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REMARKS ON QUADRATIC FIELDS
WITH NONCYCLIC IDEAL CLASS GROUPS

Kwang-Seob Kim

Abstract. Let n be an integer. Then, it is well known that there are infinitely
many imaginary quadratic fields with an ideal class group having a subgroup
isomorphic to Z/nZ× Z/nZ. Less is known for real quadratic fields, other than
the cases that n = 3, 5, or 7, due to Craig [3] and Mestre [4, 5]. In this article, we
will prove that there exist infinitely many real quadratic number fields with the
ideal class group having a subgroup isomorphic to Z/nZ×Z/nZ In addition, we
will prove that there exist infinitely many imaginary quadratic number fields with
the ideal class group having a subgroup isomorphic to Z/nZ × Z/nZ × Z/nZ.

1. INTRODUCTION

The divisibility properties of class numbers are very important for understanding the
structure of ideal class groups of number fields. Numerous results about the divisibility
of class numbers of quadratic fields have been given by many authors (for more details
see [1, 2, 6, 7, 8, 9, 10, 11, 12]). Through such works, it has been shown that, for
any integer n, there exist infinitely many imaginary (resp. real) quadratic number fields
whose ideal class numbers are multiples of n. Furthermore, it has been proven that there
exist infinitely many imaginary (resp. real) quadratic number fields with the property
that the ideal class group has a cyclic subgroup of order n. However, this does not
necessarily mean that the ideal class group has an arbitrary abelian group of order n
as a subgroup. We present our conjecture, as follows.

Conjecture. For any finite abelian group G, there exist infinitely many quadratic
fields K such that the ideal class group of K contains a subgroup isomorphic to G.

In order to prove our conjecture, it suffices to show that there exist infinitely many
quadratic fields K such that the ideal class group of K contains a subgroup isomorphic
to (Z/nZ)m, where m and n are arbitrary integers. However, even this statement is not
close to having been proven so far. The best known quantitative result is as follows.
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Theorem 1.1. (Theorem 2 of [11]). For any integer n ≥ 1, there are infinitely many
imaginary quadratic fields with the ideal class group having a subgroup isomorphic
to Z/nZ × Z/nZ.

For real quadratic fields, less has been shown, except due to Craig [3] and Mestre
[4, 5] for the cases that n = 3, 5, or 7. In this article, we will prove that there
exist infinitely many real quadratic number fields with an ideal class group having a
subgroup isomorphic to Z/nZ × Z/nZ, for every natural number n. We approach
this by modifying the method used in [11]. At the same time, we will also show that
there exist infinitely many imaginary quadratic number fields with the ideal class group
having a subgroup isomorphic to Z/nZ × Z/nZ × Z/nZ. A sketch of our method is
as follows. We will construct a quadratic number field that has three ideal classes, [a],
[a′], and [a′′], and also satisfies some local conditions on its discriminant K. In the
case that D < 0, they are of order n and independent. In the case that D > 0, neither
of them may be of order n, due to the existence of non-trivial units, but the subgroup
〈[a], [a′], [a′′]〉 contains Z/nZ×Z/nZ. Next, we show that an infinite quantity of such
fields exist in either case.

2. REVIEW OF YAMAMOTO’S PAPER [11]

Since our proof is based on Yamamoto’s paper [11], we will review the method
used there. Let n ≥ 3 be a natural number. We will fix this definition of n throughout
this article. Let K be a quadratic number field with discriminant D, where we assume
D �= −3 or −4 in order to simplify our argument in the following. Then, let σ be the
nontrivial automorphism of K over Q. Define ε by

ε =

{
a fundamental unit of K if D > 0,

1 if D < −4.

Lemma 2.1. (Lemma 1 of [11]). Let x, y, z be a solution in Z of the Diophantine
equation

X2 − Y 2D = 4Zn(2.1)

satisfying (x, z) = 1. Then, there exists an (integral ideal) a in K such that

(a)
(

x+y
√

D
2

)
= an,

(b) a and aσ are relatively prime,

where (α) denotes the principal ideal in K generated by an element α of K.

Let p be a prime factor of n. Take another prime number � with

� ≡ 1 (mod 2p),(2.2)

so that −1 is a p-th power residue mod �.
Suppose that we have a solution x, y, z of the equation (2.1) satisfying
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(i) (x, z) = 1,
(ii) �|z,
(iii) x is a p-th power non-residue mod �.

It can be easily deduced that (D

�

)
= 1,(2.3)

where the left side is the Kronecker symbol. By the decomposition law of primes we
have � = ττσ , where τ and τσ are distinct conjugate prime ideals in K . Now, we set

α =
x + y

√
D

2
,

so we have ττσ | (α)(ασ). Therefore, we may assume that τ | (ασ), but τ � (α),
because (α) and (ασ) are relatively prime, by the above lemma. Then, we have the
following:

Lemma 2.2. (Lemma 2 of [11]). If ε is a p-th power residue mod τ , then the ideal
(α) is not the p-th power of any principal ideal in K.

Let
n = pe1

1 pe2
2 · · · pes

s

be the prime decomposition of n. For each i (1 ≤ i ≤ s), we fix a prime number �i,
satisfying

�i ≡ 1 (mod 2pi).(2.4)

Suppose that we have a solution x, y, z of the equation (2.1), satisfying

(i)′ (x, z) = 1,
(ii)′ �i|z, for i = 1, 2, . . . , s,
(iii)′ x is a pi-th power non-residue mod �i for i = 1, 2, . . . , s.

Then, set

α =
x + y

√
D

2
.

From Lemma 2.1, we have that (α) = an with an ideal a ∈ K, and every �i is
decomposed in K as �i = τiτ

σ
i . Assume that τi | (ασ). Denote by [a] the ideal class

containing α. Then, we have
[a]n = [(α)] = 1.

Proposition 2.3. Let notations and assumptions be as above. If ε is a pi-th power
residue mod τi for every i (1 ≤ i ≤ s), then the order of [a] is equal to n.
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Proof. Assume that [a]m = 1 for some m (1 ≤ m < n). It is obvious that m

is a divisor of n, so there exists at least one prime divisor pi of n such that mpi | n.
Then, [a]n/pi = 1. Therefore, there exists an integer β in K such that an/pi = (β).
Then, (α) = an = (β)pi. However, this is impossible from Lemma 2.2. Therefore, we
have [a]m �= 1 for m = 1, 2, . . . , n− 1. It follows that the order [a] is equal to n.

Remark 2.4. In the case that D < −4, we do not require the condition on ε from
Lemma 2.2 and Proposition 2.3, since ε = 1.

3. CRUCIAL PROPOSITION

Take three systems of prime numbers {�i}, {�′i}, and {�′′i }, each satisfying the
condition (2.4). Moreover, assume that �i, �′i, and �′′i are pairwise distinct for every i
(1 ≤ i ≤ s). Our aim in this section is to prove the following proposition, which plays
a crucial role in our derivation.

Proposition 3.1. Let x, z, x′, z′, x′′, and z′′ constitute a non-trivial solution of the
Diophantine equation

X2 − 4Zn = X ′2 − 4Z ′n = X ′′2 − 4Z ′′n,(3.1)

satisfying:

(i) (x, z) = (x′, z′) = (x′′, z′′) = 1,

(ii) �i|z, �′|z′ and �′′|z′′,
(iii) x (resp. x′, x′′) is a pi-th power non-residue mod �i (resp. �′i, �′′i ),

(iv) (x + x′)/2 and (x + x′′)/2 are pi-th power residues mod �i,

(v) (x + x′)/2 and (x′ + x′′)/2 are pi-th power residues mod �′i,

(vi) (x′ + x′′)/2 and (x + x′′)/2 are pi-th power residues mod �′′i ,

for every i (1 ≤ i ≤ s). Then, the ideal class group of the field

K = Q(
√

x2 − 4zn)

has a subgroup N , such that

N 

{

Z/nZ × Z/nZ × Z/nZ if D < −4,

Z/nZ × Z/nZ if D > 0,

where D is the discriminant of K .
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Proof. From equation 3.1, we set

x2 − 4zn = x′2 − 4z′n = x′′2 − 4z′′n = y2D,(3.2)

for some y ∈ Z. Thus, we have

x2 − y2D = 4zn,(3.3)

x′2 − y2D = 4z′n(3.4)

and

x′′2 − y2D = 4z′′n.(3.5)

Therefore, we obtain three solutions (x, y, z), (x′, y, z′), and (x′′, y, z′′) of the Dio-
phantine equation (2.1). It follows from Lemma 2.1 that there are ideals a, a′, and a′′

in K, such that (α) = an, (α′) = a′n, and (α′′) = a′′n, where

α =
x + y

√
D

2
, α′ =

x′ + y
√

D

2
and α′′ =

x′′ + y
√

D

2
.

Let τi, τ ′
i , and τ ′′

i (1 ≤ i ≤ s) be the prime ideals in K, such that

�i = τiτ
σ
i τi | (ασ),

�′i = τ ′
iτ

′σ
i τ ′

i | (α′σ),

�′′i = τ ′′
i τ ′′σ

i τ ′′
i | (α′′σ).

Let Ri (resp. R′
i and R′′

i ) be the set of all integers in K that are a pi-th power residue
mod τi (resp. τ ′

i and τ ′′
i ). Since

α ≡ x(mod τi), α ≡ x + x′

2
(mod τ ′

i), α ≡ x + x′′

2
(mod τ ′′

i ),

α′ ≡ x + x′

2
(mod τi), α′ ≡ x′(mod τ ′

i), α′ ≡ x′ + x′′

2
(mod τ ′′

i ),

and

α′′ ≡ x + x′′

2
(mod τi), α′ ≡ x′ + x′′

2
(mod τ ′

i), α′′ ≡ x′′(mod τ ′′
i ),

it follows form the conditions (iii)-(vi) of Proposition 3.1 that

α /∈ Ri, α ∈ R′
i, α ∈ R′′

i ,(3.6)

α′ ∈ Ri, α′ /∈ R′
i, α′ ∈ R′′

i ,(3.7)
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and

α′′ ∈ Ri, α′′ ∈ R′
i, α′′ /∈ R′′

i ,(3.8)

for every i (1 ≤ i ≤ s).

3.1. The case with D < −4.

It follows from Proposition 2.3 that the ideal classes [a], [a′], and [a′′] have the
same order n. Suppose that the following equation holds for m, m′, m′′ > 0:

[a]m[a′]m
′
[a′′]m

′′
= 1.(3.9)

Then, there exists a number β ∈ K such that

ama′(m
′)a′′(m

′′) = (β).(3.10)

Taking the n-th power of both sides of (3.10), we obtain

αmα′(m′)α′′(m′′) = ±βn.(3.11)

Define di by pdi
i ‖(m, m′, m′′), and ei by pei

i ‖n (1 ≤ i ≤ s). We claim that di ≥ ei

for all i. Suppose that di < ei holds for some i, and set

m = pd
i m0, m

′ = pd
i m

′
0, m

′′ = pd
i m

′′
0, n = pd

i n0,(3.12)

where pi | n0. It follows from (3.11) that

αm0α′(m′
0)α′′(m′′

0) = ±βn0 ,(3.13)

as K contains no root of 1 other than ±1. Since α′(m′
0) ∈ Ri, α′′(m′′

0 ) ∈ Ri, and
±βn0 ∈ Ri, we have that αm0 ∈ Ri. However, α /∈ Ri, so we have that pi | m0.
Similarly, we also have that pi | m′

0 and pi | m′′
0. Hence, and from (3.12), we have

that pdi+1
i | (m, m′, m′′). This contradicts the definition of di. Therefore, we have

that di ≥ ei for every i. Accordingly, we have that n | m, n | m′, and n | m′′. Let N
be the subgroup of the ideal class group generated by [a], [a′], and [a′′]. Then, N is
isomorphic to Z/nZ × Z/nZ × Z/nZ.

3.2. The case with D > 0.

Let
n = pe1

1 pe2
2 · · · pes

s
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be the prime decomposition of n. We will show that the ideal class group of K has a
subgroup isomorphic to Z/peiZ × Z/peiZ (1 ≤ i ≤ s). Let ε be a fixed fundamental
unit of K. Define

I := {i | ε ∈ Ri, 1 ≤ i ≤ s},
I ′ := {i | ε ∈ R′

i, 1 ≤ i ≤ s},
and

I ′′ := {i | ε ∈ R′′
i , 1 ≤ i ≤ s}.

Then, let m, m′, and m′′ be the orders of the ideal classes [a], [a′], and [a′′], respectively
(m | n, m′ | n, and m′′ | n). It follows from Lemma 2.2 that m is a multiple of∏

i∈I pei
i . We claim that m′ and m′′ are multiples of

∏
i/∈I pei

i . Assume that pim
′ | n,

for some i /∈ I . Then, there exists a number β in K such that

a′(n) = (α′) = (β)pi.

Therefore, we have
α′ = ±εkβpi for some k ∈ Z.

Since α′ ∈ Ri, βpi ∈ Ri, and ε /∈ Ri, we obtain that pi | k. It follows that ±εkβpi ∈ R′
i.

Therefore, we see that α ∈ R′
i. This is a contradiction. It follows that pim

′ � n, for
all i /∈ I . Therefore, m′ is a multiple of

∏
i/∈I pei

i . Similarly, m′′ is also a multiple of∏
i/∈I pei

i . By the same reasoning, we have that( ∏
i/∈I′

pei
i

)∣∣∣m,
( ∏

i∈I′
pei

i

)∣∣∣m′, and
( ∏

i/∈I′
pei

i

)∣∣∣m′′.

In addition, we have( ∏
i/∈I′′

pei
i

)∣∣∣m,
( ∏

i/∈I′′
pei

i

)∣∣∣m′, and
( ∏

i∈I′′
pei

i

)∣∣∣m′′.

We claim that p
ej

j divides at least two of m, m′, and m′′, for each j.

3.2.1. Case 1 - p
ej

j � m

Without loss of generality, suppose that p
ej

j � m for some j. We know that m is a

multiple of
( ∏

i/∈I′ p
ei
i

)
, and is also a multiple of

(∏
i/∈I′′ p

ei
i

)
. Therefore,

p
ej

j �
( ∏

i/∈I′
pei

i

)
and p

ej

j �
( ∏

i/∈I′′
pei

i

)
.

In other words,
p

ej

j

∣∣( ∏
i∈I′

pei
i

)
and p

ej

j

∣∣( ∏
i∈I′′

pei
i

)
.
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This implies that p
ej

j divides m′ (resp. m′′), and that j is contained in I ′ (resp. I ′′).
Set ñ := n/p

ej

j . Then, the ideal classes [a′(ñ)] and [a′′(ñ)] have the same order, p
ej

j .
Suppose that the following equation holds for m′ > and m′′ > 0:

[a′(ñ)]m
′
[a′′(ñ)]m

′′
= 1.(3.14)

We know that a fundamental unit ε of K is a pj-th power residue mod τ ′
j and τ ′′

j .
Then, we can show that the subgroup generated by [a′(ñ)] and [a′′(ñ)] is isomorphic to
Z/p

ej

j Z × Z/p
ej

j Z, in the same way as in the case where D < −4.

3.2.2. Case 2 - p
ej

j divides m, m′ and m′′

Next, we assume that pej

j divides m, m′, and m′′. Set ñ := n/p
ej

j . For convenience,
we will employ the following notations:

ã := añ, ã′ := a′(ñ), and ã′′ := a′′(ñ).

Then, the ideal classes [ã], [ã′], and [ã′′] have the same order, p
ej

j .
Without loss of generality, suppose that 〈[ã]〉 ∩ 〈[ã′]〉 = 1. Then, the subgroup

generated by [ã] and [ã′] is isomorphic to Z/p
ej

j Z × Z/p
ej

j Z. We are done.

Suppose that 〈[ã]〉 ∩ 〈[ã′]〉 �= 1, i.e., 〈[ã]pr
j 〉 = 〈[ã′]pr

j〉, for some r (1 ≤ r < ej).
This means that

[ã]p
r
js[ã′]p

r
j = 1,(3.15)

for some integer s coprime to pj . Then, there exists a number β ∈ K such that

ãpr
js · ã′(pr

j) = (β).(3.16)

Taking the p
(ej−r)
j -th power of both sides of (3.16), we obtain

±εkαsα′ = βp
(ej−r)

j .(3.17)

As ej > r, we have that ±εkαs ∈ Rj and ±εkα′ ∈ R′
j . However, α /∈ Rj and

α′ /∈ R′
j, so we have that pj � k. Because αs ∈ R′′

j , α′ ∈ R′′
j , and βp

(ej−r)

j ∈ R′′
j , we

have that εk ∈ R′′
j . Since k is relatively prime to pj , we have that ε ∈ R′′

j . Suppose
that 〈[ã]〉 ∩ 〈[ã′′]〉 �= 1, i.e., 〈[ã]pq

j 〉 = 〈[ã′′]pq
j 〉, for some q (1 ≤ q < ej). This implies

that

[ã]p
q
j t[ã′′]p

q
j = 1,(3.18)
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for some integer t that is relatively prime to pj . Then, there exists a number γ ∈ K

such that

ãpq
jt · ã′′(pq

j) = (γ).(3.19)

Taking the p
(ej−q)
j -th power of both sides of (3.19), we obtain

±εlαtα′′ = γp
(ej−q)

j .(3.20)

Since ej > q, we have that ±εlαt ∈ Rj and ±εlα′′ ∈ R′′
j . We know that ε ∈ R′′

j .
Therefore, we obtain that α′′ ∈ R′′

j . This is a contradiction. Therefore, 〈[ã]〉 and 〈[ã′′]〉
should only meet at the identity. It follows that the subgroup generated by [ã] and [ã′′]
is isomorphic to Z/p

ej

j Z × Z/p
ej

j Z. We are done.

In conclusion, K has a subgroup isomorphic to Z/p
ej

j Z × Z/p
ej

j Z for all j. That
is, K has a subgroup isomorphic to Z/nZ × Z/nZ.

4. MAIN THEOREM

Let us recall the prime decomposition of n:

n = pe1
1 pe2

2 · · · pes
s .

We need one more lemma before we state our main theorem.

Lemma 4.1. For each prime number pi �= 2, there exist infinitely many prime
numbers �, such that

(a) � ≡ 1 (mod 2pi),
(b) −1 is an n-th power residue mod �,
(c) 2 is a pi-th power non-residue mod �.

Proof. Define F := Q(21/pi, ζ2n). Then, F is Galois over Q. It follows from
Chebotarev’s density theorem that there exist infinitely many prime numbers �, whose
decomposition fields are equal to Q(ζ2n). We can easily deduce that such primes �
satisfy the conditions of the lemma.

The lemma below is for the case where pi = 2, for some i.

Lemma 4.2. There exist infinitely many prime numbers �, such that
(a) � ≡ 1 (mod 4),
(b) the p2

i ’s and −1 are n-th power residues mod �,
(c) p2

1p
2
2 · · · p2

s + 1 is not a square mod �.
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Proof. Define

F := Q
(
p
2/n
1 , p

2/n
2 , ..., p2/n

s , ζ2n

)
and F̂ := F

(√
(p2

1p
2
2 · · · p2

s + 1)
)
.

Then, F̂ is Galois over Q. Since p2
1p

2
2 · · · p2

s +1 is not a square, and is relatively prime
to n,

√
p2
1p

2
2 · · · p2

s + 1 /∈ F . It follows from Chebotarev’s density theorem that there
exist infinitely many prime numbers �, whose decomposition fields are equal to F . We
can easily see that such �’s satisfy the conditions of the lemma.

Main theorem. For any n > 0, there exist infinitely many real (resp. imaginary)
quadratic number fields K such that the ideal class group of K has a subgroup which
is isomorphic to Z/nZ × Z/nZ (resp. Z/nZ × Z/nZ × Z/nZ).

Proof. For each pi, fix three prime numbers �i, �′i, and �′′i , satisfying the three
conditions from Lemma 4.1 and Lemma 4.2. We will assume that all of the �i’s, �′i’s,
and �′′i are distinct. Therefore, we can find an integer ci (resp. ai, bi) such that cn

i ≡ −1
mod �i (resp. an

i ≡ −1 mod �′i, bn
i ≡ −1 mod �′′i ) when pi �= 2. If pi is equal to 2 for

some i, we can find an integer ci (resp. ai, bi) such that cn
i ≡ −(p1p2 · · · ps)2 mod �i

(resp. an
i ≡ −(p1p2 · · · ps)2 mod �′i, bn

i ≡ −(p1p2 · · · ps)2 mod �′′i ). By the Chinese
remainder theorem, we can find integers A, B, and C, satisfying

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

A ≡ 0, B ≡ 1, C ≡ ci (mod �i) for all i,

A ≡ ai, B ≡ 0, C ≡ 1 (mod �′i) for all i,

A ≡ 1, B ≡ bi, C ≡ 0 (mod �′′i ) for all i,

and

(4.2)

⎧⎪⎪⎨
⎪⎪⎩

B ≡ 1, C ≡ 0 (mod q) for q ∈ SA \ {�i},
C ≡ 0 (mod q) for q ∈ SB \ {�′i},
C ≡ 1 (mod q) for q ∈ S(Bn−An),

where Sm denotes the set of prime factors of an integer m. (It can easily be checked
that (A, B) = 1 and {�i}, {�′i}, {�′′i }, SA \{�i}, SB \{�′i}, and S(Bn−An) are disjoint
sets.)

Since (A, B) = 1 and (C, Bn − An) = 1, we have

(A, Bn − Cn) = 1 and (B, Cn − An) = 1.(4.3)

4.1. Case 1 - Real quadratic number fields

We now set
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(4.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = An + Bn − Cn, z = AB,

x′ = −An + Bn + Cn, z′ = BC,

x′′ = An − Bn + Cn, z′′ = CA.

Then, we have

A2n + B2n + C2n − 2(AB)n − 2(BC)n − 2(CA)n =x2 − 4zn

=x′2 − 4z′n

=x′′2 − 4z′′n,

(4.5)

and

x ≡
{

2 (mod �i) if pi �= 2,

p2
1p

2
2 · · · p2

s + 1 (mod �i) if pi = 2,
z ≡ 0, (mod �i),

x′ ≡
{

2 (mod �′i) if pi �= 2,

p2
1p

2
2 · · · p2

s + 1 (mod �′i) if pi = 2,
z′ ≡ 0, (mod �′i),

x′′ ≡
{

2 (mod �′′i ) if pi �= 2,

p2
1p

2
2 · · · p2

s + 1 (mod �′′i ) if pi = 2,
z′′ ≡ 0 (mod �′′i ),

for all i (1 ≤ i ≤ s). In addition, we have

x + x′

2
= Bn,

x′ + x′′

2
= Cn,

x + x′′

2
= An.

From (4.3), we also have that (x, z) = (x′, z′) = (x′′, z′′) = 1. It follows from this
that x, z, x′, z′, x′′, z′′ is a solution of the Diophantine equation (3.1), satisfying all of
the conditions of Proposition 3.1 (note that pi|n, for all 1 ≤ i ≤ s). Since it holds that

x2 − 4zn = A2n + B2n + C2n − 2(AB)n − 2(BC)n − 2(CA)n

= C2n − 2Cn(An + Bn) + (An − Bn)2,
(4.6)

and C is determined by a congruence condition, we can let the value x2 − 4zn be
positive, by choosing a suitable C. Now, we set K = Q(

√
x2 − 4zn). It follows

from Proposition 3.1 that the ideal class group of a real quadratic number field K has
Z/nZ×Z/nZ as a subgroup. The infinite property follows directly from the existence,
as follows. Assume that there exist only a finite number of such K’s, and denote the
set of them by K. Let k be the maximum value of the class number of such K’s (note
that the class number is a finite ring of integers of number fields). Then, we can obtain
(nt)2 > k, by choosing a suitable t. Let K ′ be a real quadratic field, having a subgroup
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isomorphic to Z/ntZ × Z/ntZ. Then, K ′ is also contained in K. This contradicts the
maximality of k.

4.2. Case 2 - Imaginary quadratic number fields

Let t be a multiple of the product of all of prime numbers in

{�i}, {�′i}, {�′′i }, S[(B−A)n−(C−A)n], S[(B−A)n−(B−A)n], and S[(C−A)n−(C−B)n].

From (4.3), we can check that

1 =
(
t − A, (B − A)n − (C − A)n

)
=

(
t − B, (B − A)n − (B − C)n

)
=

(
t − C, (C − A)n − (C − B)n

)
.

(4.7)

Now, we set

(4.8)

⎧⎪⎪⎨
⎪⎪⎩

x = (A− t)n + (B − t)n − (C − t)n, z = (A− t)(B − t),

x′ = −(A − t)n + (B − t)n + (C − t)n, z = (B − t)(C − t),

x′′ = (A − t)n − (B − t)n + (C − t)n, z = (A− t)(C − t).

Then, we also have

x2 − 4zn = x′2 − 4z′n = x′′2 − 4z′′n,(4.9)

and

x ≡
{

2 (mod �i) if pi �= 2,

p2
1p

2
2 · · · p2

s + 1 (mod �i) if pi = 2,
z ≡ 0, (mod �i),

x′ ≡
{

2 (mod �′i) if pi �= 2,

p2
1p

2
2 · · · p2

s + 1 (mod �′i) if pi = 2,
z′ ≡ 0, (mod �′i),

x′′ ≡
{

2 (mod �′′i ) if pi �= 2,

p2
1p

2
2 · · · p2

s + 1 (mod �′′i ) if pi = 2,
z′′ ≡ 0 (mod �′′i ),

for all i (1 ≤ i ≤ s). In addition, we have

x + x′

2
= (B − t)n,

x′ + x′′

2
= (C − t)n,

x + x′′

2
= (A − t)n.

From (4.7), we also have (x, z) = (x′, z′) = (x′′, z′′) = 1. It follows from this that
x, z, x′, z′, x′′, z′′ is a solution of the Diophantine equation (3.1), satisfying all of the
conditions of Proposition 3.1 (note that pi | n for all 1 ≤ i ≤ s). Since it holds that

x2 − 4zn = −3t2n + {terms of lower degree in t},(4.10)
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we can let the value x2 − 4zn be negative by taking a sufficiently large t. Now, set
K = Q(

√
x2 − 4zn). It follows from Proposition 3.1 that the ideal class group of an

imaginary quadratic number field K has Z/nZ × Z/nZ × Z/nZ as a subgroup. The
infinite property can be shown in the same way as for the previous case.
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