiplier, if there exists a constant $C>0$ such that

$$
\left\|\mathcal{F}^{-1}(m \mathcal{F} f)\right\|_{L^{p}} \leq C\|f\|_{L^{p}}
$$

whenever $f \in \mathcal{S}(\mathbb{R} ; X)[1,12]$. We note that when $f \in \mathcal{S}(\mathbb{R} ; X)$, the function $m \mathcal{F} f$ is in $L^{1}(\mathbb{R} ; X)$, therefore the term $\mathcal{F}^{-1}(m \mathcal{F} f)$ in the left hand side makes sense. When m is an L^{p}-Fourier multiplier, there exists a unique bounded linear operator B on $L^{p}(\mathbb{R} ; X)$ satisfying $\mathcal{F}(B f)=m \mathcal{F} f$ when $f \in \mathcal{S}(\mathbb{R} ; X)$. This follows easily from the density of $\mathcal{S}(\mathbb{R} ; X)$ in $L^{p}(\mathbb{R} ; X)[5]$.

Next we introduce the weighted L^{p}-spaces $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$, first order weighted Sobolev spaces $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$ and second order weighted Sobolev spaces $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$. We let ω be a fixed C^{2}-function on \mathbb{R} such that $\omega(t) \geq 1$ for $t \in \mathbb{R}$ and $\omega(t)=|t|$ when $|t| \geq 2$. For fixed $\alpha>0$, we let $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ be the space of all measurable functions $f: \mathbb{R} \rightarrow X$ such that

$$
\|f\|_{L_{\alpha, \omega}^{p}}:=\left(\int_{\mathbb{R}} e^{-p \alpha \omega(t)}\|f(t)\|^{p} d t\right)^{1 / p}<\infty
$$

$L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ equipped with the norm $\|\cdot\|_{L_{\alpha, \omega}^{p}}$ becomes a Banach space. We define first weighted Sobolev spaces $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$ as the space of all functions $f \in L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ such that $f^{\prime} \in L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$. Here f^{\prime} is understood in the sense of distributions. $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$ equipped with the norm

$$
\|f\|_{W_{\alpha, \omega}^{1, p}}:=\|f\|_{L_{\alpha, \omega}^{p}}+\left\|f^{\prime}\right\|_{L_{\alpha, \omega}^{p}}
$$

is a Banach space. In a similar way, we define the second order weighted Sobolev spaces $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ as the space of all functions $f \in L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ such that $f^{\prime}, f^{\prime \prime} \in$ $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$, where $f^{\prime}, f^{\prime \prime}$ are also understood in the sense of distributions. $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ equipped with the norm

$$
\|f\|_{W_{\alpha, \omega}^{2, p}}:=\|f\|_{L_{\alpha, \omega}^{p}}+\left\|f^{\prime}\right\|_{L_{\alpha, \omega}^{p}}+\left\|f^{\prime \prime}\right\|_{L_{\alpha, \omega}^{p}}
$$

is a Banach space. We need the following preparation.
Lemma 2.1. The mapping $f \mapsto \Phi(f):=e^{-\alpha \omega} f$ is an isomorphism from $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ into $L^{p}(\mathbb{R} ; X)$, from $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$ into $W^{1, p}(\mathbb{R} ; X)$ and from $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ into $W^{2, p}(\mathbb{R} ; X)$.

Proof. Follows the same lines as the proof in Bu [6], we have that the mapping $f \mapsto \Phi(f)$ is an isomorphism from $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ into $L^{p}(\mathbb{R} ; X)$ and from $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$ into $W^{1, p}(\mathbb{R} ; X)$. Next we prove that the mapping $f \mapsto \Phi(f)$ is also an isomorphism from $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ into $W^{2, p}(\mathbb{R} ; X)$. Indeed, we note that when $f \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$,

$$
\left(e^{-\alpha \omega} f\right)^{\prime}=-\alpha w^{\prime} e^{-\alpha \omega} f+e^{-\alpha \omega} f^{\prime}
$$

and

$$
\begin{aligned}
\left(e^{-\alpha \omega} f\right)^{\prime \prime} & =-\alpha \omega^{\prime \prime} e^{-\alpha \omega} f-\alpha w^{\prime}\left(-\alpha w^{\prime} e^{-\alpha \omega} f+e^{-\alpha \omega} f^{\prime}\right)-\alpha \omega^{\prime} e^{-\alpha \omega} f^{\prime}+e^{-\alpha \omega} f^{\prime \prime} \\
& =\left(-\alpha \omega^{\prime \prime}+\alpha^{2}\left(\omega^{\prime}\right)^{2}\right) e^{-\alpha \omega} f-2 \alpha \omega^{\prime} e^{-\alpha \omega} f^{\prime}+e^{-\alpha \omega} f^{\prime \prime}
\end{aligned}
$$

observe that $\omega^{\prime}, \omega^{\prime \prime}$ are bounded on \mathbb{R}. Thus $\Phi(f) \in W^{2, p}(\mathbb{R} ; X)$ whenever $f \in$ $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ and $\|\Phi(f)\|_{W^{2, p}} \leq C\|f\|_{W_{\alpha, \omega}^{2, p}}$ for some constant $C \geq 0$ depending only
on α, ω and p. The map Φ is clearly injective from $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ into $W^{2, p}(\mathbb{R} ; X)$, it remains to show that Φ is surjective. To this end we let $g \in W^{2, p}(\mathbb{R} ; X)$ and $f=e^{\alpha \omega} g$. We observe that

$$
f^{\prime}=\alpha w^{\prime} e^{\alpha \omega} g+e^{\alpha \omega} g^{\prime}
$$

and

$$
\begin{aligned}
f^{\prime \prime} & =\alpha \omega^{\prime \prime} e^{\alpha \omega} g+\alpha w^{\prime}\left(\alpha w^{\prime} e^{\alpha \omega} g+e^{\alpha \omega} g^{\prime}\right)+\alpha \omega^{\prime} e^{\alpha \omega} g^{\prime}+e^{\alpha \omega} g^{\prime \prime} \\
& =\left(\alpha \omega^{\prime \prime}+\alpha^{2}\left(\omega^{\prime}\right)^{2}\right) e^{\alpha \omega} g+2 \alpha \omega^{\prime} e^{\alpha \omega} g^{\prime}+e^{\alpha \omega} g^{\prime \prime},
\end{aligned}
$$

which implies that $f \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; X)$ and $\Phi(f)=g$. Here we have also used the fact that $\omega^{\prime}, \omega^{\prime \prime}$ are bounded on \mathbb{R}. This completes the proof.

We will transform the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posedness of $\left(P_{2}\right)$ into a similar mild well-posedness in weighted function spaces. This idea was firstly used by Mielke in the study of L^{p}-well-posedness for $\left(P_{1}\right)$ [9] (see also [6] and [10]).

Definition 2.2. Let X be a Banach space, $1 \leq p<\infty, \alpha>0$ and let $A: D(A) \rightarrow$ X be a densely defined closed operator on X. We say that $\left(P_{2}\right)$ is $\left(W_{\alpha, \omega}^{2, p}, W_{\alpha, \omega}^{1, p}\right)$ mildly well-posed, if there exists a bounded linear operator \mathcal{B}_{α} that maps boundedly from $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ into $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X), \mathcal{B}_{\alpha}\left(W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))\right) \subset W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A)), \mathcal{B}_{\alpha}$ also satisfies $\mathcal{B}_{\alpha} \mathcal{A}_{\alpha} u=\mathcal{A}_{\alpha} \mathcal{B}_{\alpha} u=u$ when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$, where $\mathcal{A}_{\alpha}=u^{\prime \prime}-A u$ when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$.

Remark 2.1. When $\left(P_{2}\right)$ is $\left(W_{\alpha, \omega}^{2, p}, W_{\alpha, \omega}^{1, p}\right)$-mildly well-posed, for each $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R}$; $D(A))$, we have $\left(\mathcal{B}_{\alpha} u\right)^{\prime \prime}-A\left(\mathcal{B}_{\alpha} u\right)=u$ by assumption. Suppose that $v \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ;$ $D(A))$ also satisfies $v^{\prime \prime}-A v=u$, i.e., $\mathcal{A}_{\alpha} v=u$. Then $\mathcal{B}_{\alpha} \mathcal{A}_{\alpha} v=\mathcal{B}_{\alpha} u=v$ by assumption. This shows that for each $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$, there exists a unique solution $v \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$ satisfying $v^{\prime \prime}-A v=u$ and this solution is given by $\mathcal{B}_{\alpha} u$.

The following lemma will be useful for proving the main results of this paper.
Lemma 2.2. Let X be a Banach space, $1 \leq p<\infty$ and let $A: D(A) \rightarrow X$ be a densely defined closed operator on X. We assume that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed. Then it is $\left(W_{\alpha, \omega}^{2, p}, W_{\alpha, \omega}^{1, p}\right)$-mildly well-posed when $\alpha>0$ is small enough.

Proof. Let $\Phi_{\alpha, \omega}(t)=e^{-\alpha \omega(t)}$ and $\Phi_{-\alpha, \omega}(t)=e^{\alpha \omega(t)}$ when $t \in \mathbb{R}$. Since $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed, there exists a bounded linear operator \mathcal{B} that maps $L^{p}(\mathbb{R} ; X)$ continuously into itself with range in $W^{1, p}(\mathbb{R} ; X), \mathcal{B}\left(W^{1, p}(\mathbb{R} ; D(A))\right) \subset$ $W^{2, p}(\mathbb{R} ; D(A))$ and $\mathcal{A B} u=\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. Let $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ;$ $D(A))$ and let $u_{1}=\Phi_{\alpha, \omega} u$. It follows from Lemma 2.1 that $u_{1} \in W^{2, p}(\mathbb{R} ; D(A))$. We have $u_{1}^{\prime \prime}-A u_{1} \in L^{p}(\mathbb{R} ; X)$ and $\mathcal{B}\left(u_{1}^{\prime \prime}-A u_{1}\right)=u_{1}$ by assumption and Remarks 2.1. We observe that

$$
u_{1}^{\prime}=-\alpha \omega^{\prime} \Phi_{\alpha, \omega} u+\Phi_{\alpha, \omega} u^{\prime}
$$

and

$$
\begin{aligned}
u_{1}^{\prime \prime} & =-\alpha \omega^{\prime \prime} \Phi_{\alpha, \omega} u-\alpha \omega^{\prime}\left(-\alpha \omega^{\prime} \Phi_{\alpha, \omega} u+\Phi_{\alpha, \omega} u^{\prime}\right)-\alpha \omega^{\prime} \Phi_{\alpha, \omega} u^{\prime}+\Phi_{\alpha, \omega} u^{\prime \prime} \\
& =\left(-\alpha \omega^{\prime \prime}+\alpha^{2}\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} u-2 \alpha \omega^{\prime} \Phi_{\alpha, \omega} u^{\prime}+\Phi_{\alpha, \omega} u^{\prime \prime}
\end{aligned}
$$

It follows that
$\mathcal{B}\left(u_{1}^{\prime \prime}-A u_{1}\right)=-\alpha \mathcal{B}\left[\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} u+2 \omega^{\prime} \Phi_{\alpha, \omega} u^{\prime}\right]+\mathcal{B} \Phi_{\alpha, \omega} u^{\prime \prime}-\mathcal{B} A \Phi_{\alpha, \omega} u=\Phi_{\alpha, \omega} u$, which implies

$$
\begin{equation*}
\mathcal{B} \Phi_{\alpha, \omega}\left(u^{\prime \prime}-A u\right)=\Phi_{\alpha, \omega} u+\alpha \mathcal{B}\left[\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} u+2 \omega^{\prime} \Phi_{\alpha, \omega} u^{\prime}\right] . \tag{3}
\end{equation*}
$$

For $u \in W^{1, p}(\mathbb{R} ; X)$, we define

$$
D u:=\mathcal{B}\left[\left(\omega^{\prime \prime}+\alpha\left(w^{\prime}\right)^{2}\right) u+2 \omega^{\prime} u^{\prime}\right] .
$$

By Remarks $2.1, \mathcal{B}$ is a bounded linear operator from $W^{1, p}(\mathbb{R} ; D(A))$ into $W^{2, p}(\mathbb{R}$; $D(A)$), it follows that D is bounded and linear on $W^{2, p}(\mathbb{R} ; D(A))$. Since \mathcal{B} maps boundedly $L^{p}(\mathbb{R} ; X)$ into $W^{1, p}(\mathbb{R} ; X)$ by assumption, D is also bounded and linear on $W^{1, p}(\mathbb{R} ; X)$. By (3), we have

$$
\mathcal{B} \Phi_{\alpha, \omega}\left(u^{\prime \prime}-A u\right)=(I+\alpha D) \Phi_{\alpha, \omega} u
$$

when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$. We note that the bounded linear operator $I+\alpha D$ is invertible on $W^{1, p}(\mathbb{R} ; X)$ and $W^{2, p}(\mathbb{R} ; D(A))$ when $\alpha>0$ is small enough. For such α, we obtain

$$
\begin{equation*}
\Phi_{-\alpha, \omega}(I+\alpha D)^{-1} \mathcal{B} \Phi_{\alpha, \omega}\left(u^{\prime \prime}-A u\right)=u \tag{4}
\end{equation*}
$$

whenever $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$. Let

$$
\mathcal{B}_{\alpha}:=\Phi_{-\alpha, \omega}(I+\alpha D)^{-1} \mathcal{B} \Phi_{\alpha, \omega} .
$$

If $u \in L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$, then $\mathcal{B} \Phi_{\alpha, \omega} u \in W^{1, p}(\mathbb{R} ; X)$ by assumption and Lemma 2.1, it follows that $\mathcal{B}_{\alpha} u \in W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$ as we have shown that $1+\alpha D$ is invertible on $W^{1, p}(\mathbb{R} ; X)$. Thus \mathcal{B}_{α} is bounded and linear from $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ into $W_{\alpha, \omega}^{1, p}(\mathbb{R} ; X)$.

We notice that when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$, we have $\mathcal{B} \Phi_{\alpha, \omega} u \in W^{2, p}(\mathbb{R} ; D(A))$ by assumption and Lemma 2.1. Since $(I+\alpha D)^{-1}$ is bounded on $W^{2, p}(\mathbb{R} ; D(A))$, it follows that $\mathcal{B}_{\alpha} u=\Phi_{-\alpha, \omega}(I+\alpha D)^{-1} \mathcal{B} \Phi_{\alpha, \omega} u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$ by Lemma 2.1. We have shown that $\mathcal{B}_{\alpha}\left(W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))\right) \subset W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$. It is clear from the definition of \mathcal{B}_{α} and (4) that $\mathcal{B}_{\alpha} \mathcal{A}_{\alpha} u=u$ when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$.

Next we show that $\mathcal{A}_{\alpha} \mathcal{B}_{\alpha} u=u$ when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$. Let $v=\mathcal{B}_{\alpha} u \in$ $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$. We claim that $v^{\prime \prime}=A v+u$. In fact, from the definition of v, we see that

$$
\Phi_{\alpha, \omega} v+\alpha D \Phi_{\alpha, \omega} v=\mathcal{B} \Phi_{\alpha, \omega} u
$$

which implies

$$
\begin{aligned}
\Phi_{\alpha, \omega} v & =\mathcal{B} \Phi_{\alpha, \omega} u-\alpha D \Phi_{\alpha, \omega} v \\
& =\mathcal{B} \Phi_{\alpha, \omega} u-\alpha \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v-2 \alpha \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
v=\Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u-\alpha \Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v-2 \alpha \Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} . \tag{5}
\end{equation*}
$$

Since $\Phi_{\alpha, \omega} u,\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v \in W^{2, p}(\mathbb{R} ; D(A))$, it follows that $\Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u$ and $\Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v$ belong to $W_{\alpha, w}^{2, p}(\mathbb{R} ; D(A))$ by Lemma 2.1. This implies that $\Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} \in W_{\alpha, w}^{2, p}(\mathbb{R} ; D(A))$ by (5) as $v \in W_{\alpha, w}^{2, p}(\mathbb{R} ; D(A))$. Thus $\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} \in W^{2, p}(\mathbb{R} ; D(A))$ by Lemma 2.1. It is clear that $\mathcal{B} \Phi_{\alpha, \omega} u$ and $\mathcal{B}\left(\omega^{\prime \prime}-\right.$ $\left.\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v$ belong to $W^{2, p}(\mathbb{R} ; D(A))$ by assumption and Lemma 2.1. Therefore

$$
\left[\mathcal{B} \Phi_{\alpha, \omega} u\right]^{\prime \prime}=A \mathcal{B} \Phi_{\alpha, \omega} u+\Phi_{\alpha, \omega} u
$$

$$
\left[\mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v\right]^{\prime \prime}=A \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v+\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v
$$

and

$$
\left[\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime \prime}=A \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}+\omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} .
$$

by the assumption that $\mathcal{A B} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. By (5), we have that

$$
\begin{aligned}
v^{\prime}= & \alpha \omega^{\prime} \Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u+\Phi_{-\alpha, \omega}\left[\mathcal{B} \Phi_{\alpha, \omega} u\right]^{\prime}-\alpha^{2} \omega^{\prime} \Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v \\
& -\alpha \Phi_{-\alpha, \omega}\left[\mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v\right]^{\prime}-2 \alpha^{2} \omega^{\prime} \Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} \\
& -2 \alpha \Phi_{-\alpha, \omega}\left[\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime},
\end{aligned}
$$

which implies

$$
\begin{aligned}
v^{\prime \prime}= & \alpha \omega^{\prime \prime} \Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u+\alpha \omega^{\prime}\left\{\alpha \omega^{\prime} \Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u+\Phi_{-\alpha, \omega}\left[\mathcal{B} \Phi_{\alpha, \omega} u\right]^{\prime}\right\} \\
& +\alpha \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B} \Phi_{\alpha, \omega} u\right]^{\prime}+\Phi_{-\alpha, \omega}\left[\mathcal{B} \Phi_{\alpha, \omega} u\right]^{\prime \prime}-\alpha^{2} \omega^{\prime \prime} \Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v \\
& +-\alpha^{2} \omega^{\prime}\left\{\alpha \omega^{\prime} \Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v \Phi_{-\alpha, \omega}\left[\mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v\right]^{\prime}\right\} \\
& -\alpha^{2} \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v\right]^{\prime}-\alpha \Phi_{-\alpha, \omega}\left[\mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v\right]^{\prime \prime} \\
& -2 \alpha^{2} \omega^{\prime \prime} \Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}-2 \alpha^{2} \omega^{\prime}\left\{\alpha \omega^{\prime} \Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}+\Phi_{-\alpha, \omega}\left[\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime}\right\} \\
& -2 \alpha^{2} \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime}-2 \alpha \Phi_{-\alpha, \omega}\left[\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime \prime} \\
= & \alpha \omega^{\prime \prime}\left\{\Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u-\alpha \Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v-2 \alpha \Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right\} \\
& +\alpha^{2}\left(\omega^{\prime}\right)^{2} \Phi_{-\alpha, \omega} \mathcal{B} \Phi_{\alpha, \omega} u+2 \alpha \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B} \Phi_{\alpha, \omega} u\right]^{\prime}+\Phi_{-\alpha, \omega} A \mathcal{B} \Phi_{\alpha, \omega} u+u \\
& -\alpha^{3}\left(\omega^{\prime}\right)^{2} \Phi_{-\alpha, \omega} \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v-2 \alpha^{2} \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v\right]^{\prime} \\
& -\alpha \Phi_{-\alpha, \omega} A \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v-\alpha \Phi_{-\alpha, \omega}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v \\
& --2 \alpha^{3}\left(\omega^{\prime}\right)^{2} \Phi_{-\alpha, \omega} \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime} 4 \alpha^{2} \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime} \\
& --2 \alpha \Phi_{-\alpha, \omega} A \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}-2 \alpha \Phi_{-\alpha, \omega} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
= & \alpha \omega^{\prime \prime} v+\alpha^{2}\left(\omega^{\prime}\right)^{2} v+2 \alpha \omega^{\prime} \Phi_{-\alpha, \omega}\left[\mathcal{B} \Phi_{\alpha, \omega} u\right. \\
& \left.-\alpha \mathcal{B}\left(\omega^{\prime \prime}-\alpha\left(w^{\prime}\right)^{2}\right) \Phi_{\alpha, \omega} v-2 \alpha \mathcal{B} \omega^{\prime} \Phi_{\alpha, \omega} v^{\prime}\right]^{\prime}+A v+u-\alpha \omega^{\prime \prime} v+\alpha^{2}\left(\omega^{\prime}\right)^{2} v-2 \alpha \omega^{\prime} v^{\prime} \\
= & A v+u+2 \alpha^{2}\left(\omega^{\prime}\right)^{2} v-2 \alpha \omega^{\prime} v^{\prime}+2 \alpha \omega^{\prime} \Phi_{-\alpha, \omega}\left[\Phi_{\alpha, \omega} v\right]^{\prime} \\
= & A v+u+2 \alpha^{2}\left(\omega^{\prime}\right)^{2} v-2 \alpha \omega^{\prime} v^{\prime}+2 \alpha \omega^{\prime} \Phi_{-\alpha, \omega}\left[-\alpha \omega^{\prime} \Phi_{\alpha, \omega} v+\Phi_{\alpha, \omega} v^{\prime}\right] \\
= & A v+u+2 \alpha^{2}\left(\omega^{\prime}\right)^{2} v-2 \alpha \omega^{\prime} v^{\prime}-2 \alpha^{2}\left(\omega^{\prime}\right)^{2} v+2 \alpha \omega^{\prime} v^{\prime} \\
= & A v+u .
\end{aligned}
$$

Thus $\mathcal{A}_{\alpha} \mathcal{B}_{\alpha} u=u$ when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$. We have shown that $\left(P_{2}\right)$ is $\left(W_{\alpha, \omega}^{2, p}\right.$, $\left.W_{\alpha, \omega}^{1, p}\right)$-mildly well-posed. This completes the proof.

Lemma 2.3. Let X be a Banach space and $1 \leq p<\infty$, then $\mathcal{S}(\mathbb{R} ; X)$ is dense in $L^{p}(\mathbb{R} ; X)$, $W^{1, p}(\mathbb{R} ; X)$ and $W^{2, p}(\mathbb{R} ; X)$. If $A: D(A) \rightarrow X$ is a densely defined closed operator on X, then $\mathcal{S}(\mathbb{R} ; D(A))$ is dense in $L^{p}(\mathbb{R} ; X)$.

Proof. The proof is a modification of the proof of Lemma 3 of $\mathrm{Bu}[6]$. We omit it.

Now we are going to prove the following result which characterizes $\left(W^{2, p}, W^{1, p}\right)$ mildly well-posedness in terms of operator-valued L^{p}-Fourier multipliers defined by the resolvent of A.

Theorem 2.1. Let X be a Banach space, $1 \leq p<\infty$ and let $A: D(A) \rightarrow X$ be a densely defined closed operator on X. Then the following assertions are equivalent.
(i) $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed;
(ii) $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} defined on \mathbb{R} by $m_{1}(x)=-\left(x^{2}+\right.$ $A)^{-1}$ and $m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ are L^{p}-Fourier multipliers.

Proof. (i) \Rightarrow (ii): Suppose that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed, then $\left(P_{2}\right)$ is $\left(W_{\alpha, \omega}^{2, p}, W_{\alpha, \omega}^{1, p}\right)$-mildly well posed when $\alpha>0$ is small enough by Lemma 2.2. By the Closed Graph Theorem, there exists a constant $C>0$ satisfying

$$
\begin{equation*}
\left\|\mathcal{B}_{\alpha} f\right\|_{W_{\alpha, \omega}^{1, p}} \leq C\|f\|_{L_{\alpha, \omega}^{p}} \tag{6}
\end{equation*}
$$

when $f \in L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$. Firstly, we show that $(-\infty, 0] \subset \rho(A)$. Let $\xi \in \mathbb{R}$ and $y \in X$ be fixed. Then there exits $y_{n} \in D(A)$ such that $y_{n} \rightarrow y$ when $n \rightarrow \infty$ as $D(A)$ is dense in X by assumption. We define $f(t)=e^{i \xi t} y$ and $f_{n}(t)=e^{i \xi t} y_{n}$ for $t \in \mathbb{R}$. Then $f \in L_{\alpha, \omega}^{p}(\mathbb{R} ; X), f_{n} \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$ and $f_{n} \rightarrow f$ in $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ when $n \rightarrow \infty$. Let $u_{n}:=\mathcal{B}_{\alpha} f_{n}$, then $u_{n} \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$ by the $\left(W_{\alpha, \omega}^{2, p}, W_{\alpha, \omega}^{1, p}\right)$-mild well-posedness of $\left(P_{2}\right)$. We have

$$
u_{n}^{\prime \prime}(t)-A u_{n}(t)=f_{n}(t)
$$

a.e. on \mathbb{R} by the equality $\mathcal{A}_{\alpha} \mathcal{B}_{\alpha} u=u$ when $u \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$.

Since $f_{n}(s+t)=e^{i \xi s} f_{n}(t)$ when $t \in \mathbb{R}$, both functions $u_{n}(s+\cdot)$ and $e^{i \xi s} u_{n}$ in $W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$ are strong L^{p}-solutions of

$$
u^{\prime \prime}-A u=e^{i \xi s} f_{n} .
$$

We deduce that $u_{n}(s+t)=e^{i \xi s} u_{n}(t)$ when $s, t \in \mathbb{R}$ by Remark 2.1. Therefore there exists $x_{n} \in D(A)$ such that $u_{n}(t)=e^{i \xi t} x_{n}$ when $t \in \mathbb{R}$. Thus

$$
-\xi^{2} e^{i \xi t} x_{n}-e^{i \xi t} A x_{n}=e^{i \xi t} y_{n}
$$

when $t \in \mathbb{R}$ or equivalently

$$
\begin{equation*}
-\xi^{2} x_{n}-A x_{n}=y_{n} . \tag{7}
\end{equation*}
$$

Since $f_{n} \rightarrow f$ in $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$, it follows that $u_{n} \rightarrow \mathcal{B}_{\alpha} f$ in $L_{\alpha, \omega}^{p}(\mathbb{R} ; X)$ when $n \rightarrow \infty$. Hence there exists $x \in X$ such that $\left(\mathcal{B}_{\alpha} f\right)(t)=e^{i \xi t} x$ when $t \in \mathbb{R}$ and $x_{n} \rightarrow x$ when $n \rightarrow \infty$. We conclude from (7) and the closedness of A that $x \in D(A)$ and

$$
\begin{equation*}
-\xi^{2} x-A x=y \tag{8}
\end{equation*}
$$

which implies that $-\xi^{2}-A$ is surjective.
To show that $-\xi^{2}-A$ is also injective, we assume that $A x_{0}=-\xi^{2} x_{0}$ for some $x_{0} \in D(A)$. Then $u_{0} \in W_{\alpha, \omega}^{2, p}(\mathbb{R} ; D(A))$ defined by $u_{0}(t)=e^{i \xi t} x_{0}$ solves the equation $u^{\prime \prime}-A u=0$. We deduce that $x_{0}=0$ by Remark 2.1. Thus $-\xi^{2}-A$ is injective. We have shown that $-\xi^{2} \in \rho(A)$ since A is closed. Since $\xi \in \mathbb{R}$ is arbitrary, we conclude that $(-\infty, 0] \subset \rho(A)$.

It follows from (8) that $x=\left(-\xi^{2}-A\right)^{-1} y$. We note that $\|f\|_{L_{\alpha, \omega}^{p}}=c_{\alpha, \omega, p}\|y\|$, $\left\|\mathcal{B}_{\alpha} f\right\|_{L_{\alpha, \omega}^{p}}=c_{\alpha, \omega, p}\|x\|$ and $\left\|\left(\mathcal{B}_{\alpha} f\right)^{\prime}\right\|_{L_{\alpha, \omega}^{p}}=c_{\alpha, \omega, p}\|i \xi x\|$ for some constant $c_{\alpha, \omega, p}>$ 0 depending only on α, ω and p. By (6), we have

$$
\|x\| \leq C\|y\|, \quad\|i \xi x\| \leq C\|y\|,
$$

or equivalently

$$
\left\|\left(-\xi^{2}-A\right)^{-1}\right\| \leq C, \quad\left\|i \xi\left(-\xi^{2}-A\right)^{-1}\right\| \leq C
$$

when $\xi \in \mathbb{R}$.
We have shown that $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} defined on \mathbb{R} by $m_{1}(x):=\left(-x^{2}-A\right)^{-1}$ and $m_{2}(x):=i x\left(-x^{2}-A\right)^{-1}$ are uniformly bounded on \mathbb{R}. For fixed $f \in L^{p}(\mathbb{R} ; X)$, there exists a sequence $\left(f_{n}\right)_{n \geq 1} \subset \mathcal{S}(\mathbb{R} ; D(A))$ such that $f_{n} \rightarrow f$ in $L^{p}(\mathbb{R} ; X)$ when $n \rightarrow \infty$ by Lemma 2.3. Let $u_{n}:=\mathcal{B} f_{n} \in W^{2, p}(\mathbb{R} ; D(A))$. Then $\left(u_{n}\right)^{\prime \prime}-A u_{n}=f_{n}$ and $u_{n} \rightarrow \mathcal{B} f$ in $L^{p}(\mathbb{R} ; X)$ when $n \rightarrow \infty$ since \mathcal{B} maps $L^{p}(\mathbb{R} ; X)$ continuously into itself by assumption.

On the other hand, the function g_{n} given by $g_{n}(x):=\left(-x^{2}-A\right)^{-1} \mathcal{F} f_{n}(x)$ is in $\mathcal{S}(\mathbb{R} ; D(A))$. Here we have used the facts that for each $n \in \mathbb{N}, \mathcal{F} f_{n} \in \mathcal{S}(\mathbb{R} ; D(A))$, m_{1} is infinitely differentiable and $m_{1}^{(k)}(x)=\sum_{n=1}^{k+1} p_{n}(x) m_{1}(x)^{n}$ for all $k \in \mathbb{N}$, where p_{n} is a polynomial. Let $v_{n}:=\mathcal{F}^{-1} g_{n}$, then $v_{n} \in \mathcal{S}(\mathbb{R} ; D(A))$ and thus $v_{n} \in$ $W^{2, p}(\mathbb{R} ; D(A))$. Now we can see easily that $v_{n}^{\prime \prime}-A v_{n}=f_{n}$. It follows from Remarks 2.1 that $u_{n}=v_{n}$. This shows that m_{1} is an L^{p}-Fourier multiplier and the bounded linear operator on $L^{p}(\mathbb{R} ; X)$ defined by m_{1} is in fact \mathcal{B}. In a similar way, we show that m_{2} is also an L^{p}-Fourier multiplier. Therefore the implication (i) \Rightarrow (ii) is true.
(ii) \Rightarrow (i): We assume that $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} given by $m_{1}(x)=-\left(x^{2}+A\right)^{-1}$ and $m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers. Then m_{1} and m_{2} are uniformly bounded on \mathbb{R} [12]. Let \mathcal{B} and \mathcal{B}_{1} be the bounded linear operators on $L^{p}(\mathbb{R} ; X)$ given by m_{1} and m_{2}, respectively. Let $C:=\|\mathcal{B}\|$ and $C_{1}:=\left\|\mathcal{B}_{1}\right\|$. For $f \in \mathcal{S}(\mathbb{R} ; X)$, we have $\mathcal{F}(\mathcal{B} f)(x)=m_{1}(x) \mathcal{F} f(x)$ and

$$
\mathcal{F}\left(\mathcal{B}_{1} f\right)(x)=m_{2}(x) \mathcal{F} f(x)=i x m_{1}(x) \mathcal{F} f(x)=i x \mathcal{F}(\mathcal{B} f)(x)
$$

It follows from the assumption that m_{1}, m_{2} define L^{p}-Fourier multipliers that $\mathcal{B} f \in$ $W^{1, p}(\mathbb{R} ; X)$ and $[\mathcal{B} f]^{\prime}=\mathcal{B}_{1} f$. Furthermore we have $\|\mathcal{B} f\|_{W^{1, p}} \leq\left(C+C_{1}\right)\|f\|_{L^{p}}$. This implies that the image of $L^{p}(\mathbb{R} ; X)$ by \mathcal{B} is contained in $W^{1, p}(\mathbb{R} ; X)$ by Lemma 2.3.

Let $f \in \mathcal{S}(\mathbb{R} ; D(A))$. Then $f, A f \in \mathcal{S}(\mathbb{R} ; X), \mathcal{F}(\mathcal{B} f)(x)=m_{1}(x) \mathcal{F} f(x)$ and $\mathcal{F}(A \mathcal{B} f)(x)=m_{1}(x)(A f)(x)$. It follows that $\mathcal{B}(A f)=A \mathcal{B} f$ and $\|\mathcal{B} f\|_{L^{p}(\mathbb{R} ; D(A))} \leq$ $C\|f\|_{L^{p}(\mathbb{R} ; D(A))}$. On the other hand, we have $[\mathcal{B} f]^{\prime}=\mathcal{B} f^{\prime}$, thus $\mathcal{F}\left([\mathcal{B} f]^{\prime}\right)(x)=$ $i x \mathcal{F}(\mathcal{B} f)(x)=m_{2}(x) \mathcal{F} f(x)$ and $\mathcal{F}\left(A[\mathcal{B} f]^{\prime}\right)(x)=\mathcal{F}\left(A \mathcal{B} f^{\prime}\right)(x)=m_{2}(x)(A f)(x)$. We deduce that $\left\|[\mathcal{B} f]^{\prime}\right\|_{L^{p}(\mathbb{R} ; D(A))} \leq C_{1}\|f\|_{L^{p}(\mathbb{R} ; D(A))}$. It follows that

$$
\|\mathcal{B} f\|_{W^{1, p}(\mathbb{R} ; D(A))} \leq\left(C+C_{1}\right)\|f\|_{L^{p}(\mathbb{R} ; D(A))} .
$$

Thus \mathcal{B} maps boundedly $L^{p}(\mathbb{R} ; D(A))$ into $W^{1, p}(\mathbb{R} ; D(A))$ by Lemma 2.3. A similar argument shows that \mathcal{B} also maps boundedly $W^{1, p}(\mathbb{R} ; D(A))$ into $W^{2, p}(\mathbb{R} ; D(A))$. This implies that \mathcal{B} acts boundedly on $W^{2, p}(\mathbb{R} ; D(A))$ by the Closed Graph Theorem.

Let $f \in \mathcal{S}(\mathbb{R} ; D(A))$. Then

$$
\mathcal{F}\left(A^{i}(\mathcal{B} f)^{(j)}\right)=m_{1} \mathcal{F}\left(A^{i} f^{(j)}\right)
$$

when $0 \leq i, j \leq 2$ as A is clearly commute with m_{1}. It follows that $\|\mathcal{B} f\|_{W^{2, p}(\mathbb{R} ; D(A))} \leq$ $C\|f\|_{W^{2, p}(\mathbb{R} ; D(A))}$ by the assumption that m_{1} defines an L^{p}-Fourier multiplier. This shows that \mathcal{B} maps boundedly from $W^{2, p}(\mathbb{R} ; D(A))$ into itself by Lemma 2.3.

It remains to show that $\mathcal{A B} u=\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. Let $f \in \mathcal{S}(\mathbb{R} ; D(A))$. Then it is clear that we have

$$
\mathcal{F}(\mathcal{B A} f)(x)=m_{1}(x) \mathcal{F}(\mathcal{A} f)(x)=m_{1}(x)\left(-x^{2}-A\right) \mathcal{F} f(x)=\mathcal{F} f(x)
$$

$$
\mathcal{F}(\mathcal{A B} f)(x)=-\left(x^{2}+A\right) \mathcal{F}(\mathcal{B} f)(x)=\left(-x^{2}-A\right) m_{1}(x) \mathcal{F} f(x)=\mathcal{F} f(x)
$$

Thus

$$
\mathcal{B} \mathcal{A} f=\mathcal{A B} f=f .
$$

This equality remains true when $f \in W^{2, p}(\mathbb{R} ; D(A))$ by the boundedness of \mathcal{A} from $W^{2, p}(\mathbb{R} ; D(A))$ into $L^{p}(\mathbb{R} ; X)$, the boundedness of \mathcal{B} on $L^{p}(\mathbb{R} ; X)$ and $W^{2, p}(\mathbb{R} ; D(A))$ and Lemma 2.3. This shows that the implication (ii) \Rightarrow (i) is true. The proof is complete.

Next we show that when X is a UMD Banach space and $1<p<\infty$, one can give a simpler characterization of the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posedness for $\left(P_{2}\right)$. For this we need to use the operator-valued Fourier multiplier theorem on $L^{p}(\mathbb{R}, X)$ obtained by Weis [12]. Weis' result involves the Rademacher boundedness for sets of bounded linear operators on Banach spaces. Let γ_{j} be the j-th Rademacher function on $[0,1]$ given by $\gamma_{j}(t)=\operatorname{sgn}\left(\sin \left(2^{j} t\right)\right)$ when $j \geq 1$. For $x \in X$, we denote by $\gamma_{j} \otimes x$ the X-valued function $t \rightarrow r_{j}(t) x$ on $[0,1]$.

Definition 2.3. Let X be a Banach space. A set $\mathbf{T} \subset \mathcal{L}(X)$ is said to be Rademacher bounded, if there exists $C>0$ such that

$$
\left\|\sum_{j=1}^{n} \gamma_{j} \otimes T_{j} x_{j}\right\|_{L^{1}} \leq C\left\|\sum_{j=1}^{n} \gamma_{j} \otimes x_{j}\right\|_{L^{1}}
$$

for all $T_{1}, \ldots, T_{n} \in \mathbf{T}, x_{1}, \ldots, x_{n} \in X$ and $n \in \mathbb{N}$.
Let $\mathbf{S}, \mathbf{T} \subset \mathcal{L}(X)$ be Rademacher bounded sets. Then it can be seen easily from the definition that the product set $\mathbf{S T}:=\{S T: S \in \mathbf{S}, T \in \mathbf{T}\}$, the union set $\mathbf{S} \cup \mathbf{T}$ and the sum set $\mathbf{S}+\mathbf{T}:=\{S+T: S \in \mathbf{S}, T \in \mathbf{T}\}$ are still Rademacher bounded. It was shown by Weis that when X is a UMD Banach space and $1<p<\infty$, if $m: \mathbb{R} \rightarrow \mathcal{L}(X)$ is a C^{1}-function such that both sets $\{m(x): x \in \mathbb{R}\}$ and $\left\{x m^{\prime}(x): x \in \mathbb{R}\right\}$ are Rademacher bounded, then m is an L^{p}-Fourier multiplier [12, Theorem 3.4]. This result together with Theorem 2.1 gives the following characterization of the $\left(W^{2, p}, W^{1, p}\right)$-mild wellposedness $\left(P_{2}\right)$ when X is a UMD Banach space and $1<p<\infty$.

Corollary 2.2. Let X be a UMD Banach space, $1<p<\infty$ and let $A: D(A) \rightarrow$ X be a densely defined closed operator on X. Then the following assertions are equivalent.
(i) $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed;
(ii) $(-\infty, 0] \subset \rho(A)$ and the function m given by $m(x)=-i x\left(x^{2}+A\right)^{-1}$ is an L^{p}-Fourier multiplier.

Proof. The implication (i) \Rightarrow (ii) is clearly true by Theorem 2.1, we only need to show that the implication (ii) \Rightarrow (i) is true. We assume that $(-\infty, 0] \subset \rho(A)$ and m
given by $m(x)=i x \eta(x)$ defines an L^{p}-Fourier multiplier, where $\eta(x)=-\left(x^{2}+A\right)^{-1}$ when $x \in \mathbb{R}$. By Theorem 2.1, it will suffice to show that the function η defines an L^{p}-Fourier multiplier. By [12, Theorem 3.4], we only need to show that both sets $\{\eta(x): x \in \mathbb{R}\}$ and $\left\{x \eta^{\prime}(x): x \in \mathbb{R}\right\}$ are Rademacher bounded as X is a UMD Banach space and $1<p<\infty$. Since η is analytic, we deduce that the set $\{\eta(x):|x| \leq 1\}$ is Rademacher bounded [12, Proposition 2.6]. The assumption that m defines an L^{p}-Fourier multiplier implies that the set $\{i x \eta(x): \in \mathbb{R}\}$ is Rademacher bounded [7], we deduce that the set $\{\eta(x):|x| \geq 1\}$ is Rademacher bounded. Here we have used the fact that the set $\left\{\frac{I_{X}}{i x}:|x| \geq 1\right\}$ is Rademacher bounded and the easy fact that the product set of two Rademacher bounded sets is still Rademacher bounded [12], where I_{X} denotes the identity operator on X. We have shown that the set $\{\eta(x): x \in \mathbb{R}\}$ is Rademacher bounded as the union of two Rademacher bounded sets is still Rademacher bounded [3, 7, 12].

On the other hand $\eta^{\prime}(x)=2 x \eta(x)^{2}$, thus $x \eta^{\prime}(x)=2 x^{2} \eta(x)^{2}=-2 m(x)^{2}$. The function $2 m(x)^{2}$ is analytic, therefore the set $\left\{x \eta^{\prime}(x):|x| \leq 1\right\}$ is Rademacher bounded [12, Proposition 2.6]. We deduce from the assumption that m defines an L^{p}-Fourier multiplier that the set $\left\{x \eta^{\prime}(x):|x| \geq 1\right\}$ is also Rademacher bounded [7]. It follows that the set $\left\{x \eta^{\prime}(x): x \in \mathbb{R}\right\}$ is Rademacher bounded. The proof is complete.

The next result gives a sufficient condition involved Rademacher boundedness of the resolvent of A for the problem $\left(P_{2}\right)$ to be ($W^{2, p}, W^{1, p}$)-mildly well-posed when X is a UMD Banach space and $1<p<\infty$.

Corollary 2.3. Let X be a UMD Banach space, $1<p<\infty$ and let $A: D(A) \rightarrow$ X be a densely defined closed operator on X. We assume that $(-\infty, 0] \subset \rho(A)$ and the set $\left\{x^{3 / 4}(x+A)^{-1}: x \geq 0\right\}$ is Rademacher bounded. Then $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$ mildly well-posed.

Proof. Let $m(x)=-i x\left(x^{2}+A\right)^{-1}$ when $x \in \mathbb{R}$. It will suffice to show that both sets $\{m(x): x \in \mathbb{R}\}$ and $\left\{x m^{\prime}(x): x \in \mathbb{R}\right\}$ are Rademacher bounded by Corollary 2.2 and [12, Theorem 3.4]. The set $\{m(x):|x| \leq 1\}$ is Rademacher bounded as m is analytic [12, Proposition 2.6]. The set $\{m(x):|x|>1\}$ is also Rademacher bounded as $\left\{|x|^{3 / 2}\left(x^{2}+A\right)^{-1}:|x|>1\right\}$ is Rademacher bounded by assumption. Here we have used the fact that the set $\left\{\frac{I_{X}}{\sqrt{|x|}}:|x|>1\right\}$ is Rademacher bounded and the easy fact that the product set of two Rademacher bounded sets is still Rademacher bounded [12]. Thus $\{m(x): x \in \mathbb{R}\}$ is Rademacher bounded as the union of two Rademacher bounded sets is still Rademacher bounded [3, 7, 12]. We have $x m^{\prime}(x)=m(x)+2 \operatorname{sgn}(x) i\left[|x|^{3 / 2}\left(x^{2}+A\right)^{-1}\right]^{2}$. Therefore $\left\{x m^{\prime}(x): x \in \mathbb{R}\right\}$ is Rademacher bounded by assumption as the product set of two Rademacher bounded sets is still Rademacher bounded [12]. The proof is complete.

Let $0 \leq \theta \leq 1$ be fixed, we define the fractional Sobolev space $W^{1+\theta, p}(\mathbb{R} ; X)$ of order $1+\theta$ as the completion of $\mathcal{S}(\mathbb{R} ; X)$ under the norm

$$
\|f\|_{W^{1+\theta, p}}:=\|f\|_{L^{p}}+\left\|f^{\prime}\right\|_{L^{p}}+\left\|\mathcal{F}^{-1} \xi \mathcal{F} f\right\|_{L^{p}}
$$

where

$$
\xi(x):=(i x)^{1+\theta}= \begin{cases}|x|^{1+\theta} e^{\frac{(1+\theta) i \pi}{2}}, & x \geq 0, \tag{9}\\ |x|^{1+\theta} e^{\frac{-(1+\theta) i \pi}{2}}, & x<0 .\end{cases}
$$

Here f^{\prime} is understood in the sense of distributions. It is clear that when $\theta=1$, $\xi(x)=-x^{2}$, this implies that when $\theta=1$, the above definition coincides with the definition (2) of $W^{2, p}(\mathbb{R} ; X)$. It is also clear that when $\theta=0$, the above definition coincides with the definition (1) of $W^{1, p}(\mathbb{R} ; X)$. It is also clear from the definition that $W^{1+\theta, p}(\mathbb{R} ; X) \subset W^{1, p}(\mathbb{R} ; X)$ and the embedding is continuous. Now we are ready to introduce a mild well-posedness for $\left(P_{2}\right)$ which will generalize the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posedness for $\left(P_{2}\right)$.

Definition 2.4. Let $1 \leq p<\infty, 0 \leq \theta \leq 1$ and let A be a densely defined closed operator on a Banach space X with domain $D(A)$. We say that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1+\theta, p}\right)$ mildly well-posed, if there exists a bounded linear operator \mathcal{B} that maps $L^{p}(\mathbb{R} ; X)$ continuously into itself with range contained in $W^{1+\theta, p}(\mathbb{R} ; X), \mathcal{B}\left(W^{1, p}(\mathbb{R} ; D(A))\right) \subset$ $\left.W^{2, p}(\mathbb{R} ; D(A))\right)$ and $\mathcal{A B} u=\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$, where $\mathcal{A} u=$ $u^{\prime \prime}-A u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. We call \mathcal{B} the solution operator of the problem $\left(P_{2}\right)$.

It is clear from the definition that when $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1+\theta, p}\right)$-mildly well-posed, then it is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed. It is also clear that the $\left(W^{2, p}, W^{1+\theta, p}\right)$-mild well-posedness of $\left(P_{2}\right)$ coincides with the $\left(W^{2, p}, W^{1, p}\right)$-mild well-posednees of $\left(P_{2}\right)$ when $\theta=0$. We have actually the following characterization of the $\left(W^{2, p}, W^{1+\theta, p}\right)$ mild well-posedness of $\left(P_{2}\right)$ which may be considered as a generalization of Theorem 2.1.

Theorem 2.4. Let X be a Banach space, $1 \leq p<\infty, 0 \leq \theta \leq 1$ and let $A: D(A) \rightarrow X$ be a densely defined closed operator on X. Then the following assertions are equivalent.
(i) $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1+\theta, p}\right)$-mildly well-posed;
(ii) $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} and m_{3} defined on \mathbb{R} by $m_{1}(x)=$ $-\left(x^{2}+A\right)^{-1}, m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ and $m_{3}(x)=-(i x)^{1+\theta}\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers.

Proof. (i) \Rightarrow (ii): Assume that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1+\theta, p}\right)$-mildly well-posed and let \mathcal{B} be the solution operator. Then it is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed. Thus $(-\infty, 0] \subset$
$\rho(A)$ and the functions m_{1} and m_{2} defined on \mathbb{R} given by $m_{1}(x)=-\left(x^{2}+A\right)^{-1}$, $m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers by Theorem 2.1, moreover the bounded linear operator defined by the L^{p}-Fourier multiplier m_{1} is \mathcal{B} by the proof of Theorem 2.1. Since \mathcal{B} is bounded and linear from $L^{p}(\mathbb{R} ; X)$ into itself with range contained in $W^{1+\theta, p}(\mathbb{R} ; X)$ by assumption, it follows easily from the Closed Graph Theorem that \mathcal{B} is a bounded linear operator from $L^{p}(\mathbb{R} ; X)$ into $W^{1+\theta, p}(\mathbb{R} ; X)$. Here we have used the fact that the embedding $W^{1+\theta, p}(\mathbb{R} ; X) \subset W^{1, p}(\mathbb{R} ; X)$ is continuous. This implies clearly that m_{3} defined by $m_{3}(x)=-(i x)^{1+\theta}\left(x^{2}+A\right)^{-1}$ defines an L^{p}-Fourier multiplier.
(ii) \Rightarrow (i): Assume that $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} and m_{3} defined on \mathbb{R} given by $m_{1}(x)=-\left(x^{2}+A\right)^{-1}, m_{2}(x)=-i x\left(x^{2}+A\right)^{-1}$ and $m_{3}(x)=$ $-(i x)^{1+\theta}\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers. Then $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1, p}\right)$-mildly well-posed by Theorem 2.1. This means that there exists a bounded linear operator \mathcal{B} that maps $L^{p}(\mathbb{R} ; X)$ continuously into itself with range contained in $W^{1, p}(\mathbb{R} ; X)$, $\mathcal{B}\left(W^{1, p}(\mathbb{R} ; D(A))\right) \subset W^{2, p}(\mathbb{R} ; D(A))$ and $\mathcal{A B} u=\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. The bounded linear operator defined by the L^{p}-Fourier multiplier m_{1} is \mathcal{B} by the proof of Theorem 2.1. Since m_{3} defines an L^{p}-Fourier multiplier, we deduce that the image of $L^{p}(\mathbb{R} ; X)$ by \mathcal{B} is contained in $W^{1+\theta, p}(\mathbb{R} ; X)$. The proof is complete.

Proposition 2.1. Let X be a Banach space, $1 \leq p<\infty$ and let $A: D(A) \rightarrow X$ be a densely defined closed operator on X. If $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{2, p}\right)$-mildly well-posed, then it is L^{p}-well-posed.

Proof. We assume that $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{2, p}\right)$-mildly well-posed and \mathcal{B} is the solution operator. Then \mathcal{B} maps $L^{p}(\mathbb{R} ; X)$ continuously into itself with range contained in $\left.W^{2, p}(\mathbb{R} ; X), \mathcal{B}\left(W^{1, p}(\mathbb{R} ; D(A))\right) \subset W^{2, p}(\mathbb{R} ; D(A))\right)$ and $\mathcal{A B} u=\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$. It follows from the boundedness of \mathcal{B} on $L^{p}(\mathbb{R} ; X)$ and the Closed Graph Theorem that \mathcal{B} is a bounded linear operator from $L^{p}(\mathbb{R} ; X)$ into $W^{2, p}(\mathbb{R} ; X)$.

Let $f \in L^{p}(\mathbb{R} ; X)$, then there exists $f_{n} \in W^{2, p}(\mathbb{R} ; D(A))$ such that $f_{n} \rightarrow f$ in $L^{p}(\mathbb{R} ; X)$ by Lemma 2.3. We deduce that $\mathcal{B} f_{n} \rightarrow \mathcal{B} f$ in $W^{2, p}(\mathbb{R} ; X)$. Since $\left(\mathcal{B} f_{n}\right)^{\prime \prime} \rightarrow(\mathcal{B} f)^{\prime \prime}$ and $\mathcal{B} f_{n} \rightarrow \mathcal{B} f$ in $L^{p}(\mathbb{R} ; X)$, there exists a subsequence $f_{n_{k}}$ of f_{n} such that $\left(\mathcal{B} f_{n_{k}}\right)^{\prime \prime} \rightarrow(\mathcal{B} f)^{\prime \prime}$ and $\mathcal{B} f_{n_{k}} \rightarrow \mathcal{B} f$ a.e. on \mathbb{R}. Using the equality $\left(\mathcal{B} f_{n_{k}}\right)^{\prime \prime}=A \mathcal{B} f_{n_{k}}+\mathcal{B} f_{n_{k}}$ and the closedness of A, we deduce that $\mathcal{B} f(t) \in D(A)$ and $(\mathcal{B} f)^{\prime \prime}(t)=A \mathcal{B} f(t)+\mathcal{B} f(t)$ for almost all $t \in \mathbb{R}$. This implies that $\mathcal{B} f \in L^{p}(\mathbb{R} ; D(A))$ and $(\mathcal{B} f)^{\prime \prime}=A \mathcal{B} f+\mathcal{B} f$. Thus $\mathcal{B} f \in W^{2, p}(\mathbb{R} ; X) \cap L^{p}(\mathbb{R} ; D(A))$ is a strong $L^{p_{-}}$ solution of $\left(P_{2}\right)$.

To show the uniqueness of the strong L^{p}-solution of $\left(P_{2}\right)$, we let $u \in W^{2, p}(\mathbb{R} ; X) \cap$ $L^{p}(\mathbb{R} ; D(A))$ be such that $u^{\prime \prime}=A u$. Then there exist $u_{n} \in W^{2, p}(\mathbb{R} ; D(A))$ such that $u_{n} \rightarrow u$ in $W^{2, p}(\mathbb{R} ; X)$ as well as in $L^{p}(\mathbb{R} ; D(A))$ by the density of $D(A)$ in X. We have $\mathcal{B A} u_{n}=u_{n}$ by assumption. Letting $n \rightarrow \infty$, we obtain that $\mathcal{B}\left(u^{\prime \prime}-A u\right)=u$, here we have used the boundedness of \mathcal{B} on $L^{p}(\mathbb{R} ; X)$. It follows that $u=0$ as $u^{\prime \prime}-A u=0$. We have shown that $\left(P_{2}\right)$ is L^{p}-well-posed. The proof is complete.

Remark 2.2. We do not know whether the inverse implication of Proposition 2.1 remains true: when $\left(P_{2}\right)$ is L^{p}-well-posed, if \mathcal{B} is the solution operator, then \mathcal{B} maps $L^{p}(\mathbb{R} ; X)$ continuously into itself with range contained in $W^{2, p}(\mathbb{R} ; X)$, and $\mathcal{A B} u=$ $\mathcal{B} \mathcal{A} u=u$ when $u \in W^{2, p}(\mathbb{R} ; D(A))$, but we do not know whether the inclusion $\left.\mathcal{B}\left(W^{1, p}(\mathbb{R} ; D(A))\right) \subset W^{2, p}(\mathbb{R} ; D(A))\right)$ is true. Meanwhile, Theorem 2.4 gives a sufficient condition for the L^{p}-well-posedness of $\left(P_{2}\right)$: if $(-\infty, 0] \subset \rho(A)$ and the functions m_{1}, m_{2} and m_{3} defined on \mathbb{R} given by $m_{1}(x)=-\left(x^{2}+A\right)^{-1}, m_{2}(x)=$ $-i x\left(x^{2}+A\right)^{-1}$ and $m_{3}(x)=x^{2}\left(x^{2}+A\right)^{-1}$ define L^{p}-Fourier multipliers, then $\left(P_{2}\right)$ is L^{p}-well-posed.

When X is a UMD Banach space, we have the following characterization of the $\left(W^{2, p}, W^{1+\theta, p}\right)$-mild well-posedness when $1<p<\infty$. The proof is similar to the proof of Corollary 2.2, we omit it.

Corollary 2.5. Let X be a UMD Banach space, $1<p<\infty, \frac{1}{2} \leq \theta \leq 1$ and let $A: D(A) \rightarrow X$ be a densely defined closed operator on X. Then the following assertions are equivalent.
(i) $\left(P_{2}\right)$ is $\left(W^{2, p}, W^{1+\theta, p}\right)$-mildly well-posed;
(ii) $(-\infty, 0] \subset \rho(A)$ and the function m given by $m(x)=-(i x)^{1+\theta}\left(x^{2}+A\right)^{-1}$ is an L^{p}-Fourier multiplier, where $(i x)^{1+\theta}$ is defined by (9).

AcKNOWLEDGMENTS

We are grateful to the anonymous referee for carefully reading the manuscript and for providing valuable comments and suggestions.

References

1. H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I, Birkhäuser, Basel, 1995.
2. W. Arendt, C. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Studia Math., 160 (2004), 23-51.
3. W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., 240 (2002), 311-343.
4. W. Arendt and S. Bu, Sums of bisectorial operators and applications, Integr. Equ. Oper. Theory, 52 (2005), 299-321.
5. W. Arendt and M. Duelli, Maximal L^{p}-regularity for parabolic and elliptic equations on the line, J. Evol. Equ., 6 (2006), 773-790.
6. S. Bu, Mild well-posedness of vector-valued problems on the real line, Arch. Math., 95 (2010), 63-73.
7. Ph. Clément, B. de Pagter, F. A. Sukochev and M. Witvliet, Schauder decomposition and multiplier theorems, Studia Math., 138 (2000), 135-163.
8. V. Keyantuo and C. Lizama, Mild well-posedness of abstract differential equations, in: Functional Analysis and Evolution Equations, The Günter Lumer Volume, (H. Amann et al. eds.), 2008, pp. 371-387.
9. A. Mielke, Über maximale L^{p}-regularităt für differentialgleichungen in Banach-und Hilbert-Räumen, Math. Ann., 277 (1987), 121-133.
10. S. Schweiker, Asymptotic regularity and well-posedness of first- and second-order differential equations on the line, Ph.D. Thesis, Ulm, 2000.
11. O. Staffans, Periodic L^{2}-solutions of an integro-differential equation in Hilbert space, Proc. Amer. Math. Soc., 117 (1993), 745-751.
12. L. Weis, Operator-valued Fourier multipliers and maximal L^{p}-regularity, Math. Ann., 319 (2001), 735-758.

Shangquan Bu and Gang Cai
Department of Mathematical Sciences
Tsinghua University
Beijing 100084
P. R. China
E-mail: caig10@mails.tsinghua.edu.cn sbu@math.tsinghua.edu.cn

[^0]: Received February 22, 2012, accepted June 8, 2012.
 Communicated by Eiji Yanagida.
 2010 Mathematics Subject Classification: 47D06, 47A50, 42A45, 34K30.
 Key words and phrases: Second order differential equations, Mild well-posedness, L^{p}-Fourier multipliers. This work was supported by the NSF of China (No. 11171172).
 *Corresponding author.

