TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 6, pp. 1593-1602, December 2015 DOI: 10.11650/tjm.19.2015.5393 This paper is available online at http://journal.taiwanmathsoc.org.tw

A (FORGOTTEN) UPPER BOUND FOR THE SPECTRAL RADIUS OF A GRAPH

Clive Elphick and Chia-An Liu

Abstract. The best degree-based upper bound for the spectral radius is due to Liu and Weng. This paper begins by demonstrating that a (forgotten) upper bound for the spectral radius dating from 1983 is equivalent to their much more recent bound. This bound is then used to compare lower bounds for the clique number. A series of line graph degree-based upper bounds for the Q-index is then proposed and compared experimentally with a graph based bound. Finally a new lower bound for generalised r-partite graphs is proved, by extending a result due to Erdös.

1. INTRODUCTION

Let G be a simple and undirected graph with n vertices, m edges, and degrees $\Delta = d_1 \ge d_2 \ge \cdots \ge d_n = \delta$. Let d denote the average vertex degree, ω the clique number and χ the chromatic number. Finally let $\mu(G)$ denote the spectral radius of G, q(G) denote the spectral radius of the signless Laplacian of G and G^L denote the line graph of G.

In 1983, Edwards and Elphick [6] proved in their Theorem 8 (and its corollary) that $\mu \leq y - 1$, where y is defined by the equality

(1)
$$y(y-1) = \sum_{k=1}^{\lfloor y \rfloor} d_k + (y - \lfloor y \rfloor) d_{\lceil y \rceil}$$

Edwards and Elphick [6] show that $1 \le y \le n$ and that y is a single-valued function of G.

This bound is exact for regular graphs because, we then have that

$$d = \mu \le y - 1 = \frac{1}{y} \left(\sum_{k=1}^{\lfloor y \rfloor} d + (y - \lfloor y \rfloor) d \right) = d.$$

Received October 5, 2014, accepted April 14, 2015.

Communicated by Xuding Zhu.

²⁰¹⁰ Mathematics Subject Classification: 05C50, 15A18.

Key words and phrases: Graph, Spectral radius, Q-index, Clique number.

The bound is also exact for various bidegreed graphs. For example, let G be the Star graph on n vertices, which has $\mu = \sqrt{n-1}$. It is easy to show that $\lfloor \sqrt{n-1} \rfloor < y < \lfloor \sqrt{n-1} \rfloor$. It then follows that y is the solution to the equation

$$y(y-1) = (n-1) + \lfloor \sqrt{n-1} \rfloor - 1 + (y - \lfloor \sqrt{n-1} \rfloor) = n - 2 + y,$$

which has the solution $y = 1 + \sqrt{n-1}$, so $\mu \le y - 1 = \sqrt{n-1}$.

Similarly let G be the Wheel graph on n vertices, which has $\mu = 1 + \sqrt{n}$. It is straightforward to show that $y = 2 + \sqrt{n}$ is the solution to (1) so again the bound is exact.

2. AN UPPER BOUND FOR THE SPECTRAL RADIUS

The calculation of y can involve a two step process.

1. Restrict y to integers, so (1) simplifies to

$$y(y-1) = \sum_{k=1}^{y} d_k.$$

Since $d \le \mu$, we can begin with $y = \lfloor d+1 \rfloor$, and then increase y by unity until $y(y-1) \ge \sum_{k=1}^{y} d_k$. This determines that either y = a or a < y < a+1, where a is an integer.

2. Then, if y is not an integer, solve the following quadratic equation

(2)
$$y(y-1) = \sum_{k=1}^{a} d_k + (y-a)d_{a+1}.$$

For convenience let $c = \sum_{k=1}^{a} d_k$. Equation (2) then becomes

$$y^{2} - y(1 + d_{a+1}) - (c - ad_{a+1}) = 0.$$

Therefore

$$y = \frac{d_{a+1} + 1 + \sqrt{(d_{a+1} + 1)^2 + 4(c - ad_{a+1})}}{2}$$

so

$$\mu \le y - 1 = \frac{d_{a+1} - 1 + \sqrt{(d_{a+1} + 1)^2 + 4(c - ad_{a+1})}}{2}$$

This two step process can be combined as follows, by letting a + 1 = k,

(3)
$$\mu \leq \frac{d_k - 1 + \sqrt{(d_k + 1)^2 + 4\sum_{i=1}^{k-1} (d_i - d_k)}}{2}$$
, where $1 \leq k \leq n$.

In 2012, Liu and Weng [12] proved (3) using a different approach. They also proved there is equality if and only if G is regular or there exists $2 \le t \le k$ such that $d_1 = d_{t-1} = n - 1$ and $d_t = d_n$. Note that if k = 1 this reduces to $\mu \le \Delta$.

If we set k = n in (3) then

$$\mu \le \frac{\delta - 1 + \sqrt{(\delta + 1)^2 - 4n\delta + 8m}}{2}$$

which was proved by Nikiforov [13] in 2002.

3. LOWER BOUNDS FOR THE CLIQUE NUMBER

Turán's Theorem, proved in 1941, is a seminal result in extremal graph theory. In its concise form it states that:

$$\frac{n}{n-d} \le \omega(G)$$

where d is the average vertex degree.

Edwards and Elphick [6] used y to prove the following lower bound for the clique number:

(4)
$$\frac{n}{n-y+1} < \omega(G) + \frac{1}{3}.$$

In 1986, Wilf [16] proved that

$$\frac{n}{n-\mu} \le \omega(G).$$

Note, however, that

$$\frac{n}{x-y+1} \not\leq \omega(G),$$

since for example $\frac{n}{n-y+1} = 2.13$ for $K_{7,9}$ and $\frac{n}{n-y+1} = 3.1$ for $K_{3,3,4}$.

Nikiforov [13] proved a conjecture due to Edwards and Elphick [6] that

(5)
$$\frac{2m}{2m-\mu^2} \le \omega(G)$$

Experimentally, bound (5) performs better than bound (4) for most graphs.

4. UPPER BOUNDS FOR THE Q-INDEX

Let q(G) denote the spectral radius of the signless Laplacian of G. In this section we investigate graph and line graph degree-based bounds for q(G) and then compare them experimentally.

4.1. Graph bound

Nikiforov [14] has recently strengthened various upper bounds for q(G) with the following theorem.

Theorem 1. If G is a graph with n vertices, m edges, with maximum degree Δ and minimum degree δ , then

$$q(G) \le \min\left(2\Delta, \frac{1}{2}\left(\Delta + 2\delta - 1 + \sqrt{(\Delta + 2\delta - 1)^2 + 16m - 8(n - 1 + \Delta)\delta}\right)\right).$$

Equality holds if and only if G is regular or G has a component of order $\Delta + 1$ in which every vertex is of degree δ or Δ , and all other components are δ -regular.

4.2. Line graph bounds

The following well-known lemma (see, for example, Lemma 2.1 in [2]) provides an equality between the spectral radii of the signless Laplacian matrix and the adjacency matrix of the line graph of a graph.

Lemma 2. If G^L denotes the line graph of G then

(6)
$$q(G) = 2 + \mu(G^L).$$

Let $\Delta_{ij} = \{d_i + d_j - 2 \mid i \sim j\}$ be the degrees of vertices in G^L , and $\Delta_1 \geq \Delta_2 \geq \cdots \geq \Delta_m$ be a renumbering of them in non-increasing order. Cvetković *et al.* proved the following theorem using Lemma 2.

Theorem 3. (Theorem 4.7 in [4]).

$$q(G) \le 2 + \Delta_1$$

with equality if and only if G is regular or semi-regular bipartite.

The following lemma is proved in varying ways in [5, 12, 15].

Lemma 4.

$$\mu(G) \le \frac{d_2 - 1 + \sqrt{(d_2 - 1)^2 + 4d_1}}{2}$$

with equality if and only if G is regular or $n - 1 = d_1 > d_2 = d_n$.

Chen et al. combined Lemma 2 and Lemma 4 to prove the following result.

Theorem 5. (Theorem 3.4 in [3]).

$$q(G) \le 2 + \frac{\Delta_2 - 1 + \sqrt{(\Delta_2 - 1)^2 + 4\Delta_1}}{2}$$

with equality if and only if G is regular, or semi-regular bipartite, or the tree obtained by joining an edge to the centers of two stars $K_{1,\frac{n}{2}-1}$ with even n, or $n-1 = d_1 = d_2 > d_3 = d_n = 2$.

Stating (3) as a lemma we have

Lemma 6. For $1 \le k \le n$,

(7)
$$\mu(G) \le \phi_k := \frac{d_k - 1 + \sqrt{(d_k + 1)^2 + 4\sum_{i=1}^{k-1} (d_i - d_k)}}{2}$$

with equality if and only if G is regular or there exists $2 \le t \le k$ such that $n - 1 = d_1 = d_{t-1} > d_t = d_n$.

Combining Lemmas 2 and 6 provides the following series of upper bounds for the signless Laplacian spectral radius.

Theorem 7. For $1 \le k \le m$, we have

(8)
$$q(G) \le \psi_k := 1 + \frac{\Delta_k + 1 + \sqrt{(\Delta_k + 1)^2 + 4\sum_{i=1}^{k-1}(\Delta_i - \Delta_k)}}{2}$$

with equality if and only if $\Delta_1 = \Delta_m$ or there exists $2 \le t \le k$ such that $m - 1 = \Delta_1 = \Delta_{t-1} > \Delta_t = \Delta_m$.

Proof. G^L is simple. Hence (8) is a direct result of (6) and (7). The sufficient and necessary conditions are immediately those in Lemma 6.

Remark 8. Note that Theorem 7 generalizes both Theorems 3 and 5 since those bounds are precisely ψ_1 and ψ_2 in (8) respectively.

We list all the extremal graphs with equalities in (8) in the following. From Theorem 3 the graphs with $q(G) = \psi_1$, i.e. $\Delta_1 = \Delta_m$, are regular or semi-regular bipartite.

From Theorem 5 the graphs with $q(G) < \psi_1$ and $q(G) = \psi_2$, i.e. $m - 1 = \Delta_1 > \Delta_2 = \Delta_m$, are the tree obtained by joining an edge to the centers of two stars $K_{1,\frac{n}{2}-1}$ with even n, or $n - 1 = d_1 = d_2 > d_3 = d_n = 2$.

The only graph with $q(G) < \min\{\psi_i \mid i = 1, 2\}$ and $q(G) = \psi_3$, i.e. $m-1 = \Delta_1 = \Delta_2 > \Delta_3 = \Delta_m$, is the 4-vertex graph $K_{1,3}^+$ obtained by adding one edge to $K_{1,3}$.

We now prove that no graph satisfies $q(G) < \min\{\psi_i \mid 1 \le i < k-1\}$ and $q(G) = \psi_k$ where $m \ge k \ge 4$. Let G be a counter-example such that $m - 1 = \Delta_1 = \Delta_{k-1} > \Delta_k = \Delta_m$. Since $\Delta_3 = m - 1$ there are at least 3 edges incident to all other

edges in G. If these 3 edges form a 3-cycle then there is nowhere to place the fourth edge, which is a contradiction. Hence they are incident to a common vertex, and G has to be a star graph. However a star graph is semi-regular bipartite so $q(G) = \psi_1$, which completes the proof.

Remark 9. By analogy with (1), if z is defined by the equality

$$z(z-1) = \sum_{k=1}^{\lfloor z \rfloor} \Delta_k + (z - \lfloor z \rfloor) \Delta_{\lceil z \rceil},$$

then $q \leq z + 1$. This bound is exact for d-regular graphs, because we then have

$$2d = q \le z+1 = 2 + (z-1) = 2 + \frac{1}{z} \left(\sum_{k=1}^{\lfloor z \rfloor} \Delta + (z - \lfloor z \rfloor) \Delta \right) = 2 + \Delta = 2d.$$

4.3. Experimental comparison

It is straightforward to compare the above bounds experimentally using the named graphs and LineGraph function in Wolfram Mathematica. Theorem 1 is exact for some graphs (eg Wheels) for which Theorems 5 and 7 are inexact and Theorems 5 and 7 are exact for some graphs (eg complete bipartite) for which Theorem 1 is inexact. Tabulated below are the numbers of named irregular graphs on 10, 16, 25 and 28 vertices in Mathematica and the average values of q and the bounds in Theorems 1, 5 and 7.

n	irrregular graphs	q(G)	Theorem 1	Theorem 5	Theorem 7
10	59	9.3	10.0	10.3	9.8
16	48	10.3	11.2	11.5	11.0
25	25	11.5	13.4	13.1	12.6
28	21	11.2	12.6	12.7	12.2

It can be seen that Theorem 5 gives results that are broadly equal on average to Theorem 1 and Theorem 7 gives results which are on average modestly better. This is unsurprising since more data is involved in Theorem 7 than in the other two theorems. For some graphs, q(G) is minimised in Theorem 7 with large values of k.

5. A LOWER BOUND FOR THE Q-INDEX

Elphick and Wocjan [7] defined a measure of graph irregularity, ν , as follows:

$$\nu = \frac{n \sum d_i^2}{4m^2},$$

1599

where $\nu \geq 1$, with equality only for regular graphs.

It is well known that $q \ge 2\mu$ and Hofmeister [9] has proved that $\mu^2 \ge \sum d_i^2/n$, so it is immediate that

$$q \ge 2\mu \ge \frac{4m\sqrt{\nu}}{n}$$

Liu and Liu [11] improved this bound in the following theorem, for which we provide a simpler proof using Lemma 2.

Theorem 10. Let G be a graph with irregularity ν and Q-index q(G). Then

$$q(G) \ge \frac{4m\nu}{n}.$$

This is exact for complete bipartite graphs.

Proof. Let G^L denote the line graph of G. From Lemma 2 we know that $q(G) = 2 + \mu(G^L)$ and it is well known that $n(G^L) = m$ and $m(G^L) = (\sum d_i^2/2) - m$. Therefore

$$q = 2 + \mu(G^L) \ge 2 + \frac{2m(G^L)}{n(G^L)} = 2 + \frac{2}{m} \left(\frac{\sum d_i^2}{2} - m\right) = \frac{\sum d_i^2}{m} = \frac{4m\nu}{n}.$$

For the complete bipartite graph $K_{s,t}$,

$$q \ge \frac{\sum_i d_i^2}{m} = \frac{\sum_{ij \in E} (d_i + d_j)}{m} = d_i + d_j = s + t = n,$$

which is exact.

6. Generalised r-Partite Graphs

In a series of papers, Bojilov and others have generalised the concept of an r-partite graph. They define the parameter $\phi(G)$ to be the smallest integer r for which V(G) has an r-partition:

$$V(G) = V_1 \cup V_2 \cup \cdots \cup V_r$$
, such that $d(v) \le n - n_i$, where $n_i = |V_i|$,

for all $v \in V_i$ and for $i = 1, 2, \ldots, r$.

Bojilov et al. [1] proved that $\phi(G) \leq \omega(G)$ and Khadzhiivanov and Nenov [10] proved that

$$\frac{n}{n-d} \le \phi(G).$$

Despite this bound, Elphick and Wocjan [7] demonstrated that

$$\frac{n}{n-\mu} \not\leq \phi(G).$$

However, it is proved below in Corollary 15 that

$$\frac{n}{n-\mu} \le \frac{n}{n-y+1} < \phi(G) + \frac{1}{3}.$$

Definition 11. If H is any graph of order n with degree sequence $d_H(1) \ge d_H(2) \ge \ldots \ge d_H(n)$, and if H^* is any graph of order n with degree sequence $d_{H^*}(1) \ge d_{H^*}(2) \ge \ldots \ge d_{H^*}(n)$, such that $d_H(i) \le d_{H^*}(i)$ for all i, then H^* is said to "dominate" H.

Erdös [8] proved that if G is any graph of order n, then there exists a graph G^* of order n, where $\chi(G^*) = \omega(G) = r$, such that G^* dominates G and G^* is complete r-partite.

Theorem 12. If G is any graph of order n, then there exists a graph G^* of order n, where $\omega(G^*) = \phi(G) = r$, such that G^* dominates G, and G^* is complete r-partite.

Proof. Let G be a generalised r-partite graph with $\phi(G) = r$ and $n_i = |V_i|$, and let G^* be the complete r-partite graph K_{n_1,\dots,n_r} . Let d(v) denote the degree of vertex v in G and $d^*(v)$ denote the degree of vertex v in G^* . Clearly $\chi(G^*) = \omega(G^*) = r$, and by the definition of a generalised r-partite graph:

$$d^*(v) = n - n_i \ge d(v)$$

for all $v \in V_i$ and for i = 1, ..., r. Therefore G^* dominates G.

Lemma 13. (Lemma 4 in [6]). Assume G^* dominates G. Then $y(G^*) \ge y(G)$.

Theorem 14.

$$\frac{n}{n - y(G) + 1} < \phi(G) + \frac{1}{3}.$$

Proof. Let G^* be any graph of order n, where $\omega(G^*) = \phi(G)$ such that G^* dominates G. (By Theorem 12 at least one such graph G^* exists.) Then, using Lemma 13 and inequality (4),

$$\frac{n}{n-y(G)+1} \le \frac{n}{n-y(G^*)+1} < \omega(G^*) + \frac{1}{3} = \phi(G) + \frac{1}{3} \le \omega(G) + \frac{1}{3}.$$

Corollary 15.

$$\frac{n}{n-\mu} < \phi(G) + \frac{1}{3}.$$

Proof. Immediate since $\mu \leq y - 1$.

References

- [1] A. Bojilov, Y. Caro, A. Hansberg and N. Nenov, *Partitions of graphs into small and large sets*, Discrete Appl. Math. 161 (2013), 1912–1924. http://dx.doi.org/10.1016/j.dam.2013.02.038
- [2] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Ser. B 3 (2002), 371–376. http://dx.doi.org/10.1007/s11766-002-0017-7
- Y. H. Chen, R. Pan and X. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Mathematics, Algorithms and Appl. 3(2) (2011), 185–191. http://dx.doi.org/10.1142/s1793830911001152
- [4] D. Cvetković, P. Rowlinson and S. Simić, Signless Laplacian of finite graphs, Linear Algebra Appl. 423 (2007), 155–171. http://dx.doi.org/10.1016/j.laa.2007.01.009
- [5] K. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, Linear Algebra Appl. 435 (2011), 2420–2424. http://dx.doi.org/10.1016/j.laa.2010.12.018
- [6] C. S. Edwards and C. H. Elphick, Lower bounds for the clique and the chromatic numbers of a graph, Discrete Appl. Math. 5 (1983), 51–64. http://dx.doi.org/10.1016/0166-218x(83)90015-x
- [7] C. Elphick and P. Wocjan, *New measures of graph irregularity*, El. J. Graph Theory Appl. **2(1)** (2014), 52–65.
- [8] P. Erdös, On the graph theorem of Turán (in Hungarian), Mat. Lapok 21 (1970), 249–251. [For a proof in English see B. Bollobas, Chapter 6, Extremal Graph Theory, Academic Press, New York].
- [9] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139 (1988), 37–44. http://dx.doi.org/10.1002/mana.19881390105
- [10] N. Khadzhiivanov and N. Nenov, Generalized r-partite graphs and Turán's theorem, Compt. Rend. Acad. Bulg. Sci. 57 (2004).
- [11] M. Liu and B. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 62(3) (2009), 689–698.
- [12] C. Liu and C. Weng, Spectral radius and degree sequence of a graph, Linear Algebra Appl. 438 (2013), 3511–3515. http://dx.doi.org/10.1016/j.laa.2012.12.016
- [13] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002), 179–189. http://dx.doi.org/10.1017/s0963548301004928
- [14] _____, *Maxima of the Q-index: degenerate graphs*, Elec. J. Linear Algebra **27** (2014), 250–257. http://dx.doi.org/10.13001/1081-3810.1616

- [15] J.-L. Shu and Y.-R. Wu, Sharp upper bounds on the spectral radius of graphs, Linear Algebra Appl. 377 (2004), 241–248. http://dx.doi.org/10.1016/j.laa.2003.07.015
- [16] H. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B 40 (1986), 113–117. http://dx.doi.org/10.1016/0095-8956(86)90069-9

Clive Elphick Bretherton, UK E-mail: clive.elphick@gmail.com

Chia-An Liu Department of Applied Mathematics National Chiao-Tung University Hsinchu, Taiwan E-mail: twister.imm96g@g2.nctu.edu.tw