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ON SOLUTIONS TO MATRIX INEQUALITIES
WITH APPLICATIONS

Xifu Liu

Abstract. In this paper, we first study the solution to linear matrix inequality
AXB + (AXB)∗ � (>, �, <) C when the matrix G =

(
A B∗) is full

row rank, where C is a Hermitian matrix. Furthermore, for the applications, we
derive the representations for the Re-nnd {1, 2, i}-inverses for A, i = 3, 4, and the
Re-nnd solution to AXB = C , some special matrix equations are also considered.

1. INTRODUCTION

Let C
m×n denote the set of all m × n matrices over the complex field C, C

m
H

denote the set of all m × m Hermitian matrices, Un denote the set of all n × n

unitary matrices. For A ∈ C
m×n, its range space, rank, Moore-Penrose inverse [1] and

conjugate transpose will be denoted by R(A), r(A), A† and A∗ respectively. i+(A)
and i−(A) denote the numbers of the positive and negative eigenvalues of a Hermitian
matrix A counted with multiplicities, respectively. The identity matrix of order n is
denoted by In. Set EA = I − AA† and FA = I − A†A.

The Hermitian part of A ∈ Cm×m is defined as H(A) = 1
2 (A+A∗). We say that A

is Re-nnd (Re-nonnegative definite) if H(A) � 0 and A is Re-pd (Re-positive definite)
if H(A) > 0. Let A

(i,j,...,k)
re be the Re-nnd {i, j, . . . , k}-inverse of square matrix A.

Recently, some researches on Re-nnd solution and Re-nnd generalized inverse were
done by several authors [2, 3, 4, 6, 12].

In this article, we consider the matrix inequality in the Löwner partial ordering

(1.1) AXB + (AXB)∗ � C,

(1.2) AXB + (AXB)∗ > C,
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where A ∈ Cm×n, B ∈ Cp×m and C ∈ Cm
H are given, X ∈ Cn×p is variable matrix.

Specially, when C is nonnegative definite matrix, this case has been considered by Tian
and Rosen [10]. The case B = Im was studied by Tian [9]; based on Tian’s results,
Nikolov and Cvetković-Ilić [6] derived general expressions for Re-nnd {1, 3}-inverse
and {1, 4}-inverse of A ∈ Cm×m. Moreover, Tian and Rosen [10] shown that (1.1)
can equivalently be written as

(1.3) AXB + (AXB)∗ = C + V V ∗

for some V . And equation (1.3) is solvable for X if and only if V V ∗ satisfies

(1.4) EGV V ∗ = −EGC, EAV V ∗EA = −EACEA, FBV V ∗FB = −FBCFB ,

where G =
(
A B∗). Generally, it is very difficult to establish a common solution to

equations (1.4), so it is also difficult to solve (1.1). However, in some special cases,
matrix G maybe satisfy some certain conditions. For example, in the study of Re-nnd
{1, 2, 3}-inverse and {1, 2, 4}-inverse of A ∈ C

m×m, Liu and Fang [4] shown that a
necessary condition is r(A2) = r(A) for the existence of these two Re-nnd generalized
inverses. In order to establish a representation of Re-nnd {1, 2, 3}-inverse, one needs
to solve the following matrix inequality

(1.5) FAV AA† + (FAV AA†)∗ � −[A† + (A†)∗],

where V is variable matrix. It is easy to verify that G =
(
FA AA†) satisfies r(G) = m

under condition r(A2) = r(A), i.e., G is full row rank.
Cvetković-Ilić [2] provided a condition for the existence of Re-nnd solution to

AXB = C, where A ∈ C
m×n, B ∈ C

n×p and C ∈ C
m×p, and the structure of the

general solution was provided. Since the general solution to AXB = C is given by
X = A†CB† + FAW1 + W2EB, thus establishing a expression of the Re-nnd solution
is equivalent to solve the following matrix inequality

(
FA EB

)(
W1

W ∗
2

)
+

(
W ∗

1 W2

)(
FA

EB

)
� −[A†CB† + (A†CB†)∗].

Here, G =
(
FA EB In

)
is also full row rank.

Indeed, when matrix G is full row rank, then (1.4) reduces to

(1.6) EAV V ∗EA = −EACEA, FBV V ∗FB = −FBCFB .

This paper is organized as follows. In section 2, we first present a general solution
to the linear matrix inequality AXB + (AXB)∗ � (>, �, <) C when the matrix
G =

(
A B∗) is full row rank. In section 3, for the applications, we derive the

representations for the Re-nnd {1, 2, i}-inverses, i = 3, 4, and the Re-nnd solution to
AXB = C.

Before giving the main results, we first introduce several lemmas as follows.
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Lemma 1.1. [5] Let A ∈ Cm
H , B ∈ Cm×n and C ∈ Cp×m be given. Then

max
X∈Cn×p

i±[A − BXC − (BXC)∗] = min{i±(M1), i±(M2)} ,

min
X∈Cn×p

i±[A − BXC − (BXC)∗] = r
(
A B C∗)

+ max {i±(M1)−r(N1), i±(M2)−r(N2)} ,

where

M1 =
(

A B
B∗ 0

)
, M2 =

(
A C∗

C 0

)
,

N1 =
(

A B C∗

B∗ 0 0

)
, N2 =

(
A B C∗

C 0 0

)
.

Lemma 1.2. [5] Let A ∈ C
m
H , B ∈ C

m×n, and denote M =
(

A B
B∗ 0

)
. Then

i±(M) = r(B) + i±(EBAEB).

Lemma 1.3. [10] Let A ∈ C
m×p and B ∈ C

q×m and C ∈ C
m
H are given. Then

the matrix equation AXB + (AXB)∗ = C has a solution X ∈ Cp×q if and only if
(
A B∗) (

A B∗)† C = C, EACEA = 0, FBCFB = 0.

In this case, the general solution can be written as

X =
1
2
(X1 + X∗

2 ),

where X1 and X2 are general solutions of the equation AX1B + B∗X2A
∗ = C.

Lemma 1.4. [11] Let A1 ∈ Cm×n, B1 ∈ Cp×k, A2 ∈ Cm×l, B2 ∈ Cq×k and C ∈
C

m×k be known and X1 ∈ C
n×p, X2 ∈ C

l×q unknown; M = EA1A2, N = B2FB1 ,
S = A2FM . Then the following statements are equivalent:

(i) The system A1X1B1 + A2X2B2 = C is solvable;
(ii) The following rank equalities are satisfied,

r

(
A1 C

0 B2

)
= r

(
A1 0
0 B2

)
, r

(
A2 C

0 B1

)
= r

(
A2 0
0 B1

)
,

r
(
C A1 A2

)
= r

(
A1 A2

)
, r

⎛
⎝B1

B2

C

⎞
⎠ = r

(
B1

B2

)
.



1646 Xifu Liu

In this case, the general solution can be expressed as

X1 = A
†
1CB

†
1 − A

†
1A2M

†EA1CB
†
1 − A

†
1SA

†
2CFB1N

†B2B
†
1

−A†
1SV ENB2B

†
1 + FA1U + ZEB1,

X2 = M †EA1CB†
2 + FMS†SA†

2CFB1N
† + FM (V − S†SV NN †) + WEB2,

where U , V , W and Z are arbitrary matrices over complex field with appropriate
sizes.

Lemma 1.5. [13] Given matrix A, B, C, D ∈ Cp×n. The matrix equations AXX∗A∗

= BB∗ and CXX∗C∗ = DD∗ have a common Hermitian nonnegative-definite solu-
tion if and only if AA†B = B and there exists T ∈ Un such that

(1.7) ECFA
(DT − CA†B) = 0.

If a common Hermitian nonnegative-definite solution exists, then a representation of
the general common Hermitian nonnegative-definite solution is XX∗ with

X = A†B + FA(CFA)†(DT − CA†B) + FAFCFA
Z,

where Z ∈ Cn×n is arbitrary and T ∈ Un is a parameter matrix satisfying (1.7).

Lemma 1.6. [10] Let A ∈ C
m×n, B ∈ C

m×k and C ∈ C
l×n. Then

r
(
A B

)
= r(A) + r[(I − AA†)B],

r

(
A

C

)
= r(A) + r[C(I − A†A)].

Lemma 1.7. [8] Let A, B ∈ C
m×n, if R(A) = R(B), then AA† = BB†; similarly

if R(A∗) = R(B∗), then A†A = B†B.

Lemma 1.8. [7] Let A ∈ Cp×q, B ∈ Cq×p and C ∈ Cp×p be given matrices.
Then the matrix equation AXB = C is consistent if and only if

AA†C = C, CB†B = C.

In this case, the general solution can be expressed as

X = A†CB† + FAY1 + Y2EB,

where Y1, Y2 are arbitrary with proper sizes.
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2. MAIN RESULTS

In this section, our purpose is to derive some necessary and sufficient conditions
for the solvability for linear matrix inequality AXB+(AXB)∗ � (>, �, <) C when
the matrix G =

(
A B∗) is full row rank, and establish general expressions..

Firstly, we give a explicit formula for the common solution to (1.6).

Theorem 2.1. Let A ∈ Cm×n, B ∈ Cp×m, C ∈ Cm
H satisfy EACEA � 0,

FBCFB � 0, and denote G =
(
A B∗). If r(G) = m, then there always exists a

common solution V V ∗ to equations (1.6), and a representation of the general common
solution is V V ∗ with

(2.1)
V = (−EACEA)

1
2 + (FBAA†)†[(−FBCFB)

1
2 T

−(−EACEA)
1
2 ] + AA†FFBAA†Z,

where Z ∈ C
m×m and T ∈ Um are arbitrary matrices.

Proof. In view of Lemma 1.5, there exists a common solution to (1.6) if and only
if there exists T ∈ Um such that

(2.2) EFBAA† [(−FBCFB )
1
2T − FBEA(−EACEA)

1
2 ] = 0.

Since r(G) = m, it follows from the first equality in Lemma 1.6 that

r(FBAA†) = r(FBA) = r(G)− r(B) = m − r(B) = r(FB),

means that R(FBAA†) = R(FB). It follows from Lemma 1.7 that EFBAA† = B†B.
Therefore, (2.2) holds for any T ∈ Um.

Finally, by Lemma 1.5, we have

V = (−EACEA)
1
2 + AA†(FBAA†)†[(−FBCFB)

1
2T − FBEA(−EACEA)

1
2 ]

+AA†FFBAA†Z.

Hence, (2.1) is evident.

According to Theorem 2.1, next, we give a solution to (1.1) under condition
r
(
A B∗) = m.

Theorem 2.2. Let A ∈ Cm×n, B ∈ Cp×m, C ∈ Cm
H be given, X ∈ Cn×p

be variable matrix, and denote G =
(
A B∗). If r(G) = m, then the following

statements are equivalent:
(1) Matrix inequality (1.1) is solvable;
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(2) EACEA � 0, FBCFB � 0;

(3) i+

(
C A
A∗ 0

)
= r(A), i+

(
C B∗

B 0

)
= r(B).

In this case, a general solution can be expressed as

(2.3) X =
1
2
(X1 + X∗

2 ),

where

(2.4)
X1 = A†(C + V V ∗)B† − A†B∗M †(C + V V ∗)B†

−A†S(B∗)†(C + V V ∗)N †A∗B†−A†SY1ENA∗B†+FAY2 + Y3EB,

(2.5)
X2 = M †(C + V V ∗)(A∗)† + S†S(B∗)†(C + V V ∗)N †

+FM (Y1 − S†SY1NN †) + Y4FA,

with V is given by (2.1), M = EAB∗, N = A∗FB , S = B∗FM , and Yi (i = 1, 2, 3, 4)
are arbitrary matrices over complex field with appropriate sizes.

Proof. Note that (1.1) can be rewritten as C − AXB − (AXB)∗ � 0. So, (1.1)
is solvable if and only if

min
X

i+[C − AXB − (AXB)∗] = 0.

Applying Lemma 1.1, we get

(2.6)

min
X

i+[C − AXB − (AXB)∗]

= r
(
C A B∗)

+max
{

i+

(
C A
A∗ 0

)
−r

(
C A B∗

A∗ 0 0

)
, i+

(
C B∗

B 0

)
−r

(
C A B∗

B 0 0

)}

= r(G) + max{i+(EACEA) − r(G), i+(FBCFB) − r(G)} .

Letting the right hand side of (2.6) be zero yields

i+(EACEA) = 0, i+(FBCFB ) = 0,

which are equivalent to EACEA � 0, FBCFB � 0, while statement (3) is followed
by Lemma 1.2.

Next, we come to solve the matrix inequality (1.1), which can be written as

(2.7) AXB + (AXB)∗ = C + V V ∗,
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where V is given by (2.1). In view of Lemma 1.3, the general solution to (2.7) can be
written as

X =
1
2
(X1 + X∗

2 ),

where X1 and X2 are general solutions of the equation

(2.8) AX1B + B∗X2A
∗ = C + V V ∗.

According to (1.6) and r(G) = m, it follows from Lemma 1.4 that (2.8) is solvable,
and

X1 = A†(C + V V ∗)B† − A†B∗M †EA(C + V V ∗)B†

−A†S(B∗)†(C + V V ∗)FBN †A∗B† − A†SY1ENA∗B† + FAY2 + Y3EB,

X2 = M †EA(C + V V ∗)(A∗)† + FMS†S(B∗)†(C + V V ∗)FBN †

+FM (Y1 − S†SY1NN †) + Y4FA,

where M = EAB∗, N = A∗FB , S = B∗FM , and Yi, (i = 1, 2, 3, 4) are arbitrary
matrices over complex field with appropriate sizes. Together with M †EA = M †,
FBN † = N † and FMS† = S†, then (2.4) and (2.5) are followed.

A special case of Theorem 2.2 for B = Im is given below.

Corollary 2.1. Let A ∈ Cm×n, C ∈ Cm
H be given, X ∈ Cn×m be variable matrix.

Then the following statements are equivalent:
(1) Matrix inequality AX + (AX)∗ � C is solvable;
(2) EACEA � 0;

(3) i+

(
C A

A∗ 0

)
= r(A).

In this case, the general solution can be expressed as

X =
1
2

(
A†(C + V V ∗)(Im + EA) + FAY1 + [(A†Y2)∗ − A†Y2]A∗

)
,

where V = (−EACEA)
1
2 +AA†Z, and Z, Y1, Y2 are arbitrary matrices over complex

field with appropriate sizes.

Theorem 2.3. Let A ∈ C
m×n, B ∈ C

p×m, C ∈ C
m
H be given, X ∈ C

n×p

be variable matrix, and denote G =
(
A B∗). If r(G) = m, then the following

statements are equivalent:
(1) Matrix inequality (1.2) is solvable;
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(2) i−(EACEA) = m − r(A) and i−(FBCFB) = m − r(B);

(3) EACEA < 0, FBCFB < 0, r(EACEA) = m − r(A) and r(FBCFB ) =
m − r(B);

(4) i−
(

C A
A∗ 0

)
= m, i−

(
C B∗

B 0

)
= m.

In this case, the general solution of X can be expressed by (2.3) with Z in V given
by (2.1) such that r(V ) = m.

Proof. Note that (1.2) can be rewritten as C − AXB − (AXB)∗ < 0. So, (1.2)
is solvable if and only if

max
X

i−[C − AXB − (AXB)∗] = m.

Applying Lemma 1.1, we get

max
X

i−[C − AXB − (AXB)∗] = min
{

i−

(
C A

A∗ 0

)
, i−

(
C B∗

B 0

)}

= min {i−(EACEA) + r(A), i−(FBCFB) + r(B)}
= m.(2.9)

On the other hand, i−(EACEA)+ r(A) � r(EACEA)+ r(A) � r(EA) + r(A) = m,
similarly, i−(FBCFB) + r(B) � m. Then, (2.9) is equivalent to i−(EACEA) =
m− r(A) and i−(FBCFB) = m− r(B). Hence, the equivalence of statements (1)-(4)
is proved.

Since the matrix inequality (1.2), which can be written as

AXB + (AXB)∗ = C + V V ∗,

where V V ∗ > 0, i.e., r(V ) = m.

Similarly, we can prove the following results.

Theorem 2.4. Let A ∈ C
m×n, B ∈ C

p×m, C ∈ C
m
H be given, X ∈ C

n×p

be variable matrix, and denote G =
(
A B∗). If r(G) = m, then the following

statements are equivalent:

(1) Matrix inequality AXB + (AXB)∗ � C is solvable;

(2) EACEA � 0, FBCFB � 0;

(3) i−
(

C A

A∗ 0

)
= r(A), i−

(
C B∗

B 0

)
= r(B).
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In this case, a general solution can be expressed as

(2.10) X =
1
2
(X1 + X∗

2 ),

where

X1 = A†(C − V V ∗)B† − A†B∗M †(C − V V ∗)B†

−A†S(B∗)†(C − V V ∗)N †A∗B† − A†SY1ENA∗B† + FAY2 + Y3EB,

X2 = M †(C − V V ∗)(A∗)† + S†S(B∗)†(C − V V ∗)N †

+FM (Y1 − S†SY1NN †) + Y4FA,

V = (EACEA)
1
2 + (FBAA†)†[(FBCFB)

1
2T − (EACEA)

1
2 ] + AA†FFBAA†Z,

where M = EAB∗, N = A∗FB , S = B∗FM , and Z ∈ Cm×m, T ∈ Um, Yi (i =
1, 2, 3, 4) are arbitrary matrices over complex field with appropriate sizes.

Theorem 2.5. Let A ∈ C
m×n, B ∈ C

p×m, C ∈ C
m
H be given, X ∈ C

n×p

be variable matrix, and denote G =
(
A B∗). If r(G) = m, then the following

statements are equivalent:
(1) Matrix inequality AXB + (AXB)∗ < C is solvable;
(2) i+(EACEA) = m − r(A) and i+(FBCFB) = m − r(B);
(3) EACEA > 0, FBCFB > 0, r(EACEA) = m − r(A) and r(FBCFB ) =

m − r(B);

(4) i+

(
C A

A∗ 0

)
= m, i+

(
C B∗

B 0

)
= m.

In this case, the general solution of X can be expressed by (2.10) with Z in V given
by Theorem 2.4 such that r(V ) = m.

3. APPLICATIONS

In the following contents, we consider some applications of Theorem 2.2 in the
Re-nnd generalized inverses and Re-nnd solution. Next, we first prove an auxiliary
result.

Lemma 3.1. Let A ∈ C
m×m satisfy r(A2) = r(A). Then

(1) r(FAEA) = r(FA) = r(EA);
(2) FAEA(FAEA)† = FA, (FAEA)†FAEA = EA, EFAEA

= A†A, FFAEA
= AA†.
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Proof. On account of Lemma 1.6, we have

r(FAEA) = r(EAFA) = r

(
A Im

0 A

)
− 2r(A) = m − r(A) = r(FA) = r(EA),

which means that (1) holds, and R(FAEA) = R(FA), R[(FAEA)∗] = R(EA). Hence,
(2) can be proved by Lemma 1.7.

In the following theorem, we present a general expression of A
(1,2,3)
re .

Theorem 3.1. Let A ∈ Cm×m. Then the following statements are equivalent:
(1) A

(1,2,3)
re exists;

(2) (A†)2A is Re-nnd and r(A) = r(A2);
(3) A2A† is Re-nnd and r(A) = r(A2);
(4) A∗A2 is Re-nnd and r(A) = r(A2);
(5) A#AA† is Re-nnd and r(A) = r(A2).

In this case, a general expression of A
(1,2,3)
re can be expressed as

(3.1) A(1,2,3)
re = A† +

1
2
(X̃1 + X̃∗

2 ),

where

(3.2)
X̃1 = FA[V V ∗− A†− (A†)∗]AA†− FAM †[V V ∗− A†− (A†)∗]AA†

−FASAA†[V V ∗−A†− (A†)∗]N †AA†− FASY1ENFAAA†,

(3.3)
X̃2 = M †[V V ∗−A†− (A†)∗]FA+AA†S†SAA†[V V ∗−A† − (A†)∗]N †

+AA†FM (Y1−S†SY1NN †)FA,

V = J − (EAFA)†J,

with J = [(A†)2A + ((A†)2A)∗]
1
2 , M = A†A2A†, N = FAEA, S = AA†FM , and

Y1 ∈ Cm×m is arbitrary.

Proof. The equivalence of the statements (1)-(5) is given by [Theorem 2.1, 2].
Since A(1,2,3) = A† + FAXAA†, then A

(1,2,3)
re exists if and only if there exists

some X such that A(1,2,3) is Re-nnd, i.e.,

(3.4) FAXAA† + (FAXAA†)∗ � −[A† + (A†)∗].

According to r(A) = r(A2), it follows that r(G) = r
(
FA AA†) = m. By Theorem

2.2, the solution of X to (3.4) can be written as
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X =
1
2
(X1 + X∗

2 ),

where

X1 = FA[V V ∗ − A† − (A†)∗]AA† − FAAA†M †[V V ∗ − A† − (A†)∗]AA†

−FASAA†[V V ∗ − A† − (A†)∗]N †FAAA†

−FASY1ENFAAA† + A†AY2 + Y3EA,

X2 = M †[V V ∗ − A† − (A†)∗]FA + S†SAA†[V V ∗ − A† − (A†)∗]N †

+FM (Y1 − S†SY1NN †) + Y4A
†A,

V = J − FA(EAFA)†EAA†AJ + FAFEAFA
Z = J − (EAFA)†J.

Substituting X into A(1,2,3) = A† + FAXAA† and denote

X̃1 = FAX1AA† = FA[V V ∗ − A† − (A†)∗]AA† − FAM †[V V ∗ − A† − (A†)∗]AA†

−FASAA†[V V ∗ − A† − (A†)∗]N †AA† − FASY1ENFAAA†,

X̃2 = AA†X2FA = M †[V V ∗ − A† − (A†)∗]FA + AA†S†SAA†[V V ∗ − A†

−(A†)∗]N † + AA†FM (Y1 − S†SY1NN †)FA,

which yields (3.1), (3.2) and (3.3) respectively. The proof is complete.

Together with A(1,2,4) =
(
(A∗)(1,2,3)

)∗ and Theorem 3.1, the following corollary
is evident.

Corollary 3.1. Let A ∈ C
m×m. Then the following statements are equivalent:

(1) A
(1,2,4)
re exists;

(2) A(A†)2 is Re-nnd and r(A) = r(A2);
(3) A†A2 is Re-nnd and r(A) = r(A2);
(4) A2A∗ is Re-nnd and r(A) = r(A2);
(5) A†AA# is Re-nnd and r(A) = r(A2).

In this case, a general expression of A
(1,2,4)
re can be expressed as

A(1,2,4)
re = A† +

1
2
(X̃∗

1 + X̃2),

where
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X̃1 = EA[V V ∗ − A† − (A†)∗]A†A − EAM †[V V ∗ − A† − (A†)∗]A†A

−EASA†A[V V ∗ − A† − (A†)∗]N †A†A − EASY1ENEAA†A,

X̃2 = M †[V V ∗ − A† − (A†)∗]EA + A†AS†SA†A[V V ∗ − A† − (A†)∗]N †

+A†AFM (Y1 − S†SY1NN †)EA,

V = J − (FAEA)†J,

with J = [A(A†)2 + (A(A†)2)∗]
1
2 , M = A(A†)2A, N = EAFA, S = A†AFM , and

Y1 ∈ C
m×m is arbitrary.

Remark. Recently, Liu and Fang [4] gave some representations for A
(1,2,3)
re and

A
(1,2,4)
re , which are limited. The general representations for A

(1,2,3)
re and A

(1,2,4)
re are

provided by Theorem 3.1 and Corollary 3.1 respectively.

Theorem 3.2. Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cm×p be given matrices.
Then, the following statements are equivalent:

(1) There exists a Re-nnd solution to consistent matrix equation AXB = C;
(2) EH [A†CB† + (A†CB†)∗]EH � 0;

(3) i−

⎛
⎝ 0 −C A

−C∗ 0 B∗

A∗ B 0

⎞
⎠ = r

(
A∗ B

)
;

(4) FG

(
0 C

C∗ 0

)
FG � 0, where G =

(
A∗ B

)
.

In this case, a general expression for this Re-nnd solution can be written as

(3.5) X = A†CB† +
(
FA 0

)(
W1

W ∗
2

)
+

(
W1

W ∗
2

)∗ (
0

EB

)
,

where

(3.6)

(
W1

W ∗
2

)
=

1
2
(H†(V V ∗ − [A†CB† + (A†CB†)∗])(In + EH)

+FHY1 + [(H†Y2)∗ − H†Y2]H∗),

with H =
(
FA EB

)
, V =

(
EH [A†CB† + (A†CB†)∗]EH)

)1
2 + HH†Z, Z ∈ Cn×n,

Y1 ∈ C
2n×n and Y2 ∈ C

n×2n are arbitrary.

Proof. According to the assumption and Lemma 1.8, we have that AA†C = C
and CB†B = C, the solution X to AXB = C can be expressed as

(3.7) X = A†CB† + FAW1 + W2EB,
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where W1, W2 ∈ Cn×n are arbitrary.
Hence, X is Re-nnd if and only if

(
FA EB

) (
W1

W ∗
2

)
+

(
W ∗

1 W2

) (
FA

EB

)
� −[A†CB† + (A†CB†)∗]

is solvable. On account of Corollary 2.1, statement (2) and (3.6) are obvious. Com-
bining (3.7) and (3.6) produces (3.5).

Next, we show that statements (2), (3) and (4) are equivalent. By Lemma 1.2,
statement (2) is equivalent to i−

(
EH [A†CB† + (A†CB†)∗]EH

)
= 0, i.e.,

(3.8) r
(
FA EB

)
= i−

⎛
⎝A†CB† + (A†CB†)∗ EA∗ EB

EA∗ 0 0
EB 0 0

⎞
⎠ .

In view of Lemma 1.6, we can compute that

(3.9)
r
(
FA EB

)

= r

(
In A∗ 0
In 0 B

)
− r(A)− r(B) = n + r

(
A∗ B

) − r(A)− r(B).

Together with Lemma 1.2 and the fact i±(M) = i±(PMP ∗), where M is Hermitian,
and P is nonsingular, then we have

(3.10)

i−

⎛
⎝A†CB† + (A†CB†)∗ EA∗ EB

EA∗ 0 0
EB 0 0

⎞
⎠

= i−

⎛
⎜⎜⎜⎜⎝

A†CB† + (A†CB†)∗ In In 0 0
In 0 0 A∗ 0
In 0 0 0 B
0 A 0 0 0
0 0 B∗ 0 0

⎞
⎟⎟⎟⎟⎠ − r(A)− r(B)

= i−

⎛
⎜⎜⎜⎜⎝

0 In In −(CB†)∗ 0
In 0 0 A∗ 0
In 0 0 0 B

−CB† A 0 0 0
0 0 B∗ 0 0

⎞
⎟⎟⎟⎟⎠ − r(A) − r(B)



1656 Xifu Liu

= i−

⎛
⎜⎜⎜⎜⎝

0 In In 0 0
In 0 0 A∗ 0
In 0 0 0 B

0 A 0 0 C
0 0 B∗ C∗ 0

⎞
⎟⎟⎟⎟⎠ − r(A) − r(B)

= i−

⎛
⎜⎜⎜⎜⎝

0 In 0 0 0
In 0 0 A∗ 0
0 0 0 −A∗ B

0 A −A 0 C
0 0 B∗ C∗ 0

⎞
⎟⎟⎟⎟⎠ − r(A)− r(B)

= i−

⎛
⎜⎜⎜⎜⎝

0 In 0 0 0
In 0 0 0 0
0 0 0 −A∗ B
0 0 −A 0 C

0 0 B∗ C∗ 0

⎞
⎟⎟⎟⎟⎠ − r(A)− r(B)

= i−
(

0 In

In 0

)
+ i−

⎛
⎝ 0 −A∗ B
−A 0 C

B∗ C∗ 0

⎞
⎠− r(A)− r(B)

= n + i−

⎛
⎝ 0 A∗ B

A 0 −C

B∗ −C∗ 0

⎞
⎠ − r(A)− r(B)

= n + i−

⎛
⎝ 0 −C A
−C∗ 0 B∗

A∗ B 0

⎞
⎠ − r(A)− r(B).

Substituting (3.9) and (3.10) into (3.8) yields statements (3) and (4).

Three simple consequences of Theorem 3.2 are given below.

Corollary 3.2. Let A, C ∈ C
m×n be given. Then there exists a Re-nnd solution

to consistent matrix equation AX = C if and only if A†CA†A or CA∗ is Re-nnd. In
this case, a general expression for this Re-nnd solution can be written as

X = A†C +
1
2
FA

(
V V ∗ − [A†C + (A†C)∗]

)
(In + A†A) + FAY FA,

where V = [A†CA†A + (A†CA†A)∗]
1
2 + FAZ, Y, Z ∈ Cn×n are arbitrary with

Y ∗ = −Y .

Corollary 3.3. Let B, C ∈ Cn×m be given. Then there exists a Re-nnd solution
to consistent matrix equation XB = C if and only if BB†CB† or B∗C is Re-nnd. In
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this case, a general expression for this Re-nnd solution can be written as

X = CB† +
1
2
(In + BB†)

(
V V ∗ − [CB† + (CB†)∗]

)
EB + EBY EB,

where V = [BB†CB† + (BB†CB†)∗]
1
2 + EBZ, Y, Z ∈ C

n×n are arbitrary with
Y ∗ = −Y .

Corollary 3.4. Let A ∈ Cm×n and C ∈ Cm×m be given matrices. Then there
exists a Re-nnd solution to consistent matrix equation AXA∗ = C if and only if
A†C(A†)∗ or C is Re-nnd. In this case, a general expression for this Re-nnd solution
can be written as

X = A†C(A†)∗ +
1
2
FA(In + FA)−1

(
V V ∗ − A†(C + C∗)(A†)∗

)
(In + A†A)

+
1
2
(In + A†A)

(
V V ∗ − A†(C + C∗)(A†)∗

)
FA(In + FA)−1FA

+
1
2
[FAỸ1 − FA(In + FA)−1FA(Ỹ1 + Ỹ2)] +

1
2
[FAỸ ∗

3 FA

−FA(In + FA)−1(Ỹ3 + Ỹ4)FA]

+
1
2
[Ỹ ∗

2 FA − (Ỹ1 + Ỹ2)∗FA(In + FA)−1FA] +
1
2
[FAỸ4FA

−FA(Ỹ3 + Ỹ4)∗FA(In + FA)−1FA],

where V =
(
A†(C + C∗)(A†)∗

)1
2 + FAZ, Z ∈ C

n×n and Ỹi ∈ C
n×n (i = 1, 2, 3, 4)

are arbitrary.

Proof. It is easy to verify that

H† =
(
FA FA

)†
=

⎛
⎝FA − FA(In + FA)−1FA

(In + FA)−1FA

⎞
⎠

=

⎛
⎝FA(In + FA)−1

FA(In + FA)−1

⎞
⎠ =

⎛
⎝FA(In + FA)−1FA

FA(In + FA)−1FA

⎞
⎠ ,

H†H =

⎛
⎝FA(In + FA)−1FA FA(In + FA)−1FA

(In + FA)−1FA (In + FA)−1FA

⎞
⎠ , HH† = FA.
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So, V =
(
A†(C + C∗)(A†)∗

)1
2 + FAZ. Denote Y1 =

(
Ỹ1

Ỹ2

)
, Y2 =

(
Ỹ3 Ỹ4

)
. By

Theorem 3.2, we get
(
FA 0

)
FHY1 = FAỸ1 − FA(In + FA)−1FA(Ỹ1 + Ỹ2),(

FA 0
)

[(H†Y2)∗ − H†Y2]H∗ = FAỸ ∗
3 FA − FA(In + FA)−1(Ỹ3 + Ỹ4)FA,

Y ∗
1 FH

(
0

FA

)
= Ỹ ∗

2 FA − (Ỹ1 + Ỹ2)∗FA(In + FA)−1FA,

H [H†Y2 − (H†Y2)∗]
(

0
FA

)
= FAỸ4FA − FA(Ỹ3 + Ỹ4)∗FA(In + FA)−1FA.

According to the above analyses, this corollary is obvious.
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