TAIWANESE JOURNAL OF MATHEMATICS
Vol. 19, No. 6, pp. 1593-1602, December 2015
DOI: 10.11650/tjm.19.2015.5393
This paper is available online at http://journal.taiwanmathsoc.org.tw

# A (FORGOTTEN) UPPER BOUND FOR THE SPECTRAL RADIUS OF A GRAPH 

## Clive Elphick and Chia-An Liu


#### Abstract

The best degree-based upper bound for the spectral radius is due to Liu and Weng. This paper begins by demonstrating that a (forgotten) upper bound for the spectral radius dating from 1983 is equivalent to their much more recent bound. This bound is then used to compare lower bounds for the clique number. A series of line graph degree-based upper bounds for the Q-index is then proposed and compared experimentally with a graph based bound. Finally a new lower bound for generalised $r$-partite graphs is proved, by extending a result due to Erdos.


## 1. Introduction

Let $G$ be a simple and undirected graph with $n$ vertices, $m$ edges, and degrees $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta$. Let $d$ denote the average vertex degree, $\omega$ the clique number and $\chi$ the chromatic number. Finally let $\mu(G)$ denote the spectral radius of $G$, $q(G)$ denote the spectral radius of the signless Laplacian of $G$ and $G^{L}$ denote the line graph of $G$.

In 1983, Edwards and Elphick [6] proved in their Theorem 8 (and its corollary) that $\mu \leq y-1$, where $y$ is defined by the equality

$$
\begin{equation*}
y(y-1)=\sum_{k=1}^{\lfloor y\rfloor} d_{k}+(y-\lfloor y\rfloor) d_{\lceil y\rceil} . \tag{1}
\end{equation*}
$$

Edwards and Elphick [6] show that $1 \leq y \leq n$ and that $y$ is a single-valued function of $G$.

This bound is exact for regular graphs because, we then have that

$$
d=\mu \leq y-1=\frac{1}{y}\left(\sum_{k=1}^{\lfloor y\rfloor} d+(y-\lfloor y\rfloor) d\right)=d .
$$

Received October 5, 2014, accepted April 14, 2015.
Communicated by Xuding Zhu.
2010 Mathematics Subject Classification: 05C50, 15A18.
Key words and phrases: Graph, Spectral radius, Q-index, Clique number.

The bound is also exact for various bidegreed graphs. For example, let $G$ be the Star graph on $n$ vertices, which has $\mu=\sqrt{n-1}$. It is easy to show that $\lfloor\sqrt{n-1}\rfloor<$ $y<\lceil\sqrt{n-1}\rceil$. It then follows that $y$ is the solution to the equation

$$
y(y-1)=(n-1)+\lfloor\sqrt{n-1}\rfloor-1+(y-\lfloor\sqrt{n-1}\rfloor)=n-2+y
$$

which has the solution $y=1+\sqrt{n-1}$, so $\mu \leq y-1=\sqrt{n-1}$.
Similarly let $G$ be the Wheel graph on $n$ vertices, which has $\mu=1+\sqrt{n}$. It is straightforward to show that $y=2+\sqrt{n}$ is the solution to (1) so again the bound is exact.

## 2. An Upper Bound for the Spectral Radius

The calculation of $y$ can involve a two step process.

1. Restrict $y$ to integers, so (1) simplifies to

$$
y(y-1)=\sum_{k=1}^{y} d_{k}
$$

Since $d \leq \mu$, we can begin with $y=\lfloor d+1\rfloor$, and then increase $y$ by unity until $y(y-1) \geq \sum_{k=1}^{y} d_{k}$. This determines that either $y=a$ or $a<y<a+1$, where $a$ is an integer.
2. Then, if $y$ is not an integer, solve the following quadratic equation

$$
\begin{equation*}
y(y-1)=\sum_{k=1}^{a} d_{k}+(y-a) d_{a+1} \tag{2}
\end{equation*}
$$

For convenience let $c=\sum_{k=1}^{a} d_{k}$. Equation (2) then becomes

$$
y^{2}-y\left(1+d_{a+1}\right)-\left(c-a d_{a+1}\right)=0
$$

Therefore

$$
y=\frac{d_{a+1}+1+\sqrt{\left(d_{a+1}+1\right)^{2}+4\left(c-a d_{a+1}\right)}}{2}
$$

so

$$
\mu \leq y-1=\frac{d_{a+1}-1+\sqrt{\left(d_{a+1}+1\right)^{2}+4\left(c-a d_{a+1}\right)}}{2}
$$

This two step process can be combined as follows, by letting $a+1=k$,

$$
\begin{equation*}
\mu \leq \frac{d_{k}-1+\sqrt{\left(d_{k}+1\right)^{2}+4 \sum_{i=1}^{k-1}\left(d_{i}-d_{k}\right)}}{2}, \text { where } 1 \leq k \leq n \tag{3}
\end{equation*}
$$

In 2012, Liu and Weng [12] proved (3) using a different approach. They also proved there is equality if and only if $G$ is regular or there exists $2 \leq t \leq k$ such that $d_{1}=d_{t-1}=n-1$ and $d_{t}=d_{n}$. Note that if $k=1$ this reduces to $\mu \leq \Delta$.

If we set $k=n$ in (3) then

$$
\mu \leq \frac{\delta-1+\sqrt{(\delta+1)^{2}-4 n \delta+8 m}}{2}
$$

which was proved by Nikiforov [13] in 2002.

## 3. Lower Bounds for the Clique Number

Turán’s Theorem, proved in 1941, is a seminal result in extremal graph theory. In its concise form it states that:

$$
\frac{n}{n-d} \leq \omega(G)
$$

where $d$ is the average vertex degree.
Edwards and Elphick [6] used $y$ to prove the following lower bound for the clique number:

$$
\begin{equation*}
\frac{n}{n-y+1}<\omega(G)+\frac{1}{3} \tag{4}
\end{equation*}
$$

In 1986, Wilf [16] proved that

$$
\frac{n}{n-\mu} \leq \omega(G)
$$

Note, however, that

$$
\frac{n}{n-y+1} \not \leq \omega(G),
$$

since for example $\frac{n}{n-y+1}=2.13$ for $K_{7,9}$ and $\frac{n}{n-y+1}=3.1$ for $K_{3,3,4}$.
Nikiforov [13] proved a conjecture due to Edwards and Elphick [6] that

$$
\begin{equation*}
\frac{2 m}{2 m-\mu^{2}} \leq \omega(G) \tag{5}
\end{equation*}
$$

Experimentally, bound (5) performs better than bound (4) for most graphs.

## 4. Upper Bounds for the Q-Index

Let $q(G)$ denote the spectral radius of the signless Laplacian of $G$. In this section we investigate graph and line graph degree-based bounds for $q(G)$ and then compare them experimentally.

### 4.1. Graph bound

Nikiforov [14] has recently strengthened various upper bounds for $q(G)$ with the following theorem.

Theorem 1. If $G$ is a graph with $n$ vertices, $m$ edges, with maximum degree $\Delta$ and minimum degree $\delta$, then

$$
q(G) \leq \min \left(2 \Delta, \frac{1}{2}\left(\Delta+2 \delta-1+\sqrt{(\Delta+2 \delta-1)^{2}+16 m-8(n-1+\Delta) \delta}\right)\right)
$$

Equality holds if and only if $G$ is regular or $G$ has a component of order $\Delta+1$ in which every vertex is of degree $\delta$ or $\Delta$, and all other components are $\delta$-regular.

### 4.2. Line graph bounds

The following well-known lemma (see, for example, Lemma 2.1 in [2]) provides an equality between the spectral radii of the signless Laplacian matrix and the adjacency matrix of the line graph of a graph.

Lemma 2. If $G^{L}$ denotes the line graph of $G$ then

$$
\begin{equation*}
q(G)=2+\mu\left(G^{L}\right) \tag{6}
\end{equation*}
$$

Let $\Delta_{i j}=\left\{d_{i}+d_{j}-2 \mid i \sim j\right\}$ be the degrees of vertices in $G^{L}$, and $\Delta_{1} \geq \Delta_{2} \geq$ $\cdots \geq \Delta_{m}$ be a renumbering of them in non-increasing order. Cvetković et al. proved the following theorem using Lemma 2.

Theorem 3. (Theorem 4.7 in [4]).

$$
q(G) \leq 2+\Delta_{1}
$$

with equality if and only if $G$ is regular or semi-regular bipartite.
The following lemma is proved in varying ways in [5, 12, 15].

## Lemma 4.

$$
\mu(G) \leq \frac{d_{2}-1+\sqrt{\left(d_{2}-1\right)^{2}+4 d_{1}}}{2}
$$

with equality if and only if $G$ is regular or $n-1=d_{1}>d_{2}=d_{n}$.
Chen et al. combined Lemma 2 and Lemma 4 to prove the following result.
Theorem 5. (Theorem 3.4 in [3]).

$$
q(G) \leq 2+\frac{\Delta_{2}-1+\sqrt{\left(\Delta_{2}-1\right)^{2}+4 \Delta_{1}}}{2}
$$

with equality if and only if $G$ is regular, or semi-regular bipartite, or the tree obtained by joining an edge to the centers of two stars $K_{1, \frac{n}{2}-1}$ with even $n$, or $n-1=d_{1}=$ $d_{2}>d_{3}=d_{n}=2$.

Stating (3) as a lemma we have
Lemma 6. For $1 \leq k \leq n$,

$$
\begin{equation*}
\mu(G) \leq \phi_{k}:=\frac{d_{k}-1+\sqrt{\left(d_{k}+1\right)^{2}+4 \sum_{i=1}^{k-1}\left(d_{i}-d_{k}\right)}}{2} \tag{7}
\end{equation*}
$$

with equality if and only if $G$ is regular or there exists $2 \leq t \leq k$ such that $n-1=$ $d_{1}=d_{t-1}>d_{t}=d_{n}$.

Combining Lemmas 2 and 6 provides the following series of upper bounds for the signless Laplacian spectral radius.

Theorem 7. For $1 \leq k \leq m$, we have

$$
\begin{equation*}
q(G) \leq \psi_{k}:=1+\frac{\Delta_{k}+1+\sqrt{\left(\Delta_{k}+1\right)^{2}+4 \sum_{i=1}^{k-1}\left(\Delta_{i}-\Delta_{k}\right)}}{2} \tag{8}
\end{equation*}
$$

with equality if and only if $\Delta_{1}=\Delta_{m}$ or there exists $2 \leq t \leq k$ such that $m-1=$ $\Delta_{1}=\Delta_{t-1}>\Delta_{t}=\Delta_{m}$.

Proof. $G^{L}$ is simple. Hence (8) is a direct result of (6) and (7). The sufficient and necessary conditions are immediately those in Lemma 6.

Remark 8. Note that Theorem 7 generalizes both Theorems 3 and 5 since those bounds are precisely $\psi_{1}$ and $\psi_{2}$ in (8) respectively.

We list all the extremal graphs with equalities in (8) in the following. From Theorem 3 the graphs with $q(G)=\psi_{1}$, i.e. $\Delta_{1}=\Delta_{m}$, are regular or semi-regular bipartite.

From Theorem 5 the graphs with $q(G)<\psi_{1}$ and $q(G)=\psi_{2}$, i.e. $m-1=\Delta_{1}>$ $\Delta_{2}=\Delta_{m}$, are the tree obtained by joining an edge to the centers of two stars $K_{1, \frac{n}{2}-1}$ with even n , or $n-1=d_{1}=d_{2}>d_{3}=d_{n}=2$.

The only graph with $q(G)<\min \left\{\psi_{i} \mid i=1,2\right\}$ and $q(G)=\psi_{3}$, i.e. $m-1=\Delta_{1}$ $=\Delta_{2}>\Delta_{3}=\Delta_{m}$, is the 4 -vertex graph $K_{1,3}^{+}$obtained by adding one edge to $K_{1,3}$.


We now prove that no graph satisfies $q(G)<\min \left\{\psi_{i} \mid 1 \leq i<k-1\right\}$ and $q(G)=\psi_{k}$ where $m \geq k \geq 4$. Let $G$ be a counter-example such that $m-1=\Delta_{1}=$ $\Delta_{k-1}>\Delta_{k}=\Delta_{m}$. Since $\Delta_{3}=m-1$ there are at least 3 edges incident to all other
edges in $G$. If these 3 edges form a 3 -cycle then there is nowhere to place the fourth edge, which is a contradiction. Hence they are incident to a common vertex, and $G$ has to be a star graph. However a star graph is semi-regular bipartite so $q(G)=\psi_{1}$, which completes the proof.

Remark 9. By analogy with (1), if $z$ is defined by the equality

$$
z(z-1)=\sum_{k=1}^{\lfloor z\rfloor} \Delta_{k}+(z-\lfloor z\rfloor) \Delta_{\lceil z\rceil},
$$

then $q \leq z+1$. This bound is exact for $d$-regular graphs, because we then have

$$
2 d=q \leq z+1=2+(z-1)=2+\frac{1}{z}\left(\sum_{k=1}^{\lfloor z\rfloor} \Delta+(z-\lfloor z\rfloor) \Delta\right)=2+\Delta=2 d .
$$

### 4.3. Experimental comparison

It is straightforward to compare the above bounds experimentally using the named graphs and LineGraph function in Wolfram Mathematica. Theorem 1 is exact for some graphs (eg Wheels) for which Theorems 5 and 7 are inexact and Theorems 5 and 7 are exact for some graphs (eg complete bipartite) for which Theorem 1 is inexact. Tabulated below are the numbers of named irregular graphs on 10, 16, 25 and 28 vertices in Mathematica and the average values of $q$ and the bounds in Theorems 1, 5 and 7.

| $n$ | irrregular graphs | $q(G)$ | Theorem 1 | Theorem 5 | Theorem 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 59 | 9.3 | 10.0 | 10.3 | 9.8 |
| 16 | 48 | 10.3 | 11.2 | 11.5 | 11.0 |
| 25 | 25 | 11.5 | 13.4 | 13.1 | 12.6 |
| 28 | 21 | 11.2 | 12.6 | 12.7 | 12.2 |

It can be seen that Theorem 5 gives results that are broadly equal on average to Theorem 1 and Theorem 7 gives results which are on average modestly better. This is unsurprising since more data is involved in Theorem 7 than in the other two theorems. For some graphs, $q(G)$ is minimised in Theorem 7 with large values of $k$.

## 5. A Lower Bound for the Q-Index

Elphick and Wocjan [7] defined a measure of graph irregularity, $\nu$, as follows:

$$
\nu=\frac{n \sum d_{i}^{2}}{4 m^{2}}
$$

where $\nu \geq 1$, with equality only for regular graphs.
It is well known that $q \geq 2 \mu$ and Hofmeister [9] has proved that $\mu^{2} \geq \sum d_{i}^{2} / n$, so it is immediate that

$$
q \geq 2 \mu \geq \frac{4 m \sqrt{\nu}}{n}
$$

Liu and Liu [11] improved this bound in the following theorem, for which we provide a simpler proof using Lemma 2.

Theorem 10. Let $G$ be a graph with irregularity $\nu$ and $Q$-index $q(G)$. Then

$$
q(G) \geq \frac{4 m \nu}{n}
$$

This is exact for complete bipartite graphs.
Proof. Let $G^{L}$ denote the line graph of $G$. From Lemma 2 we know that $q(G)=$ $2+\mu\left(G^{L}\right)$ and it is well known that $n\left(G^{L}\right)=m$ and $m\left(G^{L}\right)=\left(\sum d_{i}^{2} / 2\right)-m$. Therefore

$$
q=2+\mu\left(G^{L}\right) \geq 2+\frac{2 m\left(G^{L}\right)}{n\left(G^{L}\right)}=2+\frac{2}{m}\left(\frac{\sum d_{i}^{2}}{2}-m\right)=\frac{\sum d_{i}^{2}}{m}=\frac{4 m \nu}{n} .
$$

For the complete bipartite graph $K_{s, t}$,

$$
q \geq \frac{\sum_{i} d_{i}^{2}}{m}=\frac{\sum_{i j \in E}\left(d_{i}+d_{j}\right)}{m}=d_{i}+d_{j}=s+t=n
$$

which is exact.

## 6. Generalised $r$-Partite Graphs

In a series of papers, Bojilov and others have generalised the concept of an $r$-partite graph. They define the parameter $\phi(G)$ to be the smallest integer $r$ for which $V(G)$ has an $r$-partition:

$$
V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r} \text {, such that } d(v) \leq n-n_{i} \text {, where } n_{i}=\left|V_{i}\right| \text {, }
$$

for all $v \in V_{i}$ and for $i=1,2, \ldots, r$.
Bojilov et al. [1] proved that $\phi(G) \leq \omega(G)$ and Khadzhiivanov and Nenov [10] proved that

$$
\frac{n}{n-d} \leq \phi(G) .
$$

Despite this bound, Elphick and Wocjan [7] demonstrated that

$$
\frac{n}{n-\mu} \not \leq \phi(G) .
$$

However, it is proved below in Corollary 15 that

$$
\frac{n}{n-\mu} \leq \frac{n}{n-y+1}<\phi(G)+\frac{1}{3}
$$

Definition 11. If $H$ is any graph of order $n$ with degree sequence $d_{H}(1) \geq$ $d_{H}(2) \geq \ldots \geq d_{H}(n)$, and if $H^{*}$ is any graph of order $n$ with degree sequence $d_{H^{*}}(1) \geq d_{H^{*}}(2) \geq \ldots \geq d_{H^{*}}(n)$, such that $d_{H}(i) \leq d_{H^{*}}(i)$ for all $i$, then $H^{*}$ is said to "dominate" $H$.

Erdös [8] proved that if $G$ is any graph of order $n$, then there exists a graph $G^{*}$ of order $n$, where $\chi\left(G^{*}\right)=\omega(G)=r$, such that $G^{*}$ dominates $G$ and $G^{*}$ is complete $r$-partite.

Theorem 12. If $G$ is any graph of order $n$, then there exists a graph $G^{*}$ of order $n$, where $\omega\left(G^{*}\right)=\phi(G)=r$, such that $G^{*}$ dominates $G$, and $G^{*}$ is complete $r$-partite.

Proof. Let $G$ be a generalised $r$-partite graph with $\phi(G)=r$ and $n_{i}=\left|V_{i}\right|$, and let $G^{*}$ be the complete $r$-partite graph $K_{n_{1}, \ldots, n_{r}}$. Let $d(v)$ denote the degree of vertex $v$ in $G$ and $d^{*}(v)$ denote the degree of vertex $v$ in $G^{*}$. Clearly $\chi\left(G^{*}\right)=\omega\left(G^{*}\right)=r$, and by the definition of a generalised $r$-partite graph:

$$
d^{*}(v)=n-n_{i} \geq d(v)
$$

for all $v \in V_{i}$ and for $i=1, \ldots, r$. Therefore $G^{*}$ dominates $G$.
Lemma 13. (Lemma 4 in [6]). Assume $G^{*}$ dominates $G$. Then $y\left(G^{*}\right) \geq y(G)$.

## Theorem 14.

$$
\frac{n}{n-y(G)+1}<\phi(G)+\frac{1}{3}
$$

Proof. Let $G^{*}$ be any graph of order $n$, where $\omega\left(G^{*}\right)=\phi(G)$ such that $G^{*}$ dominates $G$. (By Theorem 12 at least one such graph $G^{*}$ exists.) Then, using Lemma 13 and inequality (4),

$$
\frac{n}{n-y(G)+1} \leq \frac{n}{n-y\left(G^{*}\right)+1}<\omega\left(G^{*}\right)+\frac{1}{3}=\phi(G)+\frac{1}{3} \leq \omega(G)+\frac{1}{3}
$$

## Corollary 15.

$$
\frac{n}{n-\mu}<\phi(G)+\frac{1}{3}
$$

Proof. Immediate since $\mu \leq y-1$.

## References

[1] A. Bojilov, Y. Caro, A. Hansberg and N. Nenov, Partitions of graphs into small and large sets, Discrete Appl. Math. 161 (2013), 1912-1924. http://dx.doi.org/10.1016/j.dam.2013.02.038
[2] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Ser. B 3 (2002), 371-376. http://dx.doi.org/10.1007/s11766-002-0017-7
[3] Y. H. Chen, R. Pan and X. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Mathematics, Algorithms and Appl. 3(2) (2011), 185-191. http://dx.doi.org/10.1142/s1793830911001152
[4] D. Cvetković, P. Rowlinson and S. Simić, Signless Laplacian of finite graphs, Linear Algebra Appl. 423 (2007), 155-171. http://dx.doi.org/10.1016/j.laa.2007.01.009
[5] K. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, Linear Algebra Appl. 435 (2011), 2420-2424. http://dx.doi.org/10.1016/j.laa.2010.12.018
[6] C. S. Edwards and C. H. Elphick, Lower bounds for the clique and the chromatic numbers of a graph, Discrete Appl. Math. 5 (1983), 51-64. http://dx.doi.org/10.1016/0166-218x(83)90015-x
[7] C. Elphick and P. Wocjan, New measures of graph irregularity, El. J. Graph Theory Appl. 2(1) (2014), 52-65.
[8] P. Erdos, On the graph theorem of Turan (in Hungarian), Mat. Lapok 21 (1970), 249251. [For a proof in English see B. Bollobas, Chapter 6, Extremal Graph Theory, Academic Press, New York].
[9] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139 (1988), 37-44. http://dx.doi.org/10.1002/mana. 19881390105
[10] N. Khadzhiivanov and N. Nenov, Generalized r-partite graphs and Turán's theorem, Compt. Rend. Acad. Bulg. Sci. 57 (2004).
[11] M. Liu and B. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62(3) (2009), 689-698.
[12] C. Liu and C. Weng, Spectral radius and degree sequence of a graph, Linear Algebra Appl. 438 (2013), 3511-3515.
http://dx.doi.org/10.1016/j.laa.2012.12.016
[13] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002), 179-189.
http://dx.doi.org/10.1017/s0963548301004928
[14] __ Maxima of the Q-index: degenerate graphs, Elec. J. Linear Algebra 27 (2014), 250-257. http://dx.doi.org/10.13001/1081-3810.1616
[15] J.-L. Shu and Y.-R. Wu, Sharp upper bounds on the spectral radius of graphs, Linear Algebra Appl. 377 (2004), 241-248.
http://dx.doi.org/10.1016/j.laa.2003.07.015
[16] H. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B 40 (1986), 113-117.
http://dx.doi.org/10.1016/0095-8956(86)90069-9

Clive Elphick<br>Bretherton, UK<br>E-mail: clive.elphick@gmail.com<br>Chia-An Liu<br>Department of Applied Mathematics<br>National Chiao-Tung University<br>Hsinchu, Taiwan<br>E-mail: twister.imm96g@g2.nctu.edu.tw

