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ON THE COMPACTNESS OF COMMUTATORS FOR ROUGH
MARCINKIEWICZ INTEGRAL OPERATORS

Suzhen Mao, Yoshihiro Sawano and Huoxiong Wu*

Abstract. Let b ∈ BMO(Rn) and MΩ be the Marcinkiewicz integral operator
with kernel Ω(x)

|x|n−1 , where Ω is homogeneous of degree zero, integrable and has
mean value zero on the unit sphere Sn−1. In this paper, by means of Fourier
transform estimates and approximation to the operatorMΩ with integral operators
having smooth kernels we show that if b ∈ CMO(Rn) and Ω satisfies a certain
weak size condition, then the commutator MΩ,b = [b, MΩ] generated by b and
MΩ is a compact operator on Lp(Rn) for some 1 < p <∞.

1. INTRODUCTION

We aim to prove that the following (sub-linear) operator, which is called the com-
mutator of the rough Marcinkiewicz integral operator,

(1.1) MΩ,bf(x) :=

⎛⎝∫ ∞

0

∣∣∣∣∣
∫
|x−y|<t

Ω(x− y)
|x− y|n−1

(b(x)− b(y))f(y) dy

∣∣∣∣∣
2
dt

t3

⎞⎠1/2

is an Lp(Rn)-compact operator for certain 1 < p < ∞, if b ∈ CMO(Rn), the
BMO(Rn)-closure of C∞

c (Rn), and Ω is homogeneous of degree zero, integrable,
satisfies a certain weak integrability condition proposed by Grafakos and Stefanov [15]
(see (1.3) below), and has mean value zero on the unit sphere Sn−1. When n = 1,
then Ω is a constant times the signature function, and this case is rather simple. Thus,
we suppose, here and below, that n ≥ 2.
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The commutatorMΩ,b is closely related to the Marcinkiewicz integral operatorMΩ

defined by

MΩf(x) :=
(∫ ∞

0
|FΩ,t(x)|2dt

t3

)1/2

,

where

(1.2) FΩ,t(x) :=
∫
|y|≤t

Ω(y)
|y|n−1

f(x− y)dy for f ∈ S(Rn).

Stein initiated to the study of MΩ in [18], where Ω was assumed to belong to a
certain Lipschitz class Lipα(Sn−1) with 0 < α < 1. Subsequently, Benedek, Calderon
and Panzone [3] showed that MΩ is bounded on Lp(Rn) provided 1 < p < ∞ and
Ω ∈ C1(Sn−1). For more than six decades, many authors studied this operator under
many kinds of weak conditions on Ω; see [1, 5, 11, 12, 22, 23] for a sample of this
work. In particular, from [22, 23], we have the following result, which will be used
below.

Theorem A. [22, 23] Suppose that real parameters p and α satisfy

α >
1
2

and 1 +
1
2α

< p < 1 + 2α.

Let Ω be homogeneous of degree zero, integrable on Sn−1 and have mean value zero.
Suppose that Ω ∈ Gα(Sn−1), that is,

(1.3) ‖Ω‖Gα(Sn−1) := sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)|
(

log
1

|〈y′, ξ〉|
)α

dσ(y′) <∞.

Then MΩ is bounded on Lp(Rn).
We remark that the condition (1.3) was originally introduced in Walsh’s paper

[21] and developed by Grafakos and Stefanov [15] in the study of Lp-boundedness
of singular integrals with rough kernels. It follows from [15] that

⋃
q>1 L

q(Sn−1) �
Gα(Sn−1) for any α > 0, and

(1.4) Gα1(S
n−1) � Gα2(S

n−1) for 0 < α2 < α1;

moreover,

(1.5)
⋂
α>1

Gα(Sn−1) � H1(Sn−1) �
⋃
α>1

Gα(Sn−1),

where H1(Sn−1) denotes the Hardy space on the unit sphere Sn−1.
The definition of the operator MΩ,b dates back to the work of Torchinsky and

Wang [19], who showed that MΩ,b is bounded on Lp(Rn) for all 1 < p < ∞ and
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b ∈ BMO(Rn), provided Ω ∈ Lipα(Sn−1). Subsequently, many authors considered
the boundedness properties of this operators; see [7, 13, 16, 17, 24], for examples. In
particular, Hu [16] obtained the following result.

Theorem B. [16] Suppose that the real parameters p and α satisfy

α >
3
2

and
4α

4α− 3
< p <

4α
3
.

Let Ω be homogeneous of degree zero, integrable on Sn−1 and have mean value zero,
and let b ∈ BMO(Rn). Then for any Ω ∈ Gα(Sn−1), MΩ,b is bounded on Lp(Rn)
with bound C‖b‖BMO(Rn).

In this paper, we will focus on the compactness of MΩ,b. We first recall the com-
pactness concept and some relevant results. We say that a mapping T from a Banach
space X to a Banach space Y is compact if T is continuous and maps bounded subsets
of X into strongly pre-compact subsets of Y (see [2]). Compactness of commuta-
tors dates back to Uchiyama’s work [20]. Uchiyama considered the commutator TΩ,b

generated by b and TΩ which is given by:

TΩ,bf(x) :=
∫

Rn

Ω(x− y)
|x− y|n (b(x)− b(y))f(y) dy,

where b ∈ BMO, and Ω ∈ L1(Sn−1) satisfies
∫
Sn−1 Ω(x) dσ(x) = 0. In his remark-

able work [20], Uchiyama proved that for Ω ∈ Lipα(Sn−1) (0 < α < 1), 1 < p <∞,
TΩ,b is compact on Lp(Rn) if and only if b ∈ CMO(Rn). It is known that CMO(Rn)
coincides with the space of the functions with vanishing mean oscillation; see [4, 10].
Recently, Chen and Hu [6] established the following result.

Theorem C. [6] Suppose that the parameters α and p satisfy

α > 2 and
α

α− 1
< p < α.

If b ∈ CMO(Rn), Ω is homogeneous of degree zero and has mean value zero on Sn−1,
and Ω ∈ Gα(Sn−1), then the operator TΩ,b is compact on Lp(Rn).

An interesting and important fact is that many nonlinear operators arising in mathe-
matical physics and differential geometry are compact. Although many authors studied
compact linear operators, the literature is not so rich regarding the compactness of non-
linear compact operators, which contain MΩ,b as a typical example. Recently, several
attentions have been paid to the investigation on the non-linear compact operators, see
[7, 8, 9, 14] et al. and therein references. In particular, Chen and Ding [7] showed
the compactness of MΩ,b on Lp(Rn), provided that Ω satisfies certain regularity con-
ditions of Lq-Dini type. Inspired by Theorem B, it is natural to ask whether MΩ,b is
compact on Lp(Rn) under the assumption of that Ω ∈ Gα(Sn−1) for ceratin α > 0
and 1 < p <∞. This question will be addressed by our the following theorem.
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Theorem 1.1. Suppose that the parameters α and p satisfy

α >
3
2

and 4α
4α− 3

< p <
4α
3
.

If b ∈ CMO(Rn), Ω is homogeneous of degree zero and has mean value zero on Sn−1,
and Ω ∈ Gα(Sn−1), then the operator MΩ,b, which is given by (1.1), is compact on
Lp(Rn).

Remark 1.1. Clearly, our theorem shows that MΩ,b is compact under the same
assumptions as in Theorem B, which is new and interesting. Comparing with Theo-
rem C, we know that the compactness of MΩ,b is better than one of TΩ,b since the range
of α is extended from (2, ∞) to (3/2, ∞), which implies that the condition required
by MΩ,b is weaker than one by TΩ,b according to (1.4); moreover, the range of p in
our theorem, (4α/(4α− 3), 4α/3), is larger than (α/(α− 1), α), the range of p in
Theorem B, for the same value of α satisfying α > 2.

We shall use the following conventions:
• C always denotes a positive constant that is independent of main parameters

involved but whose value may differ from line to line.

• We use the symbol A � B to indicate that there exists a positive constant C
such that A ≤ CB.

• For a set E ⊂ Rn, χE denotes its characteristic function.
• For p ∈ [1,∞), we use p′ to denote the dual exponent of p, namely, p′ = p

p−1 .

• For a suitable function f , f̂ denotes the Fourier transform of f given by:

f̂(ξ) :=
∫

Rn
f(x)e−2πi〈x,ξ〉 dx.

• Finally, 〈·, ·〉 stands for the standard inner product on Rn.

The rest of this paper is organized as follows: In Section 2 we will establish
some auxiliary lemmas. The main ingredient is to establish the approximation to the
Marcinkiewicz integrals operator, which will play key roles in our later proofs. Finally,
we will prove our main theorem in Section 3.

2. PRELIMINARY LEMMAS AND APPROXIMATION

2.1. Dyadic decomposition

For each l ∈ Z, t ∈ R+, we define σl,t by

(2.1) σl,t(x) :=
Ω(x)

2lt|x|n−1
χ[2lt,2l+1t](x) (x ∈ Rn).
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So, the Fourier transform is given by:

(2.2) σ̂l,t(ξ) =
1
2lt

∫
2lt≤|y|≤2l+1t

Ω(y)
|y|n−1

e−2πi〈y,ξ〉dy, ξ ∈ Rn.

Observe that

σl,t = σ0,2lt.(2.3)

It follows from (2.1) that Ω(x)χ{|y|<t}(x) = |x|n−1
∑−1

l=−∞ 2ltσl,t(x). Thus, we have

(2.4)

FΩ,t(x)
t

=
−1∑

l=−∞
2lσl,t ∗ f(x) and MΩf(x)

=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2lσl,t ∗ f(x)

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.

Lemma 2.1. Let t > 0, l ∈ Z and Ω ∈ Gα(Sn−1) for α > 1/2. Then

(i) |σ̂l,t(ξ)| � min(1, |2ltξ|);
(ii) |σ̂l,t(ξ)| � min((log(3 + |2ltξ|))−α, |2ltξ|).

Proof. Write ξ′ = ξ/|ξ| and y′ = y′/|y|. Then we have

σ̂l,t(ξ) =
∫

Sn−1

Ω(y′)
(∫ 2

1
e−2πir·2lt|ξ|〈y′,ξ′〉dr

)
dσ(y′)

by a change of variables. By the L1(Sn−1)-integrability and the vanishing moment of
Ω, it is easy to verify that:

|σ̂l,t(ξ)| � min(1, |2ltξ|).

Let |2ltξ| > eα. Note that∣∣∣∣∫ 2

1

e−2πir·2lt|ξ|〈y′,ξ′〉dr
∣∣∣∣ =

∣∣∣∣∣∣
[

e−2πir·2lt|ξ|〈y′,ξ′〉

2πr · 2lt|ξ|〈y′, ξ′〉

]r=2

r=1

∣∣∣∣∣∣ ≤ 1
2lπt|ξ||〈ξ′, y′〉| ,

and the following trivial estimate:∣∣∣∣∫ 2

1
e−2πir2lt|ξ|〈y′,ξ′〉dr

∣∣∣∣ ≤ ∫ 2

1
|e−2πir2lt|ξ|〈y′,ξ′〉|dr = 1.

We get from the assumption 2lt|ξ| > eα that
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∣∣∣∣∫ 2

1
e−2πir2lt|ξ|〈y′,ξ′〉dr

∣∣∣∣ � min
(

1,
eα|〈y′, ξ′〉|−1

2lt|ξ|
)
,

since the identity:
d

dt

t

loga t
=

1
loga t

− a

loga+1 t
=

log t− a

loga+1 t

shows, t/ loga t is increasing in (ea,∞) for any a > 0, or equivalently,
t

s
≤ loga t

loga s
(s ≥ t ≥ ea).

Thus, we can deduce that for α > 1/2,∣∣∣∣∫ 2

1
e−2πir2lt|ξ|〈y′,ξ′〉dr

∣∣∣∣ � logα(eα|〈y′, ξ′〉|−1)
logα(2lt|ξ|) ,

provided |2ltξ| > eα. Then, (ii) holds thanks to (1.3). This completes the proof of
Lemma 2.1.

We define the modified Marcinkiewicz integral operator MK
Ω by:

MK
Ω f(x) :=

(∫ ∞

0
|FΩ,2K t(x)|2

dt

t3

)1/2

,

where FΩ,t is given by (1.2).

Lemma 2.2. Let α > 1/2. If we set

MK = 2K sup
ξ∈Rn

(∫ ∞

0

K∑
l=−∞

min(|2ltξ|2, (log(3 + |2ltξ|))−2α)
dt

t

)1/2

<∞,

then MK = 2KM0 is finite and

‖MK
Ω f‖L2 � MK‖f‖L2

for all f ∈ L2(Rn).

Proof. The fact that M0 is finite follows from the change of variables:

M0 =

(∫ ∞

0

−1∑
l=−∞

4l min(t2, (log(3 + |t|))−2α)
dt

t

)1/2

<∞.

2.2. Approximation

Next, as we announced, we shall construct an approximation of Ω. Let φ ∈
C∞

c (Rn) be a nonnegative function having integral 1 and supported on a small ball
{x : |x| ≤ 1/4}. For l ∈ Z, let φl(x) := 2−nlφ(2−lx). We then have for ξ ∈ Rn,

(2.5) |φ̂l(ξ)− 1| = |φ̂(2lξ) − 1| � min(1, |2lξ|).
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For a positive integer j, let

(2.6) σ
j
l,t(x) := σl,t ∗ φl−j(x),

and

Ω(x) = |x|n−1
−1∑

l=−∞
2ltσj

l,t(x) = |x|n−1
−1∑

l=−∞

∫
Rn

Ω(y)χ[2lt,2l+1t](y)
|y|n−1

φl−j(x− y) dy.

Note that

(2.7) σj
l,t = σl,t ∗ φl−j = σ0,2lt ∗ φl−j = σj−l

0,2lt
.

Motivated by (2.4), we define the approximation operator M
j
Ω by:

(2.8) M
j
Ωf(x) :=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2lσ

j
l,t ∗ f(x)

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.

By the Minkowski inequality, we obtain the following pointwise estimate:

Lemma 2.3. Keep to the same notations above. Then

(2.9) MΩf(x) ≤ 2
(∫ 2

1

∑
l∈Z

|σl,t ∗ f(x)|2 dt
t

)1/2
;

(2.10) M
j
Ωf(x) ≤ 2

(∫ 2
1

∑
l∈Z

|σj
l,t ∗ f(x)|2 dt

t

)1/2
;

(2.11)

|MΩf(x) − M
j
Ωf(x)|

≤
−1∑

l=−∞
2l

(∑
k∈Z

∫ 2

1

|σk,t ∗ f(x) − σj−l+k
k,t ∗ f(x)|2dt

t

)1/2

.

Proof. The proofs of (2.9) and (2.10) are simpler than that of (2.11). So we
concentrate on (2.11). Note that

|MΩf(x) − M
j
Ωf(x)|

=

∣∣∣∣∣∣∣
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2lσl,t ∗ f(x)

∣∣∣∣∣
2
dt

t

⎞⎠1/2

−
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2lσj

l,t ∗ f(x)

∣∣∣∣∣
2
dt

t

⎞⎠1/2
∣∣∣∣∣∣∣

≤
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l(σl,t ∗ f(x)− σj

l,t ∗ f(x))

∣∣∣∣∣
2
dt

t

⎞⎠1/2

,
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by (2.3), (2.7) and the change of variables, we have

|MΩf(x)− M
j
Ωf(x)|

≤
−1∑

l=−∞
2l

(∫ ∞

0
|σl,t ∗ f(x) − σj

l,t ∗ f(x)|2dt
t

)1/2

=
−1∑

l=−∞
2l

(∫ ∞

0
|σ0,t ∗ f(x)− σj−l

0,t ∗ f(x)|2dt
t

)1/2

.

Applying dyadic decomposition of (0,∞), we get

|MΩf(x)− M
j
Ωf(x)|

≤
−1∑

l=−∞
2l

(∑
k∈Z

∫ 2k+1

2k

|σ0,t ∗ f(x)− σj−l
0,t ∗ f(x)|2dt

t

)1/2

=
−1∑

l=−∞
2l

(∑
k∈Z

∫ 2

1
|σk,t ∗ f(x)− σj−l+k

k,t ∗ f(x)|2dt
t

)1/2

.

One of the important observations for the proof of Theorem 1.1 is the following
lemma:

Lemma 2.4. Suppose that α and p satisfy

α >
1
2

and 1 +
1
2α

< p < 1 + 2α.

Let Ω be homogeneous of degree zero, have mean value zero and Ω ∈ Gα(Sn−1).
Then the operator M

j
Ω defined as (2.8) is bounded on Lp(Rn) and the operator norm

is bounded by a constant independent of j.

Proof. It suffices to prove that∥∥∥∥∥∥
(∫ 2

1

∑
l∈Z

|σj
l,t ∗ f |2

dt

t

)1/2
∥∥∥∥∥∥

Lp

≤ C‖f‖Lp

from Lemma 2.3.
Let ψ ∈ C∞(Rn)-function such that

supp(ψ) ⊂ B(4) \B(1) and that
∞∑

j=−∞
ψ(2−jξ)2 ≡ χRn\{0}(ξ).

Define Slf(x) := F−1[ψ(2−l·)Ff ](x). Then we have
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σj
l,t ∗ f =

∞∑
k=−∞

Sl−k[σj
l,t ∗ Sl−kf ].

We recall the key observation by Wu [22, (3.6)]: For each (measurable) collection
{gt;l,k} of functions

(2.12)

∥∥∥∥∥∥∥
⎛⎝ ∞∑

l=−∞

∫ 2

1

∣∣∣∣∣
∞∑

k=−∞
Sl−kgt;l,k

∣∣∣∣∣
2

dt

⎞⎠1/2
∥∥∥∥∥∥∥

q

Lp

�
∞∑

k=−∞

∥∥∥∥∥∥
( ∞∑

l=−∞

∫ 2

1
|gt;l,k|2 dt

)1/2
∥∥∥∥∥∥

q

Lp

for any q, where the implicit constant depends only on p and q. Thus, by letting
gt;j,k = σj

l,t ∗ Sj−kf , we obtain∥∥∥∥∥∥
(∫ 2

1

∑
l∈Z

|σj
l,t ∗ f |2

dt

t

)1/2
∥∥∥∥∥∥

q

Lp

≤ C

∞∑
k=−∞

∥∥∥∥∥∥
( ∞∑

l=−∞

∫ 2

1
|σj

l,t ∗ Sl−kf |2 dt
)1/2

∥∥∥∥∥∥
q

Lp

.

In [22, p. 294], it was proved that∥∥∥∥∥∥
( ∞∑

l=−∞

∫ 2

1
|σj

l,t ∗ Sl−kf |2 dt
)1/2

∥∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥
( ∞∑

l=−∞
|Sl−kf |2

)1/2
∥∥∥∥∥∥

Lp

.

Thus, ∥∥∥∥∥∥
(∫ 2

1

∑
l∈Z

|σj
l,t ∗ f |2

dt

t

)1/2
∥∥∥∥∥∥

q

Lp

≤ C
∞∑

k=−∞

∥∥∥∥∥∥
( ∞∑

l=−∞
|Sl−kf |2

)1/2
∥∥∥∥∥∥

q

Lp

.

It remains to use the well-known Littlewood-Paley theory and the similar argument in
[22, p. 294], we can gain that the operator M

j
Ω is bounded on Lp(Rn) for 1+1/(2α) <

p < 1 + 2α.

Lemma 2.5. Let Ω be homogeneous of degree zero, integrable and have mean
value zero. Define MΩ, M

j
Ω by (2.4) and (2.8) respectively. If Ω ∈ Gα(Sn−1) for

some α ∈ (1/2,∞). Then for any p ∈ (1 + 1/(2α), 1 + 2α), there exists a constant
δ = δα,p > 0 such that

(2.13) ‖MΩf − M
j
Ωf‖Lp(Rn) ≤ j−δ‖f‖Lp(Rn).
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Proof. For each ξ ∈ Rn \ {0} and positive integer j, let l0 be the integer such
that 2j/2−1 < |2l0ξ| < 2j/2, t ∈ [1, 2]. Then, by Plancherel’s theorem, we have

‖MΩf − M
j
Ωf‖2

L2(Rn) �

∥∥∥∥∥∥
(∫ 2

1

∑
l∈Z

|σl,t ∗ f − σj
l,t ∗ f |2dt

)1/2
∥∥∥∥∥∥

2

L2(Rn)

=
∫ 2

1

∫
Rn

∑
l∈Z

|σl,t ∗ f(x) − σj
l,t ∗ f(x)|2dxdt

=
∫ 2

1

∫
Rn

∑
l∈Z

|σ̂j
l,t(ξ) − σ̂l,t(ξ)|2|f̂(ξ)|2dξdt.

A trivial computation involving the Lemma 2.1 with t ∈ [1, 2] leads to that∑
l∈Z

|σ̂j
l,t(ξ) − σ̂l,t(ξ)|2 =

∑
l∈Z

(
|σ̂l,t(ξ)||φ̂l−j(ξ) − 1|

)2

�
∑

l∈Z,l≤l0

|2l−jξ|2 +
∑

l∈Z,l>l0

log−2α(|2lξ|)

� 2−j + j−2α+1

� j−2α+1.

Consequently,
‖MΩf − M

j
Ωf‖L2(Rn) ≤ j−α+1/2‖f‖L2(Rn),

and

(2.14) ‖Mj
Ωf − M

j+1
Ω f‖L2(Rn) ≤ j−α+1/2‖f‖L2(Rn),

since α > 3/2. This implies that

(2.15) MΩf − M
j
Ωf =

∞∑
m=j

(Mm+1
Ω f − Mm

Ω f)

converges in the L2(Rn) operator norm.
On the other hand, Lemma 2.4 tells us that for any positive integer m and q ∈

(1 + 1/(2α), 1 + 2α),

(2.16) ‖Mm
Ωf − Mm+1

Ω f‖Lq(Rn) ≤ ‖Mm
Ωf‖Lq(Rn) + ‖Mm+1

Ω f‖Lq(Rn) � ‖f‖Lq(Rn).

Interpolation between the inequalities (2.14) and (2.16) then shows that for any 0 <
η < 1

(2.17) ‖Mm
Ω f − Mm+1

Ω f‖Lp(Rn) � j−δα,p‖f‖Lp(Rn)
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with δα,p = (α − 1/2)η and 1/p = η/2 + (1 − η)/(1 + 2α) if p ∈ (2, 1 + 2α),
or 1/p = η/2 + 2α(1− η)/(2α+ 1) if p ∈ (1 + 1/(2α), 2). Along with (2.15), a
straightforward computation shows that δα,p > 0 when p ∈ (1+1/(2α), 1+2α). This
yields (2.13) and completes the proof of Lemma 2.5.

3. PROOF OF THEOREM 1.1

3.1. Reduction to the case when b ∈ C∞
c (Rn)

First, let us justify that we can assume b ∈ C∞
c (Rn). To this end, we suppose that

b ∈ CMO(Rn). Since for any ε > 0 there exists bε ∈ C∞
c such that ‖b−bε‖BMO(Rn) <

ε, and that

|MΩ,bf(x)− MΩ,bεf(x)|

≤
⎧⎨⎩
∫ ∞

0

∣∣∣∣∣
∫
|x−y|≤t

Ω(x− y)
|x− y|n−1

[(b− bε)(x) − (b− bε)(y)]f(y)dy

∣∣∣∣∣
2
dt

t3

⎫⎬⎭
1/2

.

Then by Theorem B,

‖MΩ,bf − MΩ,bεf‖Lp(Rn) � ‖b− bε‖BMO(Rn)‖f‖Lp(Rn).

Thus, to prove Theorem 1.1, we can suppose that b ∈ C∞
c (Rn).

3.2. Reduction to the case of smooth kernel

Let us assume b ∈ C∞
c (Rn) and define

M
j
Ω,bf(x) :=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn
σl,t ∗ φl−j(x− y)(b(x)− b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.

For b ∈ C∞
c (Rn), it is easy to see that

|Mj
Ω,bf(x)− MΩ,bf(x)|

≤
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σl,t ∗ φl−j(x−y)−σl,t(x− y))(b(x)−b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

� ‖b‖L∞(Rn)

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σl,t ∗ φl−j(x− y) − σl,t(x− y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

+

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σl,t ∗ φl−j(x− y)− σl,t(x− y))b(y)f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.



1788 Suzhen Mao, Yoshihiro Sawano and Huoxiong Wu

Thus by Lemma 2.5,

‖Mj
Ω,bf − MΩ,bf‖Lp(Rn) � j−δ‖b‖L∞(Rn)‖f‖Lp(Rn) + j−δ‖fb‖Lp(Rn)

� j−δ‖b‖L∞(Rn)‖f‖Lp(Rn).

Therefore, we have only to prove the compactness of M
j
Ω,b.

3.3. Reduction by the use of the Fréchet-Kolmogorov theorem

So far, we reduced the matters to proving that G ≡ {MΩ,bf : f ∈ F} is strongly
pre-compact in Lp(Rn), where F is a bounded set in Lp(Rn) and b ∈ C∞

c (Rn). We
invoke the following criteria for compactness:

Theorem 3.1. (Fréchet-Kolmogorov, [25]). A subset G of Lp(Rn), 1 ≤ p <∞, is
strongly pre-compact if and only if it satisfies three conditions below:

(i) supf∈G ‖f‖Lp(Rn) <∞;

(ii) limy→0

(
supf∈G ‖f(·+ y) − f‖Lp(Rn)

)
= 0;

(iii) limβ→∞
(
supf∈G ‖fχB(o,β)c‖Lp(Rn)

)
= 0.

Since M
j
Ω,b is boudned on Lp(Rn), (i) follows easily:

(3.1) sup
f∈F

‖Mj
Ω,bf‖Lp(Rn) � ‖b‖BMO(Rn)‖f‖Lp(Rn) <∞.

Therefore, the proof of Theorem 1.1 is completed once we prove the following lemma.

Lemma 3.2. Suppose the parameters p and α satisfy the same condition as
Theorem 1.1. Let R > 0 and F be a bounded subset of Lp(Rn). Assume that
b ∈ C∞

c (B(o, R)) satisfies ‖b‖L∞(Rn) + ‖∇b‖L∞(Rn) = 1. Then

(3.2)

(
sup
f∈F

‖χB(o,A)cM
j
Ω,bf‖Lp(Rn)

)
�

(
R

A

)p/p′

‖f‖Lp(Rn)

for all A > 4R and

(3.3) lim
z→0

(
sup
f∈F

‖Mj
Ω,bf(·+ z) − MΩ,bf‖Lp(Rn)

)
= 0.

The remaining part of this paper is the proof of this lemma.
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3.4. Proof of (3.2)

It follows from Hölder’s inequality that for x ∈ Rn with |x| > 4R,

|MΩ,bf(x)|p =

{∫ ∞

0

∣∣∣∣∣
∫
|x−y|≤t

Ω(x− y)
|x− y|n−1

[b(x)− b(y)]f(y)dy

∣∣∣∣∣ dtt3
}p/2

=

{∫ ∞

0

∣∣∣∣∣
∫
|x−y|≤t

Ω(x− y)
|x− y|n−1

b(y)f(y)dy

∣∣∣∣∣ dtt3
}p/2

�

⎡⎣∫
supp b

|Ω(x− y)|
|x− y|n−1

|f(y)|
(∫

|x−y|≤t

dt

t3

)1/2

dy

⎤⎦p

�
(∫

|y|≤R

|Ω(x− y)|
|x− y|n |f(y)|dy

)p

�
(∫

|y|≤R
|Ω(x− y)|dy

)p/p′
1

|x|np

∫
|y|≤R

|Ω(x− y)||f(y)|pdy.

Meanwhile, we have∫
|y|≤R

|Ω(x− y)|dy =
∫

B(x,R)
|Ω(y)|dy ≤

∫
|x|−R<|y|<|x|+R

|Ω(y)|dy � R|x|n−1.

Inserting this estimate, we obtain∫
|x|>A

|MΩ,bf(x)|pdx � Rp/p′
∫
|x|>A

(∫
|y|<R

|f(y)|p|Ω(x− y)|dy
)

dx

|x|n+p/p′

� Rp/p′‖f‖p
Lp(Rn)

∫
|x|>(3A)/4

|Ω(x)| dx

|x|n+p/p′

�
(
R

A

)p/p′

‖f‖p
Lp(Rn)

,

which implies that (3.2) holds.

3.5. Proof of (3.3)

We begin with the following decomposition of M
j
Ω,bf(x) − M

j
Ω,bf(x+ z):

M
j
Ω,bf(x) − M

j
Ω,bf(x+ z)

=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

σl,t ∗ φl−j(x− y)(b(x)− b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2



1790 Suzhen Mao, Yoshihiro Sawano and Huoxiong Wu

−
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

σl,t ∗ φl−j(x+ z − y)(b(x) − b(y))f(y)dy

∣∣∣∣∣
2

dt

t

⎞⎠1/2

+

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

σl,t ∗ φl−j(x+ z − y)(b(x) − b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

−
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

σl,t ∗ φl−j(x+ z − y)(b(x + z) − b(y))f(y)dy

∣∣∣∣∣
2

dt

t

⎞⎠1/2

≤
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σl,t ∗ φl−j(x+z−y)−σl,t ∗ φl−j(x−y))(b(x)−b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

+ |b(x)− b(x+ z)|Mj
Ωf(x + z).

Likewise,

M
j
Ω,bf(x+ z) − M

j
Ω,bf(x)

≤
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σl,t ∗ φl−j(x+z−y)−σl,t ∗ φl−j(x−y))(b(x)−b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

+ |b(x) − b(x+ z)|Mj
Ωf(x + z).

As a result, we obtain

|Mj
Ω,bf(x+ z) − M

j
Ω,bf(x)|

≤
⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σl,t ∗ φl−j(x+z−y)−σl,t ∗ φl−j(x−y))(b(x)−b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

+ |b(x)− b(x+ z)|Mj
Ωf(x + z).

Since ‖∇b‖L∞(Rn) ≤ 1,

‖(b− b(·+ z))Mj
Ωf(·+ z)‖Lp(Rn) ≤ |z| · ‖Mj

Ωf(·+ z)‖Lp(Rn)

= |z| · ‖Mj
Ωf‖Lp(Rn)

≤ C|z| · ‖f‖Lp(Rn).

Then, the proof of Theorem 1.1 will be completed once we prove the following estimate:

Lemma 3.3. Let us define

M
z,−∞,j
Ω,b f(x) :=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=−∞
2l

∫
Rn

(σj
l,t(x+z−y)−σj

l,t (x−y))(b(x)−b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.
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Then we have
‖Mz,−∞,j

Ω,b ‖Lp→Lp = o(1) (z → 0)
for any p in Theorem 1.1.

Proof. We may suppose p = 2 by interpolation and Theorem B. Let us consider

M
z,K,j
Ω,b f(x)

:=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=K

2l

∫
Rn

(σj
l,t(x+ z − y) − σ

j
l,t(x− y))(b(x)− b(y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.

Then we have

‖Mz,−∞,j
Ω,b ‖Lp→Lp ≤ 2KM0 + ‖Mz,K,j

Ω,b ‖Lp→Lp ≤ 2KM0 + 2‖b‖L∞‖Mz,K,j
Ω ‖Lp→Lp

from Lemma 2.2, where

M
z,K,j
Ω f(x) :=

⎛⎝∫ ∞

0

∣∣∣∣∣
−1∑

l=K

2l

∫
Rn

(σj
l,t(x+ z − y) − σ

j
l,t(x− y))f(y)dy

∣∣∣∣∣
2
dt

t

⎞⎠1/2

.

As we did in Lemma 2.2, we have

‖Mz,K,j
Ω ‖Lp→Lp

� sup
ξ∈Rn

|1 − eiξz|
(∫ ∞

0

−1∑
l=K

|Fφ(2−j+lξ)|min(|2ltξ|2, (log(3 + |2ltξ|))−2α)
dt

t

)1/2

= o(1) (z → 0),

where the implicit constant depends on K and j. Combining these estimates, we obtain
the desired result and complete the proof of Theorem 1.1.
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