GENERAL L_{p}-INTERSECTION BODIES

Weidong Wang and Yanan Li

Abstract

For $0<p<1$, Haberl and Ludwig defined symmetric and asymmetric L_{p}-intersection bodies. In this paper, we introduce general L_{p}-intersection bodies and study their properties. In particular, we obtain the extremal values of their volume and establish a Brunn-Minkowski type inequality for them.

1. Introduction

Classical intersection bodies of star bodies were defined by Lutwak (see [23]). During the past two decades, they and their L_{p} generalizations have received considerable attention (see [5, 6, 14, 15, 16, 20, 22, 23, 28]).

An L_{p} generalization of intersection bodies was first defined by Haberl and Ludwig. For $0<p<1$, Haberl and Ludwig ([8]) defined asymmetric L_{p}-intersection bodies and gave a characterization using the notion of valuation. They also pointed out that the classical intersection bodies may be obtained as a limit of L_{p}-intersection bodies as $p \rightarrow 1$. Recently, Haberl ([7]) obtained a series of results for L_{p}-intersection bodies and Berck ([2]) investigated the convexity of L_{p}-intersection bodies. L_{p}-intersection bodies are an important concept in the dual L_{p} Brunn-Minkowski theory. For further results on L_{p}-intersection bodies, see also [13, 33, 38, 39].

The main aim of this paper is to introduce general L_{p}-intersection bodies and to determine the extremal values of their volume. Moreover, we establish a BrunnMinkowski type inequality for them.

If K is a compact star-shaped (about the origin) set in \mathbb{R}^{n}, its radial function, $\rho_{K}=\rho(K, \cdot): \mathbb{R}^{n} \backslash\{0\} \longrightarrow[0,+\infty)$, is defined by (see [5])

$$
\rho(K, x)=\max \{\lambda \geq 0: \lambda x \in K\}, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
$$

[^0]If ρ_{K} is positive and continuous, K will be called a star body (about the origin). Let \mathcal{S}_{o}^{n} denote the set of star bodies (about the origin) in \mathbb{R}^{n}. Two star bodies K and L are said to be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$, where S^{n-1} denotes the unit sphere in \mathbb{R}^{n}.

If $c>0$ and $K \in \mathcal{S}_{o}^{n}$, then $\rho(c K, \cdot)=c \rho(K, \cdot)$.
For $K, L \in \mathcal{S}_{o}^{n}, p>0$ and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-radial combination, $\lambda \circ K \tilde{+}_{p} \mu \circ L \in \mathcal{S}_{o}^{n}$, of K and L is defined by (see [7])

$$
\begin{equation*}
\rho\left(\lambda \circ K \tilde{+}_{p} \mu \circ L, \cdot\right)^{p}=\lambda \rho(K, \cdot)^{p}+\mu \rho(L, \cdot)^{p} . \tag{1.1}
\end{equation*}
$$

It follows that $\lambda \circ K=\lambda^{1 / p} K$. For $p=1, \lambda \circ K \tilde{+}_{p} \mu \circ L$ is just the radial linear combination, $\lambda K \tilde{+} \mu L$, of K and L.

Lutwak introduced the following notion of an intersection body of a star body (see [23]): For $K \in \mathcal{S}_{o}^{n}$, the intersection body, $I K$, of K is the star body whose radial function in the direction $u \in S^{n-1}$ is equal to the ($n-1$)-dimensional volume of the section of K by u^{\perp}, the hyperplane orthogonal to u, i.e., for all $u \in S^{n-1}$,

$$
\rho(I K, u)=V_{n-1}\left(K \cap u^{\perp}\right),
$$

where V_{n-1} denotes $(n-1)$-dimensional volume.
In 2006, Haberl and Ludwig ([8]) defined the asymmetric L_{p}-intersection body $I_{p}^{+} K$ as follows: For $K \in \mathcal{S}_{o}^{n}, 0<p<1$, define

$$
\begin{equation*}
\rho_{I_{p}^{+} K}^{p}(u)=\int_{K \cap u^{+}}|u \cdot x|^{-p} d x \tag{1.2}
\end{equation*}
$$

for all $u \in S^{n-1}$, where $u^{+}=\left\{x: u \cdot x \geq 0, x \in \mathbb{R}^{n}\right\}$ and $u \cdot x$ denotes the standard inner product of u and x. They also define

$$
\begin{equation*}
I_{p}^{-} K=I_{p}^{+}(-K) \tag{1.3}
\end{equation*}
$$

From definitions (1.2) and (1.3), we see that

$$
\begin{equation*}
\rho_{I_{p}^{-} K}^{p}(u)=\rho_{I_{p}^{+}(-K)}^{p}(u)=\int_{-K \cap u^{+}}|u \cdot x|^{-p} d x=\int_{K \cap(-u)^{+}}|u \cdot x|^{-p} d x . \tag{1.4}
\end{equation*}
$$

Moreover, Haberl and Ludwig ([8]) defined the (symmetric) L_{p}-intersection body as follows: For $K \in \mathcal{S}_{o}^{n}, 0<p<1$, the L_{p}-intersection body, $I_{p} K$, of K is the origin-symmetric star body whose radial function is given by

$$
\begin{equation*}
\rho_{I_{p} K}^{p}(u)=\frac{1}{2} \int_{K}|u \cdot x|^{-p} d x \tag{1.5}
\end{equation*}
$$

for all $u \in S^{n-1}$. Here for convenience, we add a coefficient $1 / 2$ in definition (1.5).

Haberl and Ludwig ([8]) pointed out that the classical intersection body, $I K$, of K is obtained as a limit of the L_{p}-intersection body of K, more precisely, for all $u \in S^{n-1}$,

$$
\rho(I K, u)=\lim _{p \longrightarrow 1^{-}} 2(1-p) \rho\left(I_{p} K, u\right)^{p} .
$$

In [22], Ludwig introduced a function $\varphi_{\tau}: \mathbb{R} \longrightarrow[0,+\infty)$ by

$$
\begin{equation*}
\varphi_{\tau}(t)=|t|-\tau t, \tag{1.6}
\end{equation*}
$$

for $\tau \in[-1,1]$. Using (1.6), we define the general L_{p}-intersection body with parameter τ as follows: For $K \in \mathcal{S}_{o}^{n}, 0<p<1$ and $\tau \in(-1,1)$, the general L_{p}-intersection body, $I_{p}^{\tau} K \in \mathcal{S}_{o}^{n}$, of K is defined by

$$
\begin{equation*}
\rho_{I_{p}^{\tau} K}^{p}(u)=i(\tau) \int_{K} \varphi_{\tau}^{-p}(u \cdot x) d x \tag{1.7}
\end{equation*}
$$

for all $u \in S^{n-1}$, where

$$
\begin{equation*}
i(\tau)=\frac{(1+\tau)^{p}(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}} . \tag{1.8}
\end{equation*}
$$

From (1.6), (1.7) and (1.8), together with (1.2) and (1.4), we have that for all $u \in S^{n-1}$,

$$
\begin{aligned}
\rho_{I_{p}^{\tau} K}^{p}(u) & =i(\tau) \int_{K}[|u \cdot x|-\tau(u \cdot x)]^{-p} d x \\
& =i(\tau)\left[\int_{K \cap u^{+}}(1-\tau)^{-p}(u \cdot x)^{-p} d x+\int_{K \cap(-u)^{+}}(1+\tau)^{-p}(-u \cdot x)^{-p} d x\right] \\
& =\frac{i(\tau)}{(1-\tau)^{p}} \int_{K \cap u^{+}}|u \cdot x|^{-p} d x+\frac{i(\tau)}{(1+\tau)^{p}} \int_{K \cap(-u)^{+}}|u \cdot x|^{-p} d x \\
& =\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}} \rho_{I_{p}^{+} K}^{p}(u)+\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}} \rho_{I_{p}^{-} K}^{p}(u) .
\end{aligned}
$$

Now denote by

$$
\begin{equation*}
f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \quad f_{2}(\tau)=\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \tag{1.9}
\end{equation*}
$$

where $\tau \in[-1,1]$, then

$$
\begin{equation*}
\rho_{I_{p}^{\tau} K}^{p}(u)=f_{1}(\tau) \rho_{I_{p}^{+} K}^{p}(u)+f_{2}(\tau) \rho_{I_{p}^{-} K}^{p}(u) \tag{1.10}
\end{equation*}
$$

for all $u \in S^{n-1}$. By (1.2), we see that for all $u \in S^{n-1}$,

$$
\begin{equation*}
\rho_{I_{p}^{+1} K}^{p}=\lim _{\tau \longrightarrow 1} \rho_{I_{p}^{\tau} K}^{p}(u)=\rho_{I_{p}^{+} K}^{p}(u) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{I_{p}^{-1} K}^{p}=\lim _{\tau \longrightarrow-1} \rho_{I_{p}^{\tau} K}^{p}(u)=\rho_{I_{p}^{-} K}^{p}(u) . \tag{1.12}
\end{equation*}
$$

By (1.10), for $K \in \mathcal{S}_{o}^{n}, 0<p<1$ and $\tau \in[-1,1]$, the general L_{p}-intersection body, $I_{p}^{\tau} K$, of K is given by

$$
\begin{equation*}
I_{p}^{\tau} K=f_{1}(\tau) \circ I_{p}^{+} K \tilde{+}_{p} f_{2}(\tau) \circ I_{p}^{-} K \tag{1.13}
\end{equation*}
$$

From (1.13), it also follows that

$$
\begin{equation*}
I_{p}^{0} K=\frac{1}{2} \circ I_{p}^{+} K \tilde{+}_{p} \frac{1}{2} \circ I_{p}^{-} K=I_{p} K \tag{1.14}
\end{equation*}
$$

Our first main result is the determination of the extremal values of the volume of general L_{p}-intersection bodies:

Theorem 1.1. If $K \in \mathcal{S}_{o}^{n}, 0<p<1, \tau \in[-1,1]$, then

$$
\begin{equation*}
V\left(I_{p} K\right) \leq V\left(I_{p}^{\tau} K\right) \leq V\left(I_{p}^{ \pm} K\right) \tag{1.15}
\end{equation*}
$$

If K is not origin-symmetric, there is equality in the left inequality if and only if $\tau=0$ and equality in the right inequality if and only if $\tau= \pm 1$.

Theorem 1.1 is a dual analogue of a volume inequality of Haberl and Schuster (see [9]) for polars of general L_{p} projection bodies which in turn is part of a new and rapidly evolving asymmetric L_{p} Brunn-Minkowski theory that has its origins in the work of Ludwig, Haberl and Schuster (see [3, 4, 7, 8, 9, 10, 11, 21, 22, 25, 26, 30, $31,32,33,34,35,36,37]$).

We also establish the following Brunn-Minkowski type inequality for general $L_{p^{-}}$ intersection bodies with respect to $L_{q}(q>0)$ radial combinations of star bodies.

Theorem 1.2. If $K, L \in \mathcal{S}_{o}^{n}, 0<p<1, q>0$ and $n-p>q$, then for $\tau \in[-1,1]$,

$$
\begin{equation*}
V\left(I_{p}^{\tau}\left(K \tilde{+}_{q} L\right)\right)^{\frac{p q}{n(n-p)}} \leq V\left(I_{p}^{\tau} K\right)^{\frac{p q}{n(n-p)}}+V\left(I_{p}^{\tau} L\right)^{\frac{p q}{n(n-p)}}, \tag{1.16}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Brunn-Minkowski type inequalities for intersection bodies and related operators have been the focus of recent interest. We refer to $[1,17,18,19,27,29,41,40,42]$ for further information.

We give the proofs of Theorems 1.1-1.2 in Section 4. In addition, in the Section 3 we prove several properties of general L_{p}-intersection bodies.

2. L_{p}-dual Mixed Volumes

For $p>0$, the L_{p}-dual mixed volume is defined as follows (see e.g., [7, 38]): For $K, L \in \mathcal{S}_{o}^{n}$,

$$
\frac{n}{p} \widetilde{V}_{p}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K \tilde{+} \tilde{p}_{p} \circ L\right)-V(K)}{\varepsilon} .
$$

From this definition, Haberl [7] obtained the following integral representation of L_{p}-dual mixed volumes. If $K, L \in \mathcal{S}_{o}^{n}, p>0$, then

$$
\begin{equation*}
\tilde{V}_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n-p}(u) \rho_{L}^{p}(u) d S(u) . \tag{2.1}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
V(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(u) d S(u), \tag{2.2}
\end{equation*}
$$

thus, by (2.1) and (2.2), we have

$$
\begin{equation*}
\widetilde{V}_{p}(K, K)=V(K) . \tag{2.3}
\end{equation*}
$$

The Minkowski inequality for L_{p}-dual mixed volumes can be stated as follows (see e.g., [7]):

Theorem 2.1. If $K, L \in \mathcal{S}_{o}^{n}, p>0$, then for $n>p$,

$$
\begin{equation*}
\widetilde{V}_{p}(K, L) \leq V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}} ; \tag{2.4}
\end{equation*}
$$

for $n<p$,

$$
\begin{equation*}
\widetilde{V}_{p}(K, L) \geq V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}} . \tag{2.5}
\end{equation*}
$$

In each case, equality holds if and only if K and L are dilates.
The Brunn-Minkowski inequality with respect to L_{p}-radial combinations (1.1) can be stated as follows:

Theorem 2.2. If $K, L \in \mathcal{S}_{o}^{n}, p>0$ and $\lambda, \mu \geq 0$ (not both zero), then for $n>p$,

$$
\begin{equation*}
V\left(\lambda \circ K \tilde{+}_{p} \mu \circ L\right)^{\frac{p}{n}} \leq \lambda V(K)^{\frac{p}{n}}+\mu V(L)^{\frac{p}{n}}, \tag{2.6}
\end{equation*}
$$

with equality if and only if K and L are dilates; for $n<p$, (2.6) is reversed.
Proof. For $n>p$, by (1.1) and (2.1), we have that for any $Q \in \mathcal{S}_{o}^{n}$,

$$
\widetilde{V}_{p}\left(Q, \lambda \circ K \tilde{f}_{p} \mu \circ L\right)=\lambda \widetilde{V}_{p}(Q, K)+\mu \widetilde{V}_{p}(Q, L) .
$$

Combining this with inequality (2.4), yields

$$
\widetilde{V}_{p}\left(Q, \lambda \circ K \tilde{f}_{p} \mu \circ L\right) \leq V(Q)^{\frac{n-p}{n}}\left[\lambda V(K)^{\frac{p}{n}}+\mu V(L)^{\frac{p}{n}}\right] .
$$

Take $Q=\lambda \circ K \tilde{+}_{p} \mu \circ L$ and use (2.3), to get (2.6). According to the equality condition of (2.4), we see that equality holds in (2.6) if and only if K and L are dilates.

Similarly, if $n<p$, using (2.5), we obtain the reverse form of (2.6).
3. Properties of General L_{p}-Intersection Bodies

In this section, we establish several properties of general L_{p}-intersection bodies.
Theorem 3.1. If $K \in \mathcal{S}_{o}^{n}, 0<p<1$, then for $\tau \in[-1,1]$,

$$
\begin{equation*}
I_{p}^{-\tau} K=I_{p}^{\tau}(-K)=-I_{p}^{\tau} K \tag{3.1}
\end{equation*}
$$

Proof. By (1.2) we have for $u \in S^{n-1}$,

$$
\begin{aligned}
\rho_{-I_{p}^{+} K}^{p}(u) & =\rho_{I_{p}^{+} K}^{p}(-u)=\int_{K \cap(-u)^{+}}|-u \cdot x|^{-p} d x \\
& =\int_{K \cap(-u)^{+}}|u \cdot x|^{-p} d x=\rho_{I_{p}^{-} K}^{p}(u)
\end{aligned}
$$

Thus, by (1.3),

$$
\begin{equation*}
I_{p}^{-} K=I_{p}^{+}(-K)=-I_{p}^{+} K \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{p}^{+} K=I_{p}^{-}(-K)=-I_{p}^{-} K \tag{3.3}
\end{equation*}
$$

But by (1.9), we have that

$$
\begin{equation*}
f_{1}(\tau)+f_{2}(\tau)=1 \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
f_{1}(-\tau)=f_{2}(\tau), \quad f_{2}(-\tau)=f_{1}(\tau) \tag{3.5}
\end{equation*}
$$

This together with (3.2), (3.3), (3.5) and (1.13), yields

$$
\begin{align*}
I_{p}^{-\tau} K & =f_{1}(-\tau) \circ I_{p}^{+} K \tilde{+}_{p} f_{2}(-\tau) \circ I_{p}^{-} K \tag{3.6}\\
& =f_{2}(\tau) \circ I_{p}^{-}(-K) \tilde{+}_{p} f_{1}(\tau) \circ I_{p}^{+}(-K)=I_{p}^{\tau}(-K)
\end{align*}
$$

and

$$
\begin{align*}
I_{p}^{\tau}(-K) & =f_{2}(\tau) \circ I_{p}^{-}(-K) \tilde{+}_{p} f_{1}(\tau) \circ I_{p}^{+}(-K) \tag{3.7}\\
& =f_{1}(\tau) \circ\left[-I_{p}^{+} K\right] \tilde{+}_{p} f_{2}(\tau) \circ\left[-I_{p}^{-} K\right]=-I_{p}^{\tau} K
\end{align*}
$$

Hence, from (3.6) and (3.7), we obtain (3.1).

Theorem 3.2. If $K \in \mathcal{S}_{o}^{n}, 0<p<1$, then $I_{p}^{+} K=I_{p}^{-} K$ if and only if K is origin-symmetric.

Proof. If $I_{p}^{+} K=I_{p}^{-} K$, then by (3.2) we know that for all $u \in S^{n-1}$,

$$
\begin{equation*}
\rho_{I_{p}^{+} K}^{p}(u)=\rho_{I_{p}^{-} K}^{p}(u)=\rho_{I_{p}^{+}(-K)}^{p}(u) . \tag{3.8}
\end{equation*}
$$

But (1.2) gives that

$$
\rho_{I_{p}^{+} K}^{p}(u)=\frac{1}{n-p} \int_{S^{n-1} \cap u^{+}}|u \cdot v|^{-p} \rho_{K}^{n-p}(v) d S(v)
$$

and

$$
\rho_{I_{p}^{+}(-K)}^{p}(u)=\frac{1}{n-p} \int_{S^{n-1} \cap u^{+}}|u \cdot v|^{-p} \rho_{-K}^{n-p}(v) d S(v) .
$$

From this and (3.8) we obtain

$$
\begin{equation*}
\int_{S^{n-1} \cap u^{+}}|u \cdot v|^{-p}\left[\rho_{K}^{n-p}(v)-\rho_{K}^{n-p}(-v)\right] d S(v)=0 \tag{3.9}
\end{equation*}
$$

Since $K \in \mathcal{S}_{o}^{n}, \rho_{K}^{n-p}(v)-\rho_{K}^{n-p}(-v)$ is continuous on $S^{n-1} \cap u^{+}$. Hence, if (3.9) holds for all $u \in S^{n-1}$, then (see [7])

$$
\rho_{K}^{n-p}(v)-\rho_{K}^{n-p}(-v)=0,
$$

i.e., $\rho_{K}(v)=\rho_{-K}(v)$. This means that K is origin-symmetric.

Conversely, if K is origin-symmetric, i.e., $K=-K$, then by (3.2), we get

$$
I_{p}^{+} K=I_{p}^{+}(-K)=I_{p}^{-} K
$$

Theorem 3.3. If $K \in \mathcal{S}_{o}^{n}, 0<p<1, \tau \in[-1,1]$ and $\tau \neq 0$, then

$$
\begin{equation*}
I_{p}^{\tau} K=I_{p}^{-\tau} K \quad \Longleftrightarrow \quad I_{p}^{+} K=I_{p}^{-} K \tag{3.10}
\end{equation*}
$$

Proof. From (1.10) and (3.5), we have that for all $u \in S^{n-1}$,

$$
\begin{align*}
\rho_{I_{p}^{-\tau} K}^{p}(u) & =f_{1}(-\tau) \rho_{I_{p}^{+} K}^{p}(u)+f_{2}(-\tau) \rho_{I_{p}^{-} K}^{p}(u) \tag{3.11}\\
& =f_{2}(\tau) \rho_{I_{p}^{+} K}^{p}(u)+f_{1}(\tau) \rho_{I_{p}^{-} K}^{p}(u) .
\end{align*}
$$

Hence, by (3.4) and (3.11), if $I_{p}^{+} K=I_{p}^{-} K$, then for all $u \in S^{n-1}$,

$$
\rho_{I_{p}^{\tau} K}^{p}(u)=\rho_{I_{p}^{-\tau} K}^{p}(u) .
$$

This gives $I_{p}^{\tau} K=I_{p}^{-\tau} K$.
Conversely, if $I_{p}^{\tau} K=I_{p}^{-\tau} K$, then (1.10) and (3.11) yield that

$$
\left[f_{1}(\tau)-f_{2}(\tau)\right] \rho_{I_{p}^{+} K}^{p}(u)=\left[f_{1}(\tau)-f_{2}(\tau)\right] \rho_{I_{p}^{-} K}^{p}(u)
$$

for all $u \in S^{n-1}$. Since $f_{1}(\tau)-f_{2}(\tau) \neq 0$ when $\tau \neq 0$, we conclude that $I_{p}^{+} K=I_{p}^{-} K$.

From Theorem 3.2 and (3.10), we obtain that
Corollary 3.1. If $K \in \mathcal{S}_{o}^{n}, 0<p<1, \tau \in[-1,1]$ and $\tau \neq 0$, then $I_{p}^{\tau} K=I_{p}^{-\tau} K$ if and only if K is origin-symmetric.

In addition, using (1.10), (1.14) and Theorem 3.2, we have the following result.
Theorem 3.4. If $K \in \mathcal{S}_{o}^{n}, 0<p<1, \tau \in[-1,1]$ and $\tau \neq 0$, then K is originsymmetric if and only if $I_{p}^{\tau} K=I_{p} K$.

Proof. From (1.14), we know that for all $u \in S^{n-1}$,

$$
\begin{equation*}
\rho_{I_{p} K}^{p}(u)=\frac{1}{2} \rho_{I_{p}^{+} K}^{p}(u)+\frac{1}{2} \rho_{I_{p}^{-} K}^{p}(u) . \tag{3.12}
\end{equation*}
$$

If K is origin-symmetric, then according to Theorem 3.2 and (3.12), we have

$$
I_{p} K=I_{p}^{+} K=I_{p}^{-} K
$$

Similarly, for origin-symmetric star bodies, from (1.10), (3.4) and Theorem 3.2, we know that

$$
I_{p}^{\tau} K=I_{p}^{+} K=I_{p}^{-} K
$$

From this, if K is origin-symmetric, then $I_{p}^{\tau} K=I_{p} K$.
Conversely, if $I_{p}^{\tau} K=I_{p} K$, then from (1.10) and (3.12) we have that for all $u \in S^{n-1}$,

$$
f_{1}(\tau) \rho_{I_{p}^{+} K}^{p}(u)+f_{2}(\tau) \rho_{I_{p}^{-} K}^{p}(u)=\frac{1}{2} \rho_{I_{p}^{+} K}^{p}(u)+\frac{1}{2} \rho_{I_{p}^{-} K}^{p}(u)
$$

This together with (3.4), yields

$$
\begin{equation*}
\left[f_{1}(\tau)-\frac{1}{2}\right] \rho_{I_{p}^{+} K}^{p}(u)=\left[f_{1}(\tau)-\frac{1}{2}\right] \rho_{I_{p}^{-} K}^{p}(u) \tag{3.13}
\end{equation*}
$$

But $\tau \neq 0$ gives $f_{1}(\tau)-\frac{1}{2} \neq 0$. Thus, from (3.13), we obtain for all $u \in S^{n-1}$,

$$
\rho_{I_{p}^{+} K}^{p}(u)=\rho_{I_{p}^{-} K}^{p}(u),
$$

that is, $I_{p}^{+} K=I_{p}^{-} K$. This and Theorem 3.2 yield that K is an origin-symmetric star body.

4. Proofs of Theorems 1.1-1.2

We first give the proof of Theorem 1.1:
Proof of Theorem 1.1. By (3.1), we have that for $K \in \mathcal{S}_{o}^{n}, 0<p<1$ and $\tau \in[-1,1]$,

$$
V\left(I_{p}^{\tau} K\right)=V\left(I_{p}^{-\tau} K\right)
$$

This together with inequality (2.6), yields that for $\tau \in[-1,1]$, the function $V\left(I_{p}^{\tau} K\right)$ is convex and symmetric. Therefore,

$$
V\left(I_{p} K\right) \leq V\left(I_{p}^{\tau} K\right) \leq V\left(I_{p}^{ \pm} K\right)
$$

This yields inequalities (1.15).
From the equality condition of (2.6), we see that equality holds in the right inequality of (1.15) if and only if $I_{p}^{+} K$ and $I_{p}^{-} K$ are dilates. Hence, $I_{p}^{+} K=c I_{p}^{-} K$ for some $c>0$. Using $V\left(I_{p}^{+} K\right)=V\left(I_{p}^{-} K\right)$, we see that $c=1$. This gives $I_{p}^{+} K=I_{p}^{-} K$. Thus, from Theorem 3.2, we see that if K is not origin-symmetric, then equality holds in the right inequality of (3.1) if and only if $\tau= \pm 1$.

From Theorem 3.4, we see that if K is not origin-symmetric, then equality holds in the left inequality of (1.15) if and only if $\tau=0$.

In order to complete the proof of Theorem 1.2, we require the following lemma:
Lemma 4.1. If $K, L \in \mathcal{S}_{o}^{n}, 0<p<1, q>0, n-p>q$ and $\tau \in[-1,1]$, then for all $u \in S^{n-1}$,

$$
\begin{equation*}
\rho_{I_{p}^{\tau}\left(K \tilde{+}_{q} L\right)}^{\frac{p q}{n-p}}(u) \leq \rho_{I_{p}^{\tau} K}^{\frac{p q}{n-p}}(u)+\rho_{I_{p}^{\tau} L}^{\frac{p q}{n-p}}(u) \tag{4.1}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof. Since $q>0$ and $n-p>q$, we have $(n-p) / q>1$. From definition (1.7), a transformation to polar coordinates, and the Minkowski integral inequality (see [12]), we obtain for $\tau \in(-1,1)$,

$$
\begin{aligned}
& \rho_{I_{p}^{\tau}\left(K \tilde{+}_{q} L\right)}^{\frac{p q}{n-p}}(u)=\left[i(\tau) \int_{K \tilde{+}_{q} L} \varphi_{\tau}^{-p}(u \cdot x) d x\right]^{\frac{q}{n-p}} \\
= & {\left[i(\tau) \int_{K \tilde{+}_{q} L}[|u \cdot x|-\tau(u \cdot x)]^{-p} d x\right]^{\frac{q}{n-p}} } \\
= & {\left[\frac{i(\tau)}{n-p} \int_{S^{n-1}}[|u \cdot v|-\tau(u \cdot v)]^{-p} \rho_{K \tilde{+}_{q} L}^{n-p}(v) d S(v)\right]^{\frac{q}{n-p}} }
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\frac{i(\tau)}{n-p} \int_{S^{n-1}}[|u \cdot v|-\tau(u \cdot v)]^{-p}\left(\rho_{K}^{q}(v)+\rho_{L}^{q}(v)\right)^{\frac{n-p}{q}} d S(v)\right]^{\frac{q}{n-p}} } \\
\leq & {\left[\frac{i(\tau)}{n-p} \int_{S^{n-1}}[|u \cdot v|-\tau(u \cdot v)]^{-p} \rho_{K}^{n-p}(v) d S(v)\right]^{\frac{q}{n-p}} } \\
& +\left[\frac{i(\tau)}{n-p} \int_{S^{n-1}}[|u \cdot v|-\tau(u \cdot v)]^{-p} \rho_{L}^{n-p}(v) d S(v)\right]^{\frac{q}{n-p}} \\
= & \rho_{I_{p}^{p} K}^{\frac{p q}{n-p}}(u)+\rho_{I_{p}^{\prime-L}}^{\frac{p q}{n-p}}(u)
\end{aligned}
$$

for all $u \in S^{n-1}$. This gives (4.1). From the equality condition of the Minkowski integral inequality, we see that equality holds in (4.1) if and only if K and L are dilates.

If $\tau= \pm 1$, then by (1.11) and (1.12), (4.1) is also true.
Proof of Theorem 1.2. From $0<p<1, q>0$ and $n-p>q$, we see that $n(n-p) / p q>1$. Using (4.1) and the Minkowski integral inequality (see [12]), we obtain

$$
\begin{aligned}
& V\left(I_{p}^{\tau}\left(K \tilde{+}_{q} L\right)\right)^{\frac{p q}{n(n-p)}}=\left[\frac{1}{n} \int_{S^{n-1}} \rho_{I_{p}^{\tau}\left(K \tilde{+}_{q} L\right)}^{n}(u) d S(u)\right]^{\frac{p q}{n(n-p)}} \\
= & {\left[\frac{1}{n} \int_{S^{n-1}}\left[\rho_{I_{p}^{\tau}\left(K \tilde{+}_{q} L\right)}^{\frac{p q}{n-p}}(u)\right]^{\frac{n(n-p)}{p q}} d S(u)\right]^{\frac{p q}{n(n-p)}} } \\
\leq & {\left[\frac{1}{n} \int_{S^{n-1}}\left[\rho_{I_{p}^{\tau} K}^{\frac{p q}{n-p}}(u)+\rho_{I_{p}^{\tau} L}^{\frac{p q}{n-p}}(u)\right]^{\frac{n(n-p)}{p q}} d S(u)\right]^{\frac{p q}{n(n-p)}} } \\
\leq & {\left[\frac{1}{n} \int_{S^{n-1}} \rho_{I_{p}^{\tau} K}^{n}(u) d S(u)\right]^{\frac{p q}{n(n-p)}}+\left[\frac{1}{n} \int_{S^{n-1}} \rho_{I_{p}^{\tau} L}^{n}(u) d S(u)\right]^{\frac{p q}{n(n-p)}} } \\
= & V\left(I_{p}^{\tau} K\right)^{\frac{p q}{n(n-p)}}+V\left(I_{p}^{\tau} L\right)^{\frac{p q}{n(n-p)}} .
\end{aligned}
$$

Hence, we obtain (1.16), and equality holds in (1.16) if and only if K and L are dilates.

If $\tau=0$ in Theorem 1.2, then the following Brunn-Minkowski inequality for L_{p}-intersection bodies follows.

Corollary 4.1. If $K, L \in \mathcal{S}_{o}^{n}, 0<p<1, q>0$ and $n-p>q$, then

$$
V\left(I_{p}\left(K \tilde{+}_{q} L\right)\right)^{\frac{p q}{n(n-p)}} \leq V\left(I_{p} K\right)^{\frac{p q}{n(n-p)}}+V\left(I_{p} L\right)^{\frac{p q}{n(n-p)}}
$$

with equality if and only if K and L are dilates.
Taking $q=1$ in Corollary 4.1, and noting that $n \geq 2$ and $0<p<1$ imply that $n-p>1$, we also have

Corollary 4.2. If $K, L \in \mathcal{S}_{o}^{n}, 0<p<1$ and $n \geq 2$, then

$$
\begin{equation*}
V\left(I_{p}(K \tilde{+} L)\right)^{\frac{p}{n(n-p)}} \leq V\left(I_{p} K\right)^{\frac{p}{n(n-p)}}+V\left(I_{p} L\right)^{\frac{p}{n(n-p)}} \tag{4.2}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Inequality (4.2) is due to Yuan and Sum (see [39]). Since

$$
\rho(I K, u)=\lim _{p \rightarrow 1^{-}} 2(1-p) \rho\left(I_{p} K, u\right)^{p}
$$

we can let $p \rightarrow 1$ in (4.2), to obtain
Corollary 4.3. If $K, L \in \mathcal{S}_{o}^{n}, n \geq 2$, then

$$
\begin{equation*}
V(I(K \tilde{+} L))^{\frac{1}{n(n-1)}} \leq V(I K)^{\frac{1}{n(n-1)}}+V(I L)^{\frac{1}{n(n-1)}} \tag{4.3}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Inequality (4.3) can be found in $[38,39]$ and is the Brunn-Minkowski inequality for the classical intersection bodies.

Acknowledgments

The authors sincerely thank the referees for many constructive comments and fruitful suggestions on our paper.

References

1. S. Alesker, A. Bernig and F. E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal., 21 (2011), 751-773.
2. G. Berck, Convexity of L_{p}-intersection bodies, Adv. Math., 222(3) (2009), 920-936.
3. Y. B. Feng and W. D. Wang, General L_{p}-harmonic Blaschke bodies, P. Indian A. S.-Math. Sci., 124(1) (2014), 109-119.
4. Y. B. Feng, W. D. Wang and F. H. Lu, Some inequalities on general L_{p}-centroid bodies, Math. Ine. Appl., 18(1) (2015), 39-49.
5. R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, UK, 2nd edition, 2006.
6. P. Goodey and W. Weil, Intersection bodies and ellipsoids, Mathematika, 42(2) (1995), 295-304.
7. C. Haberl, L_{p} intersection bodies, Adv. Math., 217(6) (2008), 2599-2624.
8. C. Haberl and M. Ludwig, A characterization of L_{p} intersection bodies, International Mathematics Research Notices, Art ID 10548, 2006.
9. C. Haberl and F. E. Schuster, General L_{p} affine isoperimetric inequalities, J. Differential Geom., 83 (2009), 1-26.
10. C. Haberl and F. E. Schuster, Asymmetric affine L_{p} Sobolev inequalities, J. Funct. Anal., 257 (2009), 641-658.
11. C. Haberl, F. E. Schuster and J. Xiao, An asymmetric affine Polya-Szego principle, Math. Ann., 352 (2012), 517-542.
12. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1959.
13. N. J. Kalton and A. Koldobsky, Intersection bodies and L_{p} spaces, Adv. Math., 196 (2005), 257-275.
14. A. Koldobsky, Intersection bodies in R^{4}, Adv. Math., 136(1) (1998), 1-14.
15. A. Koldobsky, Second derivative test for intersection bodies, Adv. Math., 136(1) (1998), 15-25.
16. A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal., 10 (2000), 1507-1526.
17. A. Koldobsky and D. Ma, Stability and slicing inequalities for intersection bodies, Geom. Dedicata, 162 (2013), 325-335.
18. L. Liu, W. Wang and B. W. He, Brunn-Minkowski inequalities for star duals of intersection bodies and two additions, J. Shanghai Univ., 14 (2010), 201-205.
19. F. H. Lu and W. H. Mao, Affine isoperimetric inequalities for L_{p}-intersection bodies, Rocky Mountain J. Math., 40 (2010), 489-500.
20. F. H. Lu, W. H. Mao and G. S. Leng, On star duality of mixed intersection bodies, J. Inequal. Appl., 2007 (2007), 39345.
21. M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc., 357 (2005), 4191-4213.
22. M. Ludwig, Intersection bodies and valuations, Amer. J. Math., 128 (2006), 1409-1428.
23. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232-261.
24. E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339(2) (1993), 901-916.
25. L. Parapatits, $S L(n)$-covariant L_{p}-Minkowski valuations, J. Lond. Math. Soc., 89 (2014), 397-414.
26. L. Parapatits, $S L(n)$-contravariant L_{p}-Minkowski valuations, Trans. Amer. Math. Soc., 366 (2014), 1195-1211.
27. L. Parapatits and F. E. Schuster, The Steiner formula for Minkowski valuations, Adv. Math., 230 (2012), 978-994.
28. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, 2nd edn, Cambridge University Press, Cambridge, 2014.
29. F. E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J., 154 (2010), 1-30.
30. F. E. Schuster and T. Wannerer, $G L(n)$ contravariant Minkowski valuations, Trans. Amer. Math. Soc., 364 (2012), 815-826.
31. F. E. Schuster and M. Weberndorfer, Volume inequalities for asymmetric Wulff shapes, J. Differential Geom., 92 (2012), 263-283.
32. W. D. Wang and Y. B. Feng, A general L_{p}-version of Petty's affine projection inequality, Taiwan J. Math., 17(2) (2013), 517-528.
33. W. D. Wang and Y. N. Li, Busemann-Petty problems for general L_{p}-intersection bodies, Acta Math. Sin. (English Series), accepted.
34. W. D. Wang and T. Y. Ma, Asymmetric L_{p}-difference bodies, Proc. Amer. Math. Soc., 142(7) (2014), 2517-2527.
35. W. D. Wang and X. Y. Wan, Shephard type problems for general L_{p}-projection bodies, Taiwan J. Math., 16(5) (2012), 1749-1762.
36. T. Wannerer, $G L(n)$ equivariant Minkowski valuations, Indiana Univ. Math. J., 60 (2011), 1655-1672.
37. M. Weberndorfer, Shadow systems of asymmetric L_{p} zonotopes, Adv. Math., 240 (2013), 613-635.
38. W. Y. Yu, D. H. Wu and G. S. Leng, Quasi L_{p}-intersection bodies, Acta Math. Sinica, 23(11) (2007), 1937-1948.
39. J. Yuan and C. Wing-Sum, L_{p}-intersection bodies, J. Math. Anal. Appl., 339(2) (2008), 1431-1439.
40. J. Yuan, H. Zhu and G. S. Leng, Inequalities for star duals of intersection bodies, J. Korean Math. Soc., 44 (2007), 297-306.
41. S. F. Yuan, J. Yuan and G. S. Leng, The dual Brunn-Minkowski inequalities for intersection bodies and two additions, Taiwanese J. Math., 10 (2006), 905-915.
42. C. J. Zhao and G. S. Leng, Brunn-Minkowski inequality for mixed intersection bodies, J. Math. Anal. Appl., 301 (2005), 115-123.

Weidong Wang and Yanan Li
Department of Mathematics
China Three Gorges University
Yichang, 443002
P. R. China

E-mail: wdwxh722@163.com
1719118938@qq.com

[^0]: Received July 5, 2013, accepted January 6, 2015.
 Communicated by Sun-Yung Alice Chang.
 2010 Mathematics Subject Classification: 52A40 52A20.
 Key words and phrases: General L_{p}-intersection body, Extremal value, Brunn-Minkowski inequality. Research is supported in part by the Natural Science Foundation of China (Grant No.11371224) and Foundation of Degree Dissertation of Master of China Three Gorges University (Grant No.2014PY067).

