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EXCEPTIONAL SETS IN WARING’S PROBLEM:
TWO SQUARES, TWO CUBES AND TWO SIXTH POWERS

Xiaodong Lu and Quanwu Mu

Abstract. Let R(n) denote the number of representations of a large positive
integer n as the sum of two squares, two cubes and two sixth powers. In this
paper, it is proved that the anticipated asymptotic formula of R(n) fails for at
most O((log X)*™¢) positive integers not exceeding X. This is an improvement
of T. D. Wooley’s result which requires O((logX)3+€).

1. INTRODUCTION

Let R(n) denote the number of representations of the integer » in the shape
a:%—i—x%—i—x%—i—xi—i—xg—i-xg =n

with z; € N (1 <1 < 6). Define

0 q
an
6(”) = Z Z q_652<q7 a’>253<q7 a’>256<q7 a’>2€ <_7) )
g=1 a=l
(a,q)=1

where .
ar .
Sitg.) =2 e (). e =
r=1
It is worthy to note that 1 < S(n) < 1 (see Section 2 in [8]). A heuristical application

of the Hardy-L.ittlewood method, based on a major arc analysis only, suggests that R(n)
satisfies the asymptotic relation

LT ()T (5)*

@) R(n) = T(2)

S(n)n(1+ o(1)).
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But to prove (1) is beyond the grasp of modern number theory techniques. T. D. Wooley
[7] applied Golubeva’s method to show, subject to the truth of the generalized Riemann
hypothesis, that R(n) > 0 for all large integers n. However, his method fails to obtain
the anticipated asymptotic formula for R(n).

We refer to a function ¢(t) as being a sedately increasing function when o(¢) is
a function of a positive variable ¢, increasing monotonically to infinity, and satisfying
the condition that, when ¢ is large, one has o(t) = O(t%) for a positive number &
sufficiently small in the ambient context. We introduce E(X; ¢) to denote the number
of integers n with 1 < n < X such that

NCORNCRAC n
r(2)

() R(n) —

Wooley [8] established the upper bound
E(X; ) < p(X)*(log X)°.

In this note, we obtain the following result.

Theorem. When ¢(t) is a sedately increasing function, one has
E(X;¢) < ¢(X)*(log X)%.

By taking ¢(n) = loglogn, it follows that, for each £ > 0, the anticipated asymp-
totic formula fails for at most O((log X )?**) positive integers not exceeding X .

2. NOTATION AND SOME LEMMAS

Suppose that X is a large positive number and let o (z) be a sedately increasing
function. Whenever ¢ appears in a statement, either implicity or explicity, we assert that
the statement holds for each € > 0. Note that the value of £ may change from statement
to statement. Write V' (X; ) to denote the set of integers n with X/2 < n < X for
which (2) holds, and write V' = card (V(X; ¢)). Let

fr(a) = Z e(omk).

n<X1l/k

By orthogonality, we have

1
@3) R(n) = /O f2(0)? £3(@)2 fs(0) e —an)da.
When @ is a positive number, we denote 9t(() to be the union of the intervals

M(q,a) ={a € (0,1]: |ga —al| < QX_l},
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with 1 < a < ¢ < Q and (a,q) = 1. Whenever Q < v/X /2, the intervals 9t(¢, a) C
M (Q) are pairwise disjoint for 1 <a < ¢ < Q and (a,q) = 1. Let

v=10"% Qy= X", Q, =X1,
Qy = X357y = X1+t , = x5+(3)%,

For o € 9M(Q1), there may be more than one arc M(q,a) C M(Q1) for which
a € M(q, a). In order to ensure that o € (0, 1] is associated with uniquely defined arc
M(q, a), we adopt the conversation that « lie in the arc for which g is least.

Lemma 2.1. For a suitable positive number 7, we have

/ F2(0)2 ()2 () 2e(—an)da = S(n)n+ O(n').
M(Qo)

Proof. See (2.1) in [8] and its proof. ]
Lemma 2.2. We have .
/ 1fs(@)? fo(@) |da < X3
0
Proof. See Lemma 3.1 in [8]. ]

The following lemma is partly J. Brudern’s Lemma 2 in [1] (see also Lemma 3.3

in [8]).

Lemma 2.3. Let Dy, Dy be positive numbers with D; < Dy < X7z. Write M =
M(D2) \M(Dy). Let G : M — C be a function which, for o = 2+ 3 € M, satisfies

G(a) < (¢+ Xl|ga —al)™".

Furthermore, let ¥ : R — [0, co) be a function with a Fourier expansion

U(a) = Z Ype(ah)
|h|<H
such that log H < log X. Then
i) [ Gla)¥(a)da < [yo| X ' Da(log X) + X715 37 [y,

0<|h|<H

i) [ G(a)’T(a)da < [o|X ' (log X) + (XD1) ' X* D |vnl.
0<|h|<H
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Proof. ~ We will follow the argument of the proof of Lemma 2 in [1]. Note that
by Theorem 271 in [2], for h # 0

(4) Zq: <q)<<2d

(;jq:)l L d|(h,q)

By the definition of M and (4), we have

G(a)‘ll(a)da

thz > (% )/Sszl—i-(B)?\)ﬂ\dﬁ

h<H  q<D a=1
Ihl< =72 (aq)l

< Yol X H(log X) > 1+ X H(logX) Y [obnl Z > d

q<Do O<|h|<H q<D3 dl&qv

< [tho| X ' Dy(log X) + X H(log X) D [l > | D
0<|h|<H dh q1<Dy/d 1
< [tho| X' Dylog X) + X1 N [yy.
0<|h|<H

This completes the proof of i).
For ii), we have

/M G(a)?¥(a)da

=D n ) q_12 Zq: ‘ <%>/ L<|pl<22 (1fr(f(}\b>ﬂ\)2dﬂ

®) Ih<H  q<Di

Say 7 2 () ] o

|h|<H D1<q<D2
(a Q) 1

By (4), the contribution of the first part on the right-hand side of (5) is

Sy ¥ m e, e

2
h|<H 2u<2D; 2u—1<g<2u a=1 =2UX/2
(a,q)=1

AP PR éﬁ

2u<2D; 2u-1<g<u

(6) +x! Z |wh| Z Z 2 Z +D12 u

O<lh<H  20<aD;2u-i<g<an & dj(q h)
1
iy, D LD DR
O<|h|[<H  2u<2D, Lan ovj2deq<ou/a

< [l XM (log X) + (XD1) ' X= Y |ynl.
0<|h|<H

<ol XM og X)X Dl D0 5
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By (4), the contribution of the second part is

RPN Z <Fh>/m— T j‘(iﬁ)wdﬁ

|h|<H D1<q§D2q Wl
1 _ 1
SPWolXh 30 o XTH X gl Y 5 Y d
(7) D1<q<D, q 0<|h|<H D1 <q<D, d|(q,h)
_ _ 1
<<|¢0|X 1(10gX)+X ! Z |whlzd Z (d )2
0<|h|<H dlh  Dyjd<q<Dy/d 4t
< [tho| XM (log X) + (XD1)™" Y |yl
0<|h|<H
In view of (5)-(7), we prove ii). ]

3. PROOF OF THE THEOREM

Write m = (0, 1] \ 9(Qo). By Lemma 2.1 and (2), for n € V(X ¢), we have

/mf2(04) f3(a)” fo(a)®e(—an)da| > W
Hence
2 2 2 VX
(8) Z /mf2(a) f3(a)” fo(a)“e(—an)da| > ()

neV(X;e)
There is a sequence of complex numbers 7(n) satisfying |n(n)| = 1 such that

/m £2(0)2 f3(0)? fo(a)2e(—an)da

neV(X;p)
©) - Y ) / fa(@) f3(0)? fo(0)?e(—an)da
neV(X;p) m

- /m Fa(@) F5(0)? fo()? K () dar,
where

(10 K@= Y nne(-an).

From (8) and (9), we have

p(X)

(11) V<« T /m ’fg(a)Qfg(a)QfG(a)2K(a) do.
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Write
= M(Q1)\M(Q2), Mo = M(Q2)\M(Qo), fi(a) = X2 (q+X|qa—a])~3.

According to Theorem 4 in [5], when a € M(g,a) C M(Q) and 1 < Q < 2X3, one
has

2 fola) < X%(q—i-X\qa—a\)_%—i—(q—i—X\qa—a\)%
< X3(g+X|ga—a|)"F = f3(a).

As a consequence of Dirichlet’s theorem on Diophantine approximation and (12), we
obtain

[ [0 (@2 ) (@) o

< ([ + /ﬁ 172002 F5(@) () K (@]
< ([ + [ )@ oK () do
b

Lemma 3.1. We have

(13)

1
/ | f3(a)2K ()2]do < X3V + XV2.
0

Proof. See Lemma 2.1 in [6] and its proof. ]

Lemma 3.2. We have

/ < XVi(logX)? + X1V,
Ny
Proof. Applying Cauchy’s inequality and Lemma 2.2, we have
1
o, < ([ 1@t / 5 0)* | fs(0)* K ()2 dar)

(14)
<<X3 / £ ()] f(e) yda).

One has
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| f3(0)? K ()?| = f3(a) K (o) f3(a) K (a)
= > > nwn(y)e(a(r — 28+ y — 1))

x1,22<X /3 y1,y2€V (X;500)

= ) elah) > n(y1)n(yz)

|h|<2X @3 —23+y1 —yo=h
21,09 <X1/3, y1 yseV (X;0)

= 3 shelan),

|h|<2X

where

s(h) = > n(y1)n(yz2)-

@3 —a3+y1—vya=h
w1, <X /3, y1 yp€V(X50)

Then according to Lemma 2.3 ii), we have

. (@) fs(a)’K(a)?|da= | fi(a)* D s(h)e(ah)da

M h|<2X

< XX 7Ys5(0)|(log X) + X2(XQ2) ' X > [s(h)]
(15) 0<|h|<2X

< X(X3V 4+ XV?)(log X) + XQ; ' XX 3V2
< X3V (log X) + X3~ (2)*vtey2

where we used Lemma 3.1 and
1
15(0)] < /0 | F5(0)2K (0)?]day,
Yool < > > 1< X5V2

0<|h|<2X 0<|h|<2X ac?—ac%-ﬁ—yl—ygzh
w1, <X /3 41,9 €V(Xs50)

As a consequence of (14) and (15), we obtain
/ < X3X5Vi(logX)? + X5X3 3" vFey
RI6
< XV3i(log X)? + X17vV. .

Lemma 3.3. We have

/ < X1y
Mo
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Proof. For a € M(q,a) C Ny, by Theorem 4.1 in [4] and Lemma 4.2 in [3], we
have

=

(1 +X\m)_% +q%+5(1 +X18))

W=

f3(@) < X3¢~
(16) L 1 1
1 _ 1 —= =4

< X3¢ 5(1+X|8)) 3 +Q3

Write L .
fila) = X3g 5 (1+ X[p]) .
In view of (16), we have

acNy

fo, < sup [K(@)] [ (@202 fo(o)|do

7) :

Q4 sup [K(@)] [ f5(0)? fo(w)do.
acNy Ny

Define

N3 = M(Q2) \ M(Q3), Ny =MQ3) \ M(Qq), N5 =M(Qa)\ M(Qo).
Whence

| 3@ @)% (e o
= ([ o+ [+ )@z sier o

For o € D13, we have

(18)

(19) fia) < X3Q5°.

Following the argument of the proof of (15), by (19) and Lemma 2.3 i), we obtain
| g3t f5 () oo do
3

. 2
< X3Q 3/ f*(a)2 f6(a)2 do
(20) 3 Ny 2 ’ ’
_2
< X5Q, 3X(X%X_1Q2(10gX> + X_HSX%)
< X'V,

By the same reason, we have

@ [ i@l uta o < xR,
Mo
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22) [ @R (e da < X1
and
23) /. 3000 ol dor < X1
Hence by (17), (18) and (20)~(23), we prove the lemma. n

As a consequence of Lemmas 3.2 and 3.3, we have
X
V< % (XVE(ogX)t + X17V),

whence
V< cp(X)2(logX).

Summing over dyadic intervals to cover the set of integers [1, X| N Z, we conclude the
estimate

E(X;0)< Y card(V(27H9)) < (X)?(log X).
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