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REMARKS ON THE QUALITATIVE QUESTIONS
FOR BIHARMONIC OPERATORS

G. Dwivedi and J. Tyagi

Abstract. In this article, we obtain several remarks on the qualitative questions
such as Picone’s identity, Morse index and Hardy-Rellich type inequality for
biharmonic operators.

1. INTRODUCTION

In the recent years there has been a good amount of interest on the qualitative
questions such as stability criteria, Picone’s identity, Morse index, Sturm compari-
son theorem for Laplace as well as p-Laplace operators but very little is known for
biharmonic operators.

It is a well-known fact that in the qualitative theory of elliptic PDEs, Picone’s
identity plays an important role. The classical Picone’s identity says that if u and v
are differentiable functions such that v > 0 and u ≥ 0, then

(1.1) |∇u|2 +
u2

v2
|∇v|2 − 2

u

v
∇u∇v = |∇u|2 −∇

(
u2

v

)
∇v ≥ 0,

see [17]. (1.1) has an enormous applications to second-order elliptic equations and
systems, see for instance [3, 4, 5, 16] and the references therein. Let us write briefly
the recent developments on Picone’s identity. In order to apply (1.1) to p-Laplace
equations, (1.1) is extended by W. Allegretto and Y. X. Huang [6]. The extension to
(1.1) is as follows:

Theorem 1.1. [6] Let v > 0 and u ≥ 0 be differentiable functions. Denote

L(u, v) = |∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
∇u|∇v|p−2∇v

and
R(u, v) = |∇u|p −∇(

up

vp−1
)|∇v|p−2∇v.

Then L(u, v) = R(u, v). Moreover, L(u, v) ≥ 0 and L(u, v) = 0 a.e. in Ω if and only
if ∇(u

v ) = 0 a.e. in Ω.
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Recently, the second author obtain a nonlinear analogue of (1.1) in [19]. The
nonlinear analogue of (1.1) reads as follows:

Theorem 1.2. [19] Let v be a differentiable function in Ω such that v �= 0 in Ω
and u be a non-constant differentiable function in Ω. Let f(y) �= 0, ∀ 0 �= y ∈ R and
suppose that there exists α > 0 such that f ′(y) ≥ 1

α , ∀ 0 �= y ∈ R. Denote

(1.2) L(u, v) = α|∇u|2 − |∇u|2
f ′(v)

+

(
u
√
f ′(v)∇v
f(v)

− ∇u√
f ′(v)

)2

and

(1.3) R(u, v) = α|∇u|2 −∇
(
u2

f(v)

)
∇v.

Then L(u, v) = R(u, v). Moreover, L(u, v) ≥ 0 and L(u, v) = 0 in Ω if and only if
u = c1v + c2 for some arbitrary constants c1, c2.

K. Bal [7] extended the nonlinear Picone’s identity of [19] to deal with p-Laplace
equations. The extension reads as follows:

Theorem 1.3. [7] Let v > 0 and u ≥ 0 be two non-constant differentiable functions
in Ω. Also assume that f ′(y) ≥ (p− 1)[f(y)

p−2
p−1 ] for all y. Define

L(u, v) = |∇u|p − pup−1∇u|∇v|p−2∇v
f(v)

+
upf ′(v)|∇v|p

[f(v)]2

and
R(u, v) = |∇u|p −∇(

up

f(v)
)|∇v|p−2∇v.

Then L(u, v) = R(u, v) ≥ 0. Moreover L(u, v) = 0 a.e. in Ω if and only if ∇(u
v ) = 0

a.e. in Ω.

There are also several interesting articles dealing with Picone’s identity in different
contexts. We just name a few articles, for instance, for a Picone type identity to higher
order half linear differentiable operators, we refer to [15] and the references therein,
for Picone identities to half-linear elliptic operators with p(x)-Laplacians, we refer to
[21] and for Picone-type identity to pseudo p-Laplacian with variable power, we refer
to [8]. In [10], D. R. Dunninger established a Picone identity for a class of fourth order
elliptic differential inequalities. This identity says that if u, v, aΔu, AΔv are twice
continuously differentiable functions with v(x) �= 0 and a and A are positive weights,
then

(1.4)

div
[
u∇(aΔu)− aΔu∇u− u2

v
∇(AΔv) + AΔv · ∇

(
u2

v

)]
= −u

2

v
Δ(AΔv) + uΔ(aΔu) + (A− a)(Δu)2

−A
(
Δu− u

v
Δv
)2

+A
2Δv
v

(
∇u− u

v
∇v
)2
.
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In this context, there is a natural question to ask. Can we establish a nonlinear
analogue of (1.4)? More precisely, the aim of this article is to establish a nonlinear
analogue of Picone’s identity which could deal with biharmonic operators and using
Picone’s identity, we establish several qualitative results. In the best of our knowledge,
we are not aware on these results proved by Picone’s identity or by other techniques.

The plan of this paper is as follows. Section 2 deals with nonlinear analogue of
Picone’s identity which could deal with biharmonic operators. In Section 3, we give
several applications of Picone’s identity to biharmonic operators.

2. NONLINEAR ANALOGUE OF PICONE’S IDENTITY

In this section, we establish a nonlinear analogue of Picone’s identity. The next
lemma can be obtained from (1.4) with some assumptions. Since the proof is short and
interesting so we write it independently here with more useful insights.

Lemma 2.1. (Picone’s identity). Let u and v be twice continuously differentiable
functions in Ω such that v > 0, −Δv > 0 in Ω. Denote

L(u, v) =
(
Δu− u

v
Δv
)2 − 2Δv

v

(
∇u− u

v
∇v
)2

and

R(u, v) = |Δu|2 − Δ
(
u2

v

)
Δv.

Then (i) L(u, v) = R(u, v), (ii) L(u, v) ≥ 0 and (iii) L(u, v) = 0 in Ω if and only
if u = αv for some α ∈ R.

Proof. Let us expand R(u, v):

R(u, v) = |Δu|2 − Δ
(
u2

v

)
Δv

= |Δu|2+u2

v2
|Δv|2− 2u

v
ΔuΔv− 2

v
|∇u|2Δv+ 4u

v2
∇u∇vΔv− 2u2

v3
|∇v|2Δv

=
(
Δu− u

v
Δv
)2 − 2Δv

v

(
∇u− u

v
∇v
)2

= L(u, v),

which proves the first part. Now using the fact that v > 0, −Δv > 0 in Ω, one can
see that L(u, v) ≥ 0 and therefore (ii) is proved. Now L(u, v) = 0 in Ω implies that

0 =
(
Δu− u

v
Δv
)2

− 2Δv
v

(
∇u− u

v
∇v
)2
,
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that is,
0 ≤ −2Δv

v

(
∇u− u

v
∇v
)2

= −
(
Δu− u

v
Δv
)2 ≤ 0,

which implies that there exists some α ∈ R such that u = αv. Conversely, when
u = αv, one can see easily that L(u, v) = 0, and therefore (iii) is proved.

Remark 2.2. We note that the above lemma also holds if we replace v > 0 and
−Δv > 0 in Ω by v < 0 and −Δv < 0 in Ω, respectively.

In the next proposition, we establish a nonlinear analogue of Picone’s identity for
biharmonic operators.

Proposition 2.3. (Nonlinear analogue of Picone’s identity). Let u and v be twice
continuously differentiable functions in Ω such that v > 0, −Δv > 0 in Ω. Let
f : (0, ∞) → (0,∞) be a C2 function such that f ′′(y) ≤ 0, f ′(y) ≥ 1, ∀ 0 �= y ∈ R.

Denote

L(u, v) = |Δu|2 − |Δu|2
f ′(v)

+

(
Δu√
f ′(v)

− u

f(v)

√
f ′(v)Δv

)2

−2Δv
f(v)

(
∇u− uf ′(v)

f(v)
∇v
)2

+
u2f ′′(v)
f(v)

|∇v|2Δv

and

R(u, v) = |Δu|2 − Δ
(
u2

f(v)

)
Δv.

Then (i) L(u, v) = R(u, v), (ii) L(u, v) ≥ 0 and (iii) L(u, v) = 0 in Ω if and only
if u = cv + d for some c, d ∈ R.

Proof. Let us expand R(u, v):

R(u, v) = |Δu|2 − Δ
(
u2

f(v)

)
Δv

= |Δu|2 − |Δu|2
f ′(v)

+
( |Δu|2
f ′(v)

+
u2f ′(v)
f2(v)

|Δv|2 − 2uΔuΔv
f(v)

)

−2Δv
f(v)

(
|∇u|2 +

u2f ′2(v)
f2(v)

|∇v|2 − 2uf ′(v)
f(v)

∇u · ∇v
)

+
u2f ′′(v)
f2(v)

|∇v|2Δv

= |Δu|2 − |Δu|2
f ′(v)

+

(
Δu√
f ′(v)

− u

f(v)

√
f ′(v)Δv

)2

−2Δv
f(v)

(
∇u− uf ′(v)

f(v)
∇v
)2

+
u2f ′′(v)
f2(v)

|∇v|2Δv
= L(u, v),
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which proves the first part. Now using the fact that −Δv > 0, f ′(y) ≥ 1, and
f ′′(y) ≤ 0, ∀ 0 �= y ∈ R, we get L(u, v) ≥ 0 and therefore (ii) is proved. Next we
prove (iii). We have

L(u, v) = |Δu|2 − |Δu|2
f ′(v)︸ ︷︷ ︸

(I)

+

(
Δu√
f ′(v)

− u

f(v)

√
f ′(v)Δv

)2

︸ ︷︷ ︸
(II)

−2Δv
f(v)

(
∇u− uf ′(v)

f(v)
∇v
)2

︸ ︷︷ ︸
(III)

+
u2f ′′(v)
f(v)

|∇v|2Δv.︸ ︷︷ ︸
(IV)

From our assumptions on v and f , we conclude that each of the terms (I), (II), (III)
and (IV) in the expression for L(u, v) is nonnegative. Hence L(u, v) = 0 in Ω implies
that each of (I), (II), (III) and (IV) is zero. In particular

(2.1) |Δu|2 − |Δu|2
f ′(v)

= 0

and

(2.2) ∇u− uf ′(v)
f(v)

∇v = 0.

On solving (2.1), we get

(2.3) f ′(v) = 1 ⇒ f(v) = v + c1,

where c1 is a constant. On using (2.3) in (2.2), we get

(∇u)(v + c1) − u∇(v + c1) = 0 ⇒ ∇
(

u

v + c1

)
= 0 i.e., u = cv + d

for some constants c and d. Conversely, let us assume (2.1) holds. We need to show
that L(u, v) = 0. From (2.1), we get that f ′(v) = 1 and therefore f ′′(v) = 0. Now it
remains to show that(

Δu√
f ′(v)

− u

f(v)

√
f ′(v)Δv

)
= 0 i.e., f(v)Δu = uf ′(v)Δv.

From (2.1), we get

(2.4) 0 = f(v)∇u− uf ′(v)∇v.
A simple differentiation in (2.4) yields

0 = f(v)Δu+ f ′(v)∇u · ∇v− f ′(v)∇u · ∇v− uf ′′(v)|∇v|2 − uf ′(v)Δv.
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Now using the fact that f ′′(v) = 0, one can see easily that

f(v)Δu = uf ′(v)Δv,

which completes the proof.

3. APPLICATIONS

This section deals with the applications of Lemma 2.1 and Proposition2.3. For
the existence of positive solution to fourth order elliptic equations, we refer to the
paper of Goncalves et al. [14] and for the existence and uniqueness of a solution to the
variational inequality to biharmonic operators, we refer to the work of H. Brézis and
G. Stampacchia [9]. In the next theorem, we obtain a Hardy-Rellich type inequality.
For the details on the Hardy-Rellich inequality and its generalizations and applications,
we refer the reader to [1, 13].

Theorem 3.1. Assume that there is a C2 function v satisfying

(3.1) Δ2v ≥ λgf(v), v > 0, −Δv > 0 in Ω,

for some λ > 0 and a nonnegative continuous function g on Ω and f satisfies the
conditions of Proposition2.3. Then for any u ∈ C∞

0 (Ω), we have

(3.2)
∫

Ω
|Δu|2dx ≥ λ

∫
Ω
g|u|2dx.

Proof. Take φ ∈ C∞
0 (Ω), by Proposition2.3, we have

0 ≤
∫

Ω
L(φ, v)dx =

∫
Ω
R(φ, v)dx

=
∫

Ω
|Δφ|2dx−

∫
Ω

Δ
(
φ2

f(v)

)
Δvdx

=
∫

Ω
|Δφ|2dx−

∫
Ω
(Δ2v) · φ2

f(v)
dx, (on integration),

≤
∫

Ω
|Δφ|2dx− λ

∫
Ω
φ2gdx (by (3.1)).

Letting φ = u yields ∫
Ω
|Δu|2dx ≥ λ

∫
Ω
g|u|2dx.

The next lemma deals with a necessary condition for the nonnegative solutions of
biharmonic operators.
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Lemma 3.2. Let u ∈ H2(Ω) ∩H1
0 (Ω) be a nonnegative weak solution (not iden-

tically zero) of

(3.3) Δ2u = a(x)u in Ω, u = Δu = 0 on ∂Ω,

where 0 ≤ a ∈ L∞(Ω), then −Δu > 0 in Ω.

Proof. Let −Δu = v. Then writing (3.3) into system form, we get

(3.4)

⎧⎪⎪⎨
⎪⎪⎩

−Δu = v in Ω,

−Δv = a(x)u in Ω,

u = 0 = v on ∂Ω.

Since a(x) ≥ 0 in Ω, so by maximum principle, we get v ≥ 0. By strong maximum
principle, either v > 0 or v ≡ 0 in Ω. If v ≡ 0, then we have

−Δu = 0 in Ω; v = 0 on ∂Ω.

Again by maximum principle, we get u ≡ 0, which is a contradiction and therefore
v > 0 in Ω and hence

−Δu > 0 in Ω.

Next, we consider the following singular system of fourth order elliptic equations:

(3.5)

Δ2u = f(v) in Ω,

Δ2v = (f(v))2

u in Ω,

u > 0, v > 0 inΩ,

u = Δu = 0 = v = Δv on ∂Ω,

where f is defined as in Proposition2.3. In the next theorem, we show a linear
relationship between the components u and v, where (u, v) is a solution of (3.5).

Theorem 3.3. Let (u, v) ∈ C2(Ω̄)×C2(Ω̄) be a weak solution of (3.5) and f satisfy
the conditions of Proposition2.3. Then u = c1v + c2, where c1, c2 are constants.

Proof. Since (u, v) ∈ C2(Ω̄) × C2(Ω̄) is a weak solution of (3.5), for any
φ1, φ2 ∈ H2(Ω) ∩H1

0 (Ω), we have

(3.6)
∫

Ω
ΔuΔφ1dx =

∫
Ω
f(v)φ1dx
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and

(3.7)
∫

Ω
ΔvΔφ2dx =

∫
Ω

f2(v)
u

φ2dx.

Now choosing φ1 = u and φ2 =
u2

f(v)
in (3.6) and (3.7), respectively, we obtain

∫
Ω
|Δu|2dx =

∫
Ω
f(v)udx =

∫
Ω

ΔvΔ
(
u2

f(v)

)
dx

and therefore, we have∫
Ω

R(u, v)dx=
∫

Ω

[
|Δu|2 − ΔvΔ

(
u2

f(v)

)]
dx = 0.

By the positivity of R(u, v), we get R(u, v) = 0 and by Lemma3.2, we have

−Δu > 0, −Δv > 0 in Ω.

Now an application of Proposition 2.3 yields that u = c1v + c2 for some constants c1
and c2.

Let us consider the following weighted eigenvalue problem

(3.8) Δ2u = λa(x)u in Ω, u = Δu = 0 on ∂Ω,

where Ω ⊂ R
N is an open, bounded subset with smooth boundary,N > 4, and 0 ≤

a ∈ L∞(Ω). We recall that a value λ ∈ R is an eigenvalue of (3.8) if and only if there
exists u ∈ H2(Ω) ∩H1

0 (Ω)\{0} such that

(3.9)
∫

Ω

Δu · Δφdx = λ

∫
Ω

a(x)uφdx, ∀ φ ∈ H2(Ω) ∩H1
0 (Ω)

and u is called an eigenfunction associated with λ. The least positive eigenvalue of
(3.8) is defined as

λ1 = inf
{∫

Ω
|Δu|2dx : u ∈ H2(Ω) ∩H1

0 (Ω) and
∫

Ω
a(x)|u|2dx = 1

}
.

Lemma 3.4. λ1 is attained.

Proof. For showing the above infimum is attained, let us introduce the functionals

J, G : H2(Ω) ∩H1
0 (Ω) −→ R
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defined by

J(u) =
1
2

∫
Ω
|Δu|2dx, G(u) =

1
2

∫
Ω
a(x)|u|2dx, u ∈ H2(Ω) ∩H1

0 (Ω).

It is easy to see that J and G are C1 functionals. By definition, λ ∈ R is an eigenvalue
of (3.8) if and only if there exists u ∈ H2(Ω) ∩H1

0 (Ω)\{0} such that

J ′(u) = λG′(u).

Let us define

M =
{
u ∈ H2(Ω) ∩H1

0 (Ω) :
1
2

∫
Ω
a(x)|u|2dx = 1

}
.

Since a ≥ 0 so M �= ∅ and M is a C1 manifold in H2(Ω)∩H1
0 (Ω). It is also easy to

see that J is coercive and (sequentially) weakly lower semicontinuous on M and M is a
weakly closed subset of H2(Ω)∩H1

0(Ω). Now by an application of Theorem 1.2 [18],
J is bounded from below on M and attains its infimum in M. Also by Lagrange’s
multiplier rule

J ′(u) = λ1G
′(u)

and therefore λ1 is attained.

In the next lemma, we show that the first eigenfunction u corresponding to the first
eigenvalue λ1 of (3.8) is of one sign. We use the following theorem.

Theorem 3.5. (Dual cone decomposition theorem). [12] Let H be a Hilbert space
with scalar product (·, ·)H. Let K ⊂ H be a closed, convex nonempty cone. Let K∗

be its dual cone, namely

K∗ = {w ∈ H | (w, v)H ≤ 0, ∀ v ∈ K}.

Then for any u ∈ H, there exists a unique (u1, u2) ∈ K ×K∗ such that

(3.10) u = u1 + u2, (u1, u2)H = 0.

In particular,
||u||2H = ||u1||2H + ||u2||2H .

Moreover, if we decompose arbitrary u, v ∈ H according to (3.10), then this implies

||u− v||2H ≥ ||u1 − v1||2H + ||u2 − v2||2H.

In particular, the projection onto K is Lipschitz continuous.



1752 G. Dwivedi and J. Tyagi

For a proof of the above theorem, we refer to Theorem 3.4 [12].

Lemma 3.6. The eigenfunction u corresponding to the first eigenvalue λ1 of (3.8)
is of one sign.

Proof. Using Theorem 3.5, and classical maximum principle for −Δ, Ferrero et
al. [11] obtain the positivity of the minimizers of the problem

Sq = min
w∈X/{0}

||Δw||22
||w||2q

, 1 ≤ q <
2n
n − 4

,

where X = H2(B) ∩H1
0 (B), B denotes the unit ball in R

n. The same proof works
for eigenfunction u corresponding to the first eigenvalue λ1 of (3.8) in Ω. For this, we
refer to [11] and omit the details.

Remark 3.7. Using Lemma B1, p. 271 [20], we see that the u ∈ Lp(Ω), ∀ 1 ≤ p <
∞, where u is the eigenfunction corresponding to the first eigenvalue λ1. Furthermore,
with the additional Lp-estimates due to Agmon, Douglis and Nirenberg [2], it can be
shown that u ∈ C4(Ω) ∩ C3(Ω̄), see on p. 274 [20] for the complete details.

Next, we show the strict monotonicity of the principle eigenvalue λ1.

Theorem 3.8. Suppose Ω1 ⊂ Ω2 and Ω1 �= Ω2. Then λ1(Ω1) > λ1(Ω2), if both
exist.

Proof. Let ui be a positive eigenfunction associated with λ1(Ωi), i = 1, 2, then
by Remark 3.7, ui ∈ C4(Ωi) ∩C3(Ω̄i) for i = 1, 2 and we have the following

(3.11)

⎧⎪⎨
⎪⎩

Δ2u1 = λ1(Ω1)a(x)u1 in Ω1,

u1 > 0 in Ω1,

u1 = 0 = Δu1 on ∂Ω1

and

(3.12)

⎧⎪⎨
⎪⎩

Δ2u2 = λ1(Ω2)a(x)u2 in Ω2,

u2 > 0 in Ω2,

u2 = 0 = Δu2 on ∂Ω2.

For φ ∈ C∞
c (Ω1),

(3.13)

0 ≤
∫

Ω1

L(φ, u2) dx =
∫

Ω1

R(φ, u2) dx

=
∫

Ω1

(
|Δφ|2 − Δ(

φ2

u2
)Δu2

)
dx

=
∫

Ω1

|Δφ|2dx−
∫

Ω1

φ2

u2
Δ2u2dx.
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On using (3.12) in (3.13), it is easy to see that

(3.14) 0 ≤
∫

Ω1

|Δφ|2 dx− λ1(Ω2)
∫

Ω1

a(x)φ2 dx.

Letting φ = u1 in (3.14), we obtain

0 ≤
∫

Ω1

L(u1, u2)dx = (λ1(Ω1) − λ1(Ω2))
∫

Ω1

a(x)u2
1 dx.

This gives λ1(Ω1)−λ1(Ω2) ≥ 0. Now if λ1(Ω1)−λ1(Ω2) = 0 then L(u1, u2) = 0 and
an application of Lemma 2.1 implies that u1 = cu2, which is not possible as Ω1 ⊂ Ω2

and Ω1 �= Ω2. This completes the proof.

In the next theorem, using Picone’s identity (Lemma2.1), we show that λ1 is simple,
i.e., the eigenfunctions associated to it are a constant multiple of each other.

Theorem 3.9. λ1 is simple.

Proof. Let u and v be two eigenfunctions associated with λ1. In view of
Remark 3.7, we may assume that u, v ∈ C4(Ω) ∩ C3(Ω̄). From Lemma3.6, without
any loss of generality, we may also assume that u and v are positive in Ω. Now by
Lemma3.2, we have

−Δu > 0, −Δv > 0 in Ω.

Let ε > 0. From Lemma2.1, we have

(3.15)

0 ≤
∫

Ω
L(u, v + ε)dx

=
∫

Ω

R(u, v + ε)dx

=
∫

Ω

[
|Δu|2 − Δ

(
u2

v + ε

)
Δv
]
dx

= λ1

∫
Ω
a(x)u2dx−

∫
Ω

Δ
(

u2

v + ε

)
Δvdx.

In view of Remark 3.7,
u2

v + ε
∈ H2(Ω) ∩ H1

0 (Ω) and is admissible in the weak for-

mulation of Δ2v = λ1a(x)v, i.e.,

(3.16)
∫

Ω

ΔvΔ
(

u2

v + ε

)
dx = λ1

∫
Ω

a(x)v
(

u2

v + ε

)
dx.
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From (3.15) and (3.16), we get

0 ≤
∫

Ω
L(u, v + ε)dx = λ1

∫
Ω
a(x)

[
u2 − v

(
u2

v + ε

)]
dx.

Letting ε→ 0, in the above inequality, we get

L(u, v) = 0

and again by an application of Lemma2.1, there exists α ∈ R such that

u = αv,

which proves the simplicity of λ1.

Next, we show the sign changing nature of any eigenfunction v associated to a
positive eigenvalue 0 < λ �= λ1.

Proposition 3.10. Any eigenfunction v associated to a positive eigenvalue 0 <

λ �= λ1 changes sign.

Proof. Assume by contradiction that v ≥ 0, the case v ≤ 0 can be dealt similarly.
By Lemma3.2, v > 0 in Ω. Let φ > 0 be an eigenfunction associated with λ1 > 0.
For any ε > 0, we apply Lemma2.1 to the pair φ, v + ε and get

(3.17)

0 ≤
∫

Ω
L(φ, v + ε)dx

=
∫

Ω
R(φ, v + ε)dx

=
∫

Ω

[
|Δφ|2 − Δ

(
φ2

v + ε

)
Δv
]
dx

=
∫

Ω

[
λ1a(x)φ2 − Δ

(
φ2

v + ε

)
Δv
]
dx.

Again, we note that φ2

v+ε ∈ H2(Ω)∩H1
0 (Ω) and is admissible in the weak formulation

of
Δ2v = λa(x)v in Ω; v = Δv = 0 on ∂Ω.

This implies that

(3.18)
∫

Ω
ΔvΔ

(
φ2

v + ε

)
dx = λ

∫
Ω
a(x)v

φ2

v + ε
dx.

From (3.17) and (3.18), we get

0 ≤
∫

Ω

[
λ1a(x)φ2 − λa(x)v

φ2

v + ε

]
dx.
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Letting ε→ 0 in the above inequality, we get

0 ≤ (λ1 − λ)
∫

Ω

a(x)φ2dx,

which is a contradiction, because
∫
Ω a(x)φ

2dx > 0 and hence v must change sign.

For the application of Lemma2.1 on Morse index, let us consider the following
boundary value problem

(3.19) Δ2u = a(x)G(u) in Ω; u = Δu = 0 on ∂Ω,

where a ∈ Cα(Ω), 0 < α < 1 and G ∈ C1(R, R). For the existence of positive
solution to the equations similar to (3.19), we refer the reader to [14]. By the standard
elliptic regularity theory, u ∈ C4(Ω) ∩ C3(Ω̄). We shall assume that there exists a
positive C4 solution u of the boundary value problem (3.19). For the solution u ∈
C4(Ω), the Morse index is defined via the eigenvalue problem for the linearization at
u.

Definition 3.11 (Morse index). The Morse index of a solution u of (3.19) is the
number of negative eigenvalues of the linearized operator

(3.20) Δ2 − a(x)G′(u)

acting on H2(Ω) ∩H1
0 (Ω), i.e., the number of eigenvalues λ such that λ < 0, and the

boundary value problem

(3.21) Δ2w− a(x)G′(u)w = λw in Ω; w = 0 = Δw on ∂Ω

has a nontrivial solution w in H2(Ω) ∩H1
0 (Ω).

The next theorem gives an application of Lemma 2.1.

Theorem 3.12. Let us consider (3.19). Let a ∈ Cα(Ω), 0 < α < 1 and G ∈
C1(R, R) be such that

G(v)
v

≥ G′(0) ≥ 0, ∀ 0 < v ∈ R.

Then the trivial solution of (3.19) has Morse index 0.

Proof. Let v ∈ C2(Ω̄) be a positive weak solution of (3.19). Then

(3.22)
∫

Ω
ΔvΔψdx =

∫
Ω
a(x)G(v)ψdx, ∀ψ ∈ C∞

c (Ω).
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For any w ∈ C∞
c (Ω), let us take w2

v as a test function in (3.22) and obtain

(3.23)
∫

Ω

ΔvΔ
(
w2

v

)
dx =

∫
Ω

a(x)
G(v)
v

w2dx.

Since v is a positive solution of (3.19), using the fact that G(v) ≥ 0 and in view of
Lemma 3.2, one can see that

−Δv > 0.

Now an application of Lemma 2.1 for u = w yields that

(3.24)

∫
Ω
|Δw|2dx

≥
∫

Ω
ΔvΔ

(
w2

v

)
dx

=
∫

Ω
a(x)

G(v)
v

w2dx

≥
∫

Ω
a(x)G′(0)w2dx.

Consider the eigenvalue problem associated with the linearization for (3.19) at 0, which
is

(3.25) Δ2w − a(x)G′(0)w = λw in Ω; w = 0 = Δw on ∂Ω.

By the variational characterization of the eigenvalue in (3.25), from (3.24), one can see
that λ ≥ 0, which proves the claim.
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