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LOW-DIMENSIONAL COHOMOLOGY OF LIE SUPERALGEBRA A(1,0)
WITH COEFFICIENTS IN WITT OR SPECIAL SUPERALGEBRAS

Liping Sun' and Wende Liu?*

Abstract. Over a field of characteristic p > 2, using a direct sum decomposi-
tion of submodules and the weight space decomposition for the Witt superalgebra
viewed as A(1,0)-module, we compute the low-dimensional cohomology groups
of the special linear Lie superalgebra A(1,0) with coefficients in the Witt su-
peralgebra. We also compute the low-dimensional cohomology groups of A(1,0)
with coefficients in the Special superalgebra.

0. INTRODUCTION

In 1997, Zhang [17] constructed four series of modular graded Lie superalgebras
of Cartan type, which are analogous to the finite-dimensional modular Lie algebras
of Cartan type [10] or the four series of infinite-dimensional Lie superalgebras of
Cartan type defined by even differential forms over a field of characteristic zero [4].
Later, the finite-dimensional modular Lie superalgebras of Cartan type defined by odd
differential forms were also constructed and studied (see [3, 7, 8], for example). Now
one can find many results on the structure, representation and classification of modular
Lie superalgebras, for example, see [1, 6, 9, 12, 13, 14, 15, 16] and the references
therein. We should mention that the complete classification problem is still open for
finite-dimensional simple modular Lie superalgebras.

In the present article, over a field of prime characteristic, we mainly compute the
low-dimensional cohomology groups of the special linear Lie superalgebra A (1, 0) with
coefficients in the restricted Witt superalgebra W or Special superalgebra S viewed
as A(1,0)-modules in the natural fashion. We also give an example to illustrate that
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certain classical results for the Lie superalgebra A(1,0) in characteristic zero do not
hold in characteristic p. Generally speaking, for a graded simple Lie (super)algebra,
the classical Lie (super)algebra contained in the null plays an important role in char-
acterizing the structure of the Lie (super)algebra under consideration. We expect that
this work is useful for further study of the graded modular Lie superalgebras such
as characterizing the maximal graded subalgebras of the simple graded modular Lie
superalgebras of Cartan type, as in the Lie algebra case [5].

Let us formulate the outline of the present paper. For our purpose we describe firstly
the structure of A(1,0)-module W and compute the weight space decomposition of
W relative to the standard CSA § of A(1,0). Then the work under consideration is
reduced to computing the cohomology groups with coefficients in certain submodules
and computing the so-called weight derivations from g to these submodules, that is,
the derivations preserving the h*-gradings. Finally, since the Special superalgebra .S
contains A(1,0) as subalgebra and W contains S as A(1, 0)-submodule, we use the
results obtained for W' to compute the low-dimensional cohomology groups of A(1,0)
with coefficients in the Special superalgebra S.

Let us indicate certain differences for the cohomology of A(1,0) in characteristics
0 and p. Over a field of characteristic zero, the first cohomology group of A(1,0) with
coefficients in a finite-dimensional simple module is trivial or of dimension 1 [11]. In
the characteristic p case, however, this does not hold (see Remark 5.8).

Throughout we work over a field F of characteristic p > 2. All the vectors are
assumed to be finite-dimensional. Write Z for the set of integers and Zs := {0, 1} the
two-element field. The symbol |x| implies that = is a Zy-homogeneous element in a
Zs-graded vector space and meanwhile it denotes the parity of x. Write (v1, ..., vg)
for the subspace spanned by v, ..., v in a vector space.

1. PRELIMINARIES AND MAIN RESULTS

We recall certain basics relative to Witt superalgebras and Special superalgebras.
Fix two positive integers m,n > 1. Let O(m) be the divided power algebra with a
standard basis

1,002

(2@ = g®1g2 ... gOm

m

|la=(a1,...,amp) €2, 0<a; <p—1}

and multiplication (2% = (*19) 28 where (*1%) = [, (“577). Let
A(n) be the exterior algebra of n variables 41, ..., Tm4n, Which has a standard
basis

{a" =a 2y xy, | m+1<d < - <ip <m+n},

where u = (i1, 12, ..., i) is a strictly increasing sequence of k integers between m + 1
and m+n. The tensor product O(m, n) := O(m)®A(n) is an associative superalgebra
in the usual fashion. We abbreviate g ® f to gf for ¢ € O(m) and f € A(n). Let
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01, ..., Om+n be the special superderivations of the superalgebra O(m,n) such that
0i(xj) = 0;;. We write i € u if 0;(2") # 0. The finite-dimensional Witt superalgebra,
denoted by W (m,n), is a Lie superalgebra spanned by all f0;, where f € O(m,n)
andi =1,...,m+ n. Let div: W(m,n) — O(m,n) be the divergence such that
div(f8;) = (—=D)/1%1a,(f)  for f € O(m,n).

Put S(m,n) := (w € W(m,n) | div(w) = 0). Then S(m,n) is a subalgebra of
W (m,n). Its derived algebra S(m,n) := [S(m,n), S(m,n)] is a simple Lie superal-
gebra, called the Special superalgebra. In the sequel, write W, S and O for W (m,n),
S(m,n) and O(m,n), respectively.

By definition, a Zs-homogeneous linear mapping ¢ from a Lie superalgebra L to
an L-module M is called a derivation provided that

([z,y]) = (=1)Az - o(y) — (=)MIIAHD Y o(2) forall 2,y € L.

A derivation ¢ from L to M is said to be inner if there exists a fixed m € M such that
@(x) = (=1)I*llmlz: . m for all 2 € L. If such an element m does not exist, ¢ is called
an outer derivation. Denote by Der(L, M) and Ider(L, M) the derivation space and
the inner derivation space, respectively. In general, Der(L, M) and Ider(L, M) are
L-submodules of Homp(L, M). The zero-dimensional cohomology group of L with
coefficients in M is the maximal trivial L-submodule of M:

HYL,M):={me& M |L-m=0}.

The first cohomology group (space) of L with coefficients in M is the quotient module:
HY(L, M) := Der(L, M) /Ider(L, M).

For short we write g for A(1,0). Fix a standard basis of g:
B := {h1 :=e11 +e33, ha 1= ez + €33, €12, €21, €13, €31, €23, €32}.

We identify g with the subalgebra of W with a fixed ordered basis

{21014+ Zm+10m+1, 200+ T 410m1, 102, 2201, T10m+1, Tim+101, T20m 41, Tim+102 }

under the canonical isomorphism given by (1 < i # j < 2):

hi — 2;0; + Tyng10m41, €ij — T30}, €3 — TiOmi1, €3; — Tm410;.

View W and S as g-modules by means of the adjoint representation. This paper
aims to compute H(g, X) for i = 0,1 and X = W, S. In particular, we obtain the
following dimension formulas:

(2m +2n —5)2" pm=2 ifi=0
(3m+3n—8)2”pm 2 ifi=1,
(2m+2n—7)2" p" 2 —2m+5  ifi=0
3(2m +2n — 7)2"~ v p" 2 —6m+ 17 ifi= 1.

dimH'(g, W) = {

dimH'(g, S) = {
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2. REDUCTION

We shall adopt two kinds of reductions for computing the low-dimensional coho-
mology groups. The first one is based on a basic fact: If L is a Lie superalgebra and
M an L-module with a direct sum decomposition of L-submodules, M = @] M;,
then

@.1) H*(L, M) = &} HY(L, M;).

Thus, let us first decompose W into a direct sum of certain g-submodules. View O as
g-module by the canonical embedding g < W. Put J := {1,2,m + 1}. Then O has
a direct sum decomposition of submodules:

(2.2) 0=080,

where

23) (/’); = (22 | 9;(z@z*) =0 for all j € J),
O = (z\¥z% | 9;(z(@z*) £ 0 for some j € J).

It is evident that O is a trivial g-submodule of O. Note that W is a free O-module with

basis {01, ..., Omin}. Then W has a direct sum decomposition of g-submodules:
W = Z@@i@Z@% @Z@aj @Z@aj.
i¢d i¢d =2 j€I
Clearly,

24) T:=) 00;=(z\a2"0; | 0;(x'Va") =0 foralljed, ig¢J)
i¢J
is a trivial g-submodule of W. As g-modules, one may easily check that
QHWT®(Ow(0]i¢I) DO (0,0, 0m11) ® (0O (D1, 0, 0mi1))-
Obviously, as g-module, (0; | i ¢ J) is trivial and of dimension
t:=m+n-—3.

As g-submodule of W, (1,29, Xy, 41) is isomorphic to the 3-dimensional standard
A(1,0)-module s[(2|1) with the standard basis

v = (17 07 0>t7 Vg 1= (07 17 0>t7 v3 = (0’ 0’ 1>t’
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under the linear mapping given by
T1— V1, Ty — V2, Tmtl — V3.
We have a standard g-module isomorphism:
(01, 02, Ot1) ~ sl(2[1)".

As usual, for an L-module M write S*A/ for the kth super-symmetric power of M.

Now consider g-module s[(2[1). Let I be the ideal generated by v} and v in the

super-symmetry algebra Ssl(2[1) = @;>0S¥s((2|1). For k > 1, define the following
g-modules in the usual way:
Vi = SFsl(2]1) + I/1,
space

V=@V @l sksi(2)1).

Then, as g-modules,
V= 0%(2,1) — O(m,n),

where O*(2, 1) is the unique maximal ideal of O(2, 1) without 1. Thus, identifying V
with @ii _llSks[(Q\l) as vector spaces, we take the convention that, in V,

(2.6) vf =0 wheneverk >p fori=1,2.
Then one easily finds a canonical g-module isomorphism:
2.7) O~0xV.
For an L-module M we also write
EM:=M®@---®M (k copies).
If V and U are g-modules and V is trivial, then
(2.8) VeoU~kU, wherek=dimV.
From (2.7) and (2.8), one may easily find the following g-module isomorphisms:
O~0xV ~ sV,

where
s := dimO = 2" 1pm=2,

Similarly, from (2.5) we have

(2.9) W~T@s(tVe(Vosl(2(1)) @sl(2(1)7).
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Note that the trivial g-module 7 is of dimension:
(2.10) dim7 =ts = <m+n_3>2n—1pm—2.

The module action of g on V is given in the table below [Notice (2.6)]:

Table 2.1: Module action of A(1,0) on V

v = vlfl v;” v = vlfl v§2v3
hi | kv (k1 +1)v
ha | kov (ko +1)v

Bitl, Fo—1 Bitl, Fo—1
e12 | kov]'" 052 kov* T v5* s

ki—1, ko+1 k1—1, ko+1
€21 | k1v]' T vy? RO AV

e |0 vlf1+1v§2
€31 klvlfl_lvg"’vg 0
ex3 | 0 vlfl v§2+1
€32 kgvlflv§2_1v3 0

Note that for a simple Lie superalgebra L and a trivial L-module M,

(2.11) Der(L, M) = 0.

Remark 2.1. In view of (2.1), (2.9) and (2.11), It is enough to compute the low-
dimensional cohomology groups of g with coefficients in the submodules V, V®s((2|1)*
and s[(2|1)* respectively, since 7 is trivial.

In order to explain the second kind of reductions for computing the low-dimensional
cohomology groups, we introduce the following definition.

Definition 2.2. Let L be a Lie superalgebra and M an L-module. Relative to
a CSA H of L, L and M have weight space decompositions L. = ®,cpy+L, and
M = @®4cn+-M,, respectively. A derivation ¢ from L to M is called a weight
derivation (or H *-derivation) relative to H if p(L,) C M, for all « € H*.

Let us state a standard fact on weight derivations, which is a super-version of the
Lie algebra case [2, Theorem 1.1].

Lemma 2.3. Each derivation is equal to a weight derivation modulo an inner
derivation.

In view of Lemma 2.3, to compute the 1-dimensional cohomology groups of g to
W, it is sufficient to compute the weight derivations relative to a CSA of g. Fix a
standard CSA of g:
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h=(hi=ei+es|i=12)
Relative to b, the root space decomposition of g is
(212) g = h @ 981—82 @ 9—61+62 @ 9—62 @ 952 @ 9—51 @ 951-
All the root subspaces are 1-dimensional and the root-vectors are listed below:

Table 2.2: Roots and root-vectors for g

roots €1 — €9 | —€1+¢e9 —&9 €9 —e1 €1
root-vectors €12 €21 €13 €31 €23 €32

In view of the remarks below Lemma 2.3, for a weight derivation ¢ from g to
g-module M, we have

©(ga) € M, foralla € h* = (0, £e1, teg, £(1 — £2)).

Thus, for a g-module M, we are only concerned with the weight subspaces of M corre-
sponding to the weights of g. So, for later use, we list the weight-vectors corresponding
to the weights in h* for g-module V and V ® sl(2|1)*, respectively. For convenience,
we write v ® v* as vv* for v € V and v* € sl(2]|1)*. Here one should keep in mind
that p = 0 in the ground field F.

Table 2.3: Weight-vectors and their Z-degrees for g-module V

weights 0 €1 — €3 | —€1+ €2 —&g €9 —&1 &1
weight- | v?" b ug | 0B us | 0P w3 [ 0BT Vg P v
vectors vivE ™t | WPy, P B 2ug | 0P g | P20 g | 0B s
Z-degrees | 2p — 1 p—1 p—1 p—1 1 p—1 1

p p 2p—2 p 2p—2 p

Table 2.4: Weight-vectors and their Z-degrees for g-module V ® s[(2|1)*

0 €1 — €2 —&1 + &2 —&2 €2 —&1 €1
V107 v1V5 X v1V3 v3V] Va3 V3V
VoV vivl v3u} B 230} v1V207 P vz} viv}
V33 vivE  ozvs | P 3us vl ol v3v3 P o} VU205
VU205 vl oy P ogwzvy | w8 tuswd VU3V P ozl VU35
VP oged | vivR 2ugul | oP T tuset VPl gl | vivds P ol et | vivaus
vE osul | vb T ugud VP2 u9v30% P vauz v v1vE ™ tugvf
0 1 0 p 0 0 1 |0 1 0 1 |0 |
0 p—1]1 p—-1 1 p—-1 p—2 p—1 1 2 p—2 p—1 1 2
0 p—1|p p—1 p p—1 2p—2 |1 p 2p—2 11 »p

3. ZERO-DIMENSIONAL ConoMoLoGy H(g, W)

Theorem 3.1. The zero-dimensional cohomology group of g with coefficients in
W is as follows:

Ho(g, W)=Ta ts(vif_lvg_lvg) @ s{v1v] + vous + v3V3),
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where
t=m+n—3 and s=2""1pm 2

In particular,
dimH (g, W) = (2m + 2n — 5)2" " 1p™ 2.

Proof.  In view of Remark 2.1, we compute the zero-dimensional cohomology
groups of g with coefficients in s[(2|1)*, V and V ® s[(2|1)*, respectively. Firstly, let
us compute H°(g, 5[(2|1)*). Relative to the standard CSA b, we have

sl2[1)" = sl(2[1)Z,, @ sl2|1)Z,, @ sl2[1)Z,, .,
sl2[1)Z,, = (v1), sl2[1)Z, = (v3), sU2[1)Z, ¢, = (v3).

In particular, s((2|1); = 0. It follows that

3.1)

(3.2) H'(g,s1(2]1)*) € H (b, s1(2[1)") C sl(2[1); = 0.

Secondly, we compute H%(g, V). Table (2.3) shows that Vs = (0" 05 'u3). Corre-
spondingly,

(3.3) H%g,V) C H(H,V) C Vp = (0 "o Lug).

On the other hand, keeping in mind the convention (2.6), one sees from Table 2.1 that
vP 1l g € HO(g, V) and therefore,

(3.4) H(g,V) = (o] "f g ).
Thirdly, let us show that
(3.5) H(g,V®5l(2]1)%) = (010} + vav3 + v303).
Table 2.4 shows that
(V @ 5sl(2]1)%)s = (010}, vav5, v3vs, vivavs, VP Tougvs, v Tugu}).
Then for any v € H%(g, V ® sl(2]1)*) C (V ® s1(2|1)*)g, one may assume that

3
1 1
v = E a;v;v; + agv1v9vs + azv]” vsvs + agvh wsv], where a; € F.
i=1

In the below, we use Table 2.1 without notice. Since ejo - v = 0, €31 -v = 0 and
ess - v = 0, one gets

alp = ag = asg, a4:a5:a6:0.
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Then v = aZ?:l v;vf. On the other hand, one sees that v € H%(g,V ® s((2|1)*),
proving (3.5). From (3.2)—(3.5), (2.1) and (2.9), we have immediately:

HO(g, W) =T & ts(oP b us) @ s(vivf + vovd + vsv3).
where t = m +n — 3, s = dim® = 2""1p™~2, From (2.10), diim7 = t¢s. Then
dimH%(g, W) = (2t + 1)s = (2m + 2n — 5)2" " 1pm=2.
The proof is complete. u
4. First CoHomoLoGy H'(g, W)

Before computing the first cohomology groups of g with coefficients in W, we
first introduce eight outer derivations. By (2.9), we identify W with 7 @ s(tV & (V ®
s[(2]1)*) @ sl(2|1)*). Consider the linear mappings from g to W given by

* *
P11 €13 —— Uy, €23+ —Up;

Y2 €31 —— V2, €32 F—— —U1;

p3tera — 18 v, 13— vh
p1 ez — P 0, eag s 0b
(4.1) Y5 L €12 ’Ul’l)p_l, €39 —— ’Ug_lvg;
@6 ¢ ea1 — Vb ug, gy s 0 g,
o7 e13 — vp_lvp_2v3, €93 — —vp_2v§_1v3;
g : €13 — vp_lvp_lvgvg, €93 — —v:f_lvg_lvgvf.
Here we take the convention that, for each &k = 1, 2, ..., 8, ¢ vanishes on the standard

basis elements of g which do not appear. For example, 1 (B \ {e13,e23}) = 0.

Lemma 4.1. Each ¢y, is both an outer derivation and a weight derivation for
k=1,2,....

Proof. First, we check that oy, is a derivation for k = 1,2, ..., 8. Observe that each
(k vanishes on six basis elements in B and the roots corresponding to the remaining
two basis elements are indecomposable. In view of this observation, one may simplify
computations in checking that ¢y, is a derivation. For example, let us check that (3 is
an odd derivation. To do that, it is sufficient to check that

(4.2) es([z,9]) = ()2 y(y) — ()WDY oy(a),

for x = e19 or x = ey3 and y € B. Firstly, let x = e19 and y = h;, ¢ = 1, 2. In this
case, (4.2) holds, since the left hand side of (4.2) is

ws([er2, hil) = (—1)'ps(e12) = (—1)"vh ?vs
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and the right hand side is
—hi - p3lers) = —h; - V8 2v3 = (=1)"wE 2us.
Secondly, letting = ej2 and y = e;; with i # j, one computes the left hand side of
(4.2):
es([e12, eij]) = @3(di0e1j — dj1ei2) = 6; 285305
and the right hand side:
Siner - p3(erj) — (—1)\les; - w8 2ug = 6;08; 305

Analogously, one may check (4.2) in the remaining cases x = e;3 and y € B. Thus
(3 is a derivation. In the same manner, one may check that each ¢ is a derivation,
k=1,...,8.

Let us show that ¢y, is outer. Suppose conversely ¢ is an inner derivation given
by wp € W, for k=1,...,8. By (4.1), h - wi = ¢x(h) = 0 and consequently,

(4.3) wy € H'(h, W) fork=1,...,8.

For i = 2,...,7, the definition (4.1) implies that ©;(g) € V. Thus one may assume
that w; € V. Then by (4.3), we have

w; € HO(h,V) fori=2,...,7.
It follows from (3.3) and (3.4) that
w; € HY(h,V) = H%g,V) fori=2,...,7.

This shows that ¢; = 0 for ¢+ = 2,...,7. Let us consider ¢; and ¢g. By (4.1), one
sees that ¢1(g) C sl(2]1)* and pg(g) € V @ sl(2|1)*. Then one may assume that
wy € sl(2|1)* and wg € V ® sl(2[1)*. By (4.3), we have wy € H(h,s(2|1)*) and
wg € HO(h,V @ sl(2]1)*). Thanks to (3.2), we have w; = 0. From the definition of
(g, one sees that

€12 - wg = €91 - wg = €32 - wg = 0.

Then, as in the proof (3.5), one gets wg = v1v] + vav3 + v3v3, and then pg(z) =

- wg = 0 for any z € g. Summarizing, we have shown that o, =0 for k =1,...,8.
This contradicts (4.1), proving that all (. are outer.
The remaining conclusion follows from Tables 2.2-2.4. |

In view of Remark 2.1 and Lemma 2.3, computing H!(g, W) is reduced to com-
puting the weight derivations from g to s((2]1)*, V and V ® s[(2|1)*, respectively.

For simplicity, for an outer derivation we write the image in the first homology
group still by the outer derivation itself.
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Proposition 4.2. We have
H'(g,51(2[1)") = {¢1).

In particular,
dim H' (g, sI(2[1)") = 1.

Proof. In view of Lemma 2.3, one may suppose ¢ is a weight derivation from g
to g-module s[(2|1)*. From (2.12), (3.1) and Table 2.2, it follows that

(B \ {e13, e23}) = 0,
@(e13) = avy, @(ez3) = bvy for some a,b € F.

Clearly, |¢| =1 and

avy = p(e13) = p([e12, , €23]) = exa - (bvy) = —bvy.
This forces b = —a and then ¢ = ap;. By Lemma 4.1, ¢ is an outer derivation if
a # 0. Now our conclusions follow from Lemma 2.3. ]

To determine H'(g, V), in view of (2.1), Lemma 2.3, Tables 2.2 and 2.3, we have
to compute the weight derivations ¢ from g to Vi for k =1, p—1,p,2p—2and 2p—1.

Lemma 4.3. (1) H'(g, V1) = (p2), (2) H'(g, Vop—2) = (7).

Proof.  'We only prove (2) while (1) can be treated analogously. Let ¢ be a weight
derivation from g to Vy,_o. By Tables (2.2) and (2.3), one may assume that

©(B\ {e13,e23}) =0,

p—

plers) = avt ol b

2 2 p1
vs, p(e2s) = bvl “vb w3 for some a,b € F.

Clearly, || = 0 and

p—1 p—2

Y %03 = p(e13) = p([er2, eas]) = e12 - p(eaz) = —bo} vhPus.

p—1
Ua

av

It follows that « = —b and hence ¢ = aw7. Then (2) holds according to Lemmas 4.1
and 2.3. ]

Lemma 4.4. (1) H'(g,V,—1) = (3, 04), (2) H'(g,V,) = (5, v6)-

Proof.  'We only prove (1) while (2) can be treated analogously. Let ¢ be a weight
derivation from g to V,_1. By Tables 2.2 and 2.3, one may assume that

©(B\ {e12, €21, €13, €23}) = 0,
ple12) = a1ovh us, plen) = anvd v,

ple1s) = algvg_I, p(eas) = aggvf_l for some a;; € F.
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Clearly, |p| =1 and

a13vh ' = p(e13) = p([e1n, eas]) = era - p(eaz) + ez - p(e12) = argvh .

It follows that a15 = a13. Analogously,
a1 v Pu3=p(ea1) = p([e2s, e31]) = —ez3 - p(es1) — e31 - p(eaz) =agzv? 2vs.

This forces ag3 = agq. Let a = alp = ais and b = ag3 = ag1. By (4.1), @ = aps
+byy. n

Lemma 4.5. H'(g, Vap—1) = 0.

Proof.  Let ¢ be a weight derivation from g to Vs, _1. By Tables 2.2 and 2.3,

o(B\ {h1,h2}) =0

and then
o(hi) = o([eis, e3:]) =0 fori=1,2.
Thus ¢ = 0. By Lemma 2.3, the conclusion holds. -

Proposition 4.6. We have

H'(g,V) = (¢2,. .-, 97)-

In particular,
dim H'(g, V) = 6.

Proof. By Lemmas 4.3—4.5, the first conclusion holds. For the dimension formula,
it suffices to show that ¢o, ..., p7 € Der(g, V) are linearly independent modulo the
inner derivation space Ider(g, ). By the definitions (4.1) and Lemma 4.1, ¢3, ..., p7
are weight derivations and their Z-degrees are

deg(p2) =1, deg(p3) = deg(pa) = p—1, deg(ps) = deg(ws) = p, deg(p7) = 2p—2.

Thus it suffices to show that {3, ¢4} and {5, v} are linearly independent modulo
the inner derivation space Ider(g, V), respectively. Indeed, this follows from the general
fact that Der(g, V) are Z x h*-graded and an observation from Table 2.3:

V-1 NVy =0=V,NVy,
since @3, .. ., g € Der(g, V) are linearly independent. [ ]

In the below we compute H'(g, V®s5l(2|1)*). As before, we only need to compute
the weight derivations from g to Vi ® sl(2|1)* for £k = 1,2,3,p— 1, p,p+ 1 and
2p — 1.
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Lemma 4.7. H'(g, V. ®sl(2]1)*) =0 for k=1,2,3,p—1,p,p+ 1.

Proof. (1) Let ¢ be a weight derivation from g to V; ® s[(2|1)*. According to
Tables 2.2 and 2.4, suppose

3
(P(hz> - Z aijvjv; for: = 1, 2,
j=1

(,0(6@‘) = bijviv; for1 <i+#j5<3.

Note that || = 0. We have
3
44> " aivvr = o(hi) = ([eis, esi]) = (bis + baiJviv} + (biz — bai)vavs.
j=1

It follows that
(4-5) a2 = ag1 = 0.

Thus
*
(p(hl — hg) = 61,11’1)11)1k — 61,22’1)21)5k + (a13 — a23>’l)3v3.

On the other hand

(4.6)  ©(h1 — h2) = ¢([e12, e21]) = (b12 + ba1)viv] — (bi2 + ba1)v2vs.
Then

4.7) ail = a2z, a3 = a23.

Noting that byovivs = p(e12) = @([h1, e12]) = (b12 + a11)v1v5, one gets

(4.8) a1 = 0.
Similarly, since 0 = ¢(0) = ¢([h1, €13]) = —a13v1v3, one gets
(4.9) a1z — 0.

From (4.5) and (4.7)—(4.9), we have
(4.10) a;; =0 fori=1,2andj=1,2,3.
Applying (4.10) to (4.4), one gets

4.11) bi3 = b3y = bag = b3 = 0.
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Since
bizvivy = p(e13) = ¢([e12, ea3]) = (bsa + bi2)vivs,

it follows from (4.6) that
(4.12) bia = by = 0.

According to (4.10)~(4.12), we have ¢ = 0. By Lemma 2.3, H'(g, V1 ®sl(2[1)*) = 0.
(2) Let ¢ be a weight derivation from g to Vo ®s[(2[1)*. According to Tables (2.2)
and (2.4), one may assume that

ole) =0, (h) = aivvs,  ¢(eij) = a;jvivs,

p(es;) = agiv]zv; + bzivivjv; + c3vjusvy  ford, j=1,2and i # j.
Note that |p| = 1 and
(1) o(er2) = @([his era]) = hi - plerz) — ez - p(hi) = (=1)""p(ern) — avivs
It follows that a; = 0, ¢ = 1, 2. That is

(4.13) #(h) = 0.

Applying (4.13) to the equations

o(h1) = ¢([e13, e31]) = (as1 — c31)vivavs

and

w(h2) = p([e2s, e32]) = (bs2 — c32)v1v9v3,
one has
(4.14) az; = c31, bz = c32.

Noting that

0 = ¢([es1, e31]) = —2e31 - @(ez1) = —2(ag1 + c31)vav30]
and

0 = p([es2, e32]) = —2e32 - @(ez2) = —2(bsa + c32)v1U30V5,
one has
(4.15) az; = —c31, bz = —c3o.

Combining (4.14) and (4.15), one gets

(4.16) az; = c31 =0, b3y = c32 = 0.
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By (4.16), a simple computation shows
0 = ¢([es1, e32]) = —2agov1v3vV] — 2b31V2V3V5.
It follows that
(4.17) asza =0, b3 =0.
According to (4.16) and (4.17), we have

(4.18) @(631) = @(632) = 0.

Noting that

0= p(ez2) = p([es1, e12]) = —2a12v10305 — arovivy

and
0 = p(e31) = p([es2, e21]) = —2az1vov3v3 — ag1v3v3,

we have a15 = 0, ao; = 0. Therefore,

(4.19) p(e12) = p(e21) = 0.

From (4.13), (4.18) and (4.19), we have ¢ = 0. By Lemma 2.3, the conclusion
holds.

(3) Let ¢ be a weight derivation from g to Vs ®s[(2|1)*. According to Tables (2.2)
and (2.4), one may assume that

©(B\ {e31,e32}) =0,
@(631) = aglvlv%v;ﬁ, @(632) = a32v%v2v§ for some asi, as € F.

Clearly, |p| = 0 and
0= — * 2 * 2 %
= p([es1, e32]) = 2(asz + az1)v1v2v303 + az3207V2V] + A31V1V5V5.

Then we have a3; = aga = 0. Consequently, ¢ = 0 and then H'(g, V3®s5[(2]1)*) = 0.
Similarly, one may check the conclusion for kK =p —1,p,p+ 1. ]

Lemma 4.8. H'(g, Va,—1 ®sl(2|1)*) = (is).

Proof.  Let ¢ be a weight derivation from g to V5,1 ® s[(2|1)*. According to
Tables 2.2 and 2.4, suppose

©(B \ {e13,e23}) = 0,

-1 p—1 * p—1 p—1 *
p(e13) = a1z b wgvs, p(eas) = agzvl” vhTwzu] for some ags, azg € F.
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Note that || = 0 and
0 = ¢([e13, e23]) = (a13 + agz)v? o8 wsvl.
It follows that a13 = —as3 and then
¥ = aps.

According to Lemma 2.3, the conclusion holds. ]

The following is a direct consequence of Lemmas 4.1, 4.7 and 4.8.

Proposition 4.9. We have

H'(g,V ®sl(21)") = (gs),

In particular,
dimH'(g,V ®sl(2[1)*) = 1.

We are in position to prove the main result of this paper:

Theorem 4.10. The I-dimensional cohomology group of g with coefficients in W
is as follows:

H' (g, W) =2"""p"*((¢1) & (m+n — 3){(pa, ..., o7) & (pg)).

In particular,
dimH (g, W) = (3m + 3n — 8)2"p™ 2

Proof.  Using the fundamental fact (2.11), we have H'(g, 7) = 0. Then, by (2.1)
and (2.9),

H' (g, W) = s(H'(g.s1(2[1)*) @ tH' (g, V) ® H'(g,V @ 51(2]1)"))
and our conclusions follow from Propositions 4.2, 4.5 and 4.9. ]
5. APPLICATION

In this section, we apply the results obtained in Section 4 to compute the low-
dimensional cohomology groups of g with coefficients in the Special superalgebra.
Recall that

(5.1) S(m,n) = S(m,n) ® <a:(7r_(p_1)5i)a:w8i |1 <i<m),
and
(5.2) dimS(m,n) = (m+n—1)2"p™ —m + 1,

wherem = (p—1,...,p—1) eN"andw = (m+1,...,m+n) forall m+1 <
j < m + n. Before computing the zero-dimensional cohomology groups, we establish
a technical lemma.
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Lemma 5.1. Let d = v10} + vvi + v3v3 and N' = (T ® Od) N S. Then

dimN = (m +n —3)2" 1p™ 2 —m + 2.

Proof. Fix the standard basis of O as in (2.3): {f; |i=1,...,s}, where
fS — [1;‘]3)_1 . xg_b_lxm+2 .. xm+n

For f;, i # s, suppose that k; is the first one of the ordered set {3,...,m,m +
2,...,m+ n} such that z, f; # 0. Set

(5.3) gi = —(—1)WilH Dkl iy p

where ¢; € F is chosen so that the coefficient of c;zy, f; is 1. One sees that such g;
and k; are uniquely determined by f; fori =1,...,s — 1. By (2.4),

(5.4) gioy, € T = (00; | i ¢J).

(5.3) ensures that

(5.5) diV(fid + g,@kl) = 0.
By (5.1), fid + ¢iOk, € S. Clearly, {fid + giOk, | ¢ = 1,...,s — 1} is linearly
independent.
Next, let us show that
(5.6) N=(TnS)®(fid+giO, |i=1,...,s—1).

The inclusion “2” is clear. To show the converse, suppose that

s=y+ Y afide N=(T®0d)NS,
=1
where y € 7 and )7, a;fid € Od, a; € F. By (5.1),
(5.7) divy = - ai fi.

=1

It follows that a; = 0. So one may assume that x = y + Zf;ll 7d. On the other hand,

s—1 s—1 s
T =y - (Z aigi0k; — Y aigiaki> +> aifid
i=1 i=1 i=1

s—1 s—1
= (y — Z aigiaki> + Z ai(fid+ glakz>
=1 =1
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(5.4), (5.5) and (5.7) imply that yy — Zf;ll a;9i0k, € TNS. Thenx € (TNS)d(fid+
9iOk, |i=1,...,5—1). Thus, (5.6) holds.
Note that as a vector space, 7 N S is isomorphic to S(m — 2,n — 1). By (5.2),

dim(7 N S)=dimS(m—-2,n—1)=(t—1)s —m+ 3.
According to (5.6), we have
dimN = (t—1)s—m+3+(s—1) = (m+n—3)2""1p" 2 —m+2. ]
Theorem 5.2. The 0-dimensional cohomology group of g with coefficients in S is
H%(g,S) =N & dimS(m —2,n — 1) (¥ b ug).
In particular,
dimH(g, S) = (2m + 2n — 7)2" " 1p™ ™2 — 2m 4 5.
Clearly, H%(g, S) = H%(g, W) N S. By Theorem 3.1,
HO%g, W) =T @ st(v) @ s{d),

1o -1
where s = 2" 1pm=2 t =m +n — 3 and v = v} VE g, d = v1v] + VoV + V3V

It is easy to see that forany z € 7 \ S, y € st(v) \ S and z € s(d) \ S, one has

p—1

div(ix+y) #0 and div(y+ 2z) #0.

Then, according to (5.1),
r4+y¢S and y+z2¢5.
Thus,
(5.8)  H%g,S)=H%g,W)NS=((T®sd)NS)d (st{v)NS).
Recall that as g-module, s(d) ~ Od. By Lemma 5.1, one gets
(5.9) (T ®s{d))NS~N.
Analogously, as g-module, st(v) ~ (vOd; | i ¢ J). Then
st(v) N S ~ dim((vOd; | i ¢ J) N S)(v).

As vector spaces, (vO8; | i ¢ J) NS ~ S(m —2,n—1). Then

(5.10) st(v) NS ~ dimS(m — 2,n — 1)(v)
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In view of Lemma 5.1, from (5.8)—(5.10) and (5.2) we have
H%g,8) =N @ dimS(m — 2,n — 1)(v)
and
dimH (g, S) = (2m 4 2n — 7)2" 1p"™ "2 — 2m + 5. n
Finally, we compute (g, S). Since S is a subalgebra of W, each derivation from
g to S may be viewed as a derivation from g to W. Thus, it is sufficient to compute the

derivations in Der(g, W) which are outer derivations from g to S. For convenience,
write

o (ceDer(g, W) |3f €O :0(x)=for(x) forallzeg), k=1,8;
k=
(c€Der(g, W) |3T €T :0(x)=¢i(x)T forallzeg), k=2,...,7.
By (4.1), we have
(5.11) Dy :=DiNDer(g,S) =D; and dimD; = s.
Lemma 5.3. Let Dy, := Dy, N Der(g, S) for k =2,...,7. Then
dimDy, = (m +n —4)2" p™2 —m + 3.
Proof.  As vector spaces, Dy, ~ W(m —2,n — 1) for k = 2,...,7 and Dy, ~
S(m —2,n—1). By (5.2), we have
dimDy, = dimS(m —2,n—1) = (m+n—4)2""p™ 2 —m +3. |

Let us consider (D7 & Dg) NDer(g, S). Since dimDg = dimO = s, fix a standard
basis of Dyg :

{¢si € Ds | vs,i(w) = fips(z), x€g,1=1,...,s},
where {f; | i =1,...,s} is the standard basis of O in (2.3) and
fS = [1;‘]3)_1 N xg_b_lxm+2 .. xm+n

For f; with i # s, suppose that k; is the first element in the ordered set {3, ... m, m+
2,...,m+ n} such that z, f; # 0. Set

(5.12) gi = _(_1>|fi||ki|+|ki|+|fi|cixkifi’
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where ¢; € F is chosen so that the coefficient of c;zy, f; is 1. One sees that such
g; and k; are uniquely determined by f;. Let ¢7; be the derivation in D7 such that
¢7.i(x) = p7(2)giOk,. By (5.12) and (4.1),

(5.13) div(epsi(z) + ¢pri(z)) =0 forz € g.

According to (5.1), g i+ 7. € (D7@Dg)NDer(g, S) for i # s. Clearly, {¢s;+¢7; |
i=1,...,8— 1} is linearly independent. Let

(5.14) Ds:={psgi+tpri|li=1,...,5—1).
Then
(5.15) dimDg = s — 1.

Lemma 5.4. (D7 @ Dg) N Der(g, S) = Dy @ Ds.

Proof.  Suppose o7 + o € Der(g,S) and o7 € D7, 0g € Dg. Then for any
T ey,

(5.16) div(o7(z)) = —div(os(z)).

Suppose og = > .. a;ps; and a; € F. We assert that a; = 0. Otherwise, div(o7(e13)+
og(e13)) # 0 for any o7 € D7. By (5.1), 07 + 03 ¢ Der(g, S), contradicting our as-
sumption. So one may assume that o = Zf;ll a;pg,;.- Then

s—1 s—1 s—1
or+og = 07— ( E P75 — E az‘@h‘) + E a; P8
i=1 i=1 i=1

s—1 s—1
= <U7 - Z ai@m) + Z a;(ps,i + ©7,0)-
i=1 i=1

(5.13) implies that for any x € g,

(5.17) div( Sz_iaicpm(x)) - —div( Sz_fai@&,‘(x)) — —div(os(z)).

Then (5.16) and (5.17) show that

s—1
div(o7(z)) = div(Z aicp7(a:)g,~8ki> for any z € g.
i=1

It follows that
s—1

o7 — Z aipr; € Dr.
i=1
Thus o7 +0g € D7+ Dg. Clearly, @7—1—@8 C (_D7@DS)ﬂDer(g, S)and D;NDg = 0.
So we have (D7 @ Dg) N Der(g, S) = D7 @ Dg. ]
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Lemma 5.5. Suppose w € Wy. Then adw = ad(fviv]) (mod Ider(g, S)) for
some f € O.

Proof. By Tables 2.3 and 2.4 and, (3.1) and (3.3), one may assume that
w = Z g;vjv; + gavivavy + 950" L ogus + gsvh tusv},  where g; € O.
jed

A simple computation and (5.1) show that adw(g) C S. Then adw € Der(g, S). Note
that
* p—1 * p—1 *
gav1V203 + g5v|]  U3Us + geUs U3V € S

and
Zgjvjv; = g1v1v;  (mod S).
jed
It follows that adw = ad(fviv}) (mod Ider(g, S)) for some f € O. ]
Set
(5.18) Dy := (ad(fv10v}) | f € O).

Then Dg := Dg N Der(g, S) = Dg and
(5.19) dimDgy = s = 27 1pm2,

Lemma 5.6. Let o, € Dy for k=1,...,9. Then
9 —_ — —
Zak € Der(g, S) < oy € Dy for k # 7,8 and o7 + g € D7 @ Dg.
k=1

Proof. It suffices to show the implication “=-". Since Dy = Dy and @9 = Dy,
one may suppose that o = 22:2 o € Der(g,S). (4.1) shows that for any x € g,
vr(x) € O(2,1), k=2,...,7. Since o}, € Dy, one may suppose that

op(z) = op(x)qr, whereqr €7, k=2,...,7.

Assume that o5 ¢ Do. Then there exists some x € B such that oo(z) ¢ S. By
(4.1), x = e3q or egq. If x = e31, again by (4.1), ox(es31) =0 for k = 3,4,5,7,8 and
oa(es1) = v2q2, o6(es1) = v} 'vsge. Thus,

(5.20) 0(631> = 02(631> + 06(631> = v2q2 + vf_lvqu eS.
The assumption that oo(e3;) ¢ S forces og(es1) ¢ S. Then

diV02(€31> = diV(’UgQQ) = ’U2diVQ2 7& 0,
diV06(€31> = div(v:f_lvqu) = iv:f_lvgdiqu 7& 0.
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It follows that divgs # 0 and divgs # 0. Then div(o2(es1) + o6(es1)) # 0. This
contradicts (5.20).

If © = e3o, a similar discussion yields that oo € Dy. Next, we want to show that
03 € D3. Assume that o3 ¢ D3. According to (4.1), o3(z) ¢ S for z = eyp or = e13
. If & = ey, then oy (e13) = 0 for k = 4,5,6 and

o3(ers) = vb 'gs,
or(ers) = £} 108 g,
os(es) = fo} " vh  usdy, f € O,
Thus,
(5.21) o(e13) = o3(e13) + (o7 + 03)(e13) € 5.
The assumption that o3(e13) ¢ S forces (07 + 03)(e13) ¢ S. Then
divos(e1s) = ’Ug_lddi:g £ 0,
div((o7 + 08)(e13)) = o' b v (£divgr + f) # 0.

It follows that
diV(Ug(€13> + <U7 + US>(€13>> # 0.

This contradicts (5.21). If x = ej9, the discussion is similar. So we have o3 € Ds.
Analogously, one may prove that o5 € Dy for k = 4,5,6. Then o7 + 0g €

Der(g, S), since 22:2 or € Der(g,S). By Lemma 5.4, o7 + 03 € D7 @ Dg. The

proof is complete. u

Theorem 5.7. The 1-dimensional cohomology group of g with coefficients in S is
Hl(gu S) - G92:1®k~
In particular,

dimH' (g, S) = 3(2m +2n — 7)2" 'p"™ "2 — 6m + 17.

Proof. Let o be an outer derivation from g to S. By Theorem 4.10,
Der(g, W) = @%_, Dy, @ Ider(g, W).

Then one may assume that

8
o= Zak + adw € Der(g, S), where oy, € Di, we W.
k=1
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Since o, are weight derivations, by Lemma 2.3, one may assume that w € Wy. Ac-
cording to Lemma 5.5 and (5.18), one may assume further that o = 22:1 ok, where
ok € Di. Then by Lemma 5.6, one gets o € @Z:1®k~

Next, we are going to show that any nonzero o € @Zzlik is an outer derivation
from g to .S. By (5.18), assume that

8
o= Zak + ad(fvyv}), where oy, € Dy, a; €F, f € 0.
k=1

If o is inner, there exists some z € S such that

8

Z ok + ad(fv1v]) = adz.

k=1
Recall that nonzero ¢, € D, k =1, ..., 8, are linearly independent modulo Ider(g, W).
Consequently, o, =0, k =1, ..., 8, and then ad(fv1v]) = adz. Note that ad( fv,v7)
is an outer derivation from g to .S when f = 0. Since z € S, one has f = 0. Thus
o = 0, contradicting our assumption. So o is outer.

Up to now we have shown that H'(g, S) = @2:1@k. Then, by Lemma 5.3 and,

(5.11), (5.15) and (5.19), we have

9
dimH'(g, S) = Zdim@k
k=1
=s+6((m+n—4)2""1p" 2 —m+3)+(s—1)+s
= 3(2m +2n —7)2" ™2 — 6m + 17. m

Finally, we explain that, as in Lie algebra case, some classical conclusions in
characteristic zero do not hold in characteristic p > 0 :

Remark 5.8. Over a field ' of characteristic zero, the first cohomology group of
A(1,0) with coefficients in a finite-dimensional simple module is trivial or of dimension
1 (see [11]). However, in the case of characteristic p > 2, from Lemma 4.4 and
Proposition 4.9 one sees that

dimH'(A(1,0), Vp_1) = dimH ' (A(1,0),V,) = 2,

while both V,,_; and V), as A(1,0)-modules are finite-dimensional and simple.
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