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MULTIPLE SOLUTIONS FOR THE NONHOMOGENEOUS FOURTH
ORDER ELLIPTIC EQUATIONS OF KIRCHHOFF-TYPE

Liping Xu and Haibo Chen*

Abstract. This paper considers the following nonhomogeneous fourth order el-
liptic equations of Kirchhoff type:⎧⎨
⎩�2u − (a + b

∫
RN

|∇u|2dx)�u + V (x)u = f(x, u) + h(x), in RN ,

u ∈ H2(RN ),

where constants a > 0, b ≥ 0. Under certain assumptions on V (x), f(x, u)
and h(x), we show the existence and multiplicity of solutions by the Ekeland,s
variational principle and the Mountain Pass Theorem in the critical theory.

1. INTRODUCTION AND PRELIMINARIES

Consider the following nonhomogeneous fourth order elliptic equations of Kirchhoff
type:

(1.1)
�2u − (a + b

∫
RN

|∇u|2dx)�u + V (x)u = f(x, u) + h(x), x ∈ RN ,

u ∈ H2(RN ),

where constants a > 0, b ≥ 0. We assume that the functions V (x), f(x, u) and its

primitive F (x, u) :=
∫ u

0
f(x, s)ds satisfy the following hypotheses:
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(V ) V (x) ∈ C(RN , R) satisfies inf
x∈RN

V (x) ≥ a1 > 0, where a1 is a constant. More-

over, for any M > 0, meas{x ∈ RN : V (x) ≤ M} < ∞, where meas(.) denotes the
Lebesgue measure in RN .

(f1) f(x, u) ∈ C(RN ×R, R) and there exist 2 < p < 2∗ = 2N
N−2 and a2 > 0 such that

|f(x, u)| ≤ a2(1 + |u|p−1).

(f2) lim
u→0

f(x, u)
u

= 0, ∀x ∈ RN .

(f3) There exist μ > 4 and r > 0 such that

μF (x, u) ≤ uf(x, u), ∀x ∈ RN , |u| ≥ r.

(f4) inf
x∈RN ,|u|=r

F (x, u) > 0.

Let H := H2(RN) with the inner product and the norm

〈u, v〉H =
∫

RN
(�u�v + ∇u∇v + uv)dx, ‖u‖H = 〈u, u〉

1
2
H.

Define our working space

E = {u ∈ H :
∫

RN
(|�u|2 + |∇u|2 + V (x)u2)dx < +∞}

with the inner product and norm

〈u, v〉 =
∫

RN
(�u�v + a∇u∇v + V (x)uv)dx, ‖u‖ = 〈u, u〉 1

2 ,

where ‖ · ‖ is an equivalent to the norm ‖ · ‖H .
It is clear that system (1.1) is the Euler-Lagrange equations of the functional I :

E → R defined by

(1.2) I(u) =
1
2
‖u‖2 +

b

4
(
∫

RN
|∇u|2dx)2 −

∫
RN

F (x, u)dx−
∫

RN
h(x)udx.

Obviously, I is a well-defined C1 functional and satisfies

(1.3)

〈I ′(u), v〉 =
∫

RN
(�u�v + a∇u∇v + V (x)uv)dx

+b

∫
RN

|∇u|2dx

∫
RN

∇u∇vdx

−
∫

RN
f(x, u)vdx−

∫
RN

h(x)vdx, ∀ u, v ∈ E.
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Let V (x) = 0, h(x) = 0, replace RN by a bounded smooth domain Ω ⊂ RN ,
and set u = ∇u = 0 on Ω, then problem (1.1) reduces to the following homogeneous
equations:

(1.4)
�2u − (a + b

∫
Ω
|∇u|2dx)�u = f(x, u), x ∈ Ω,

u = 0,∇u = 0 on Ω,

which is related to the following stationary analogue of the equation of Kirchhoff type:

(1.5) utt + �2u − (a + b

∫
Ω
|∇u|2dx)�u = f(x, u), in Ω,

where �2 is the biharmonic operator. In one and two dimensions, (1.5) is used to
describe some phenomena appeared in different physical, engineering and other sciences
because it is regarded as a good approximation for describing nonlinear vibrations of
beams or plates (see [2-3]). Using the mountain pass techniques and the truncation
method, wang et al. [4] obtained the existence of nontrivial solutions of the following
elliptic equations:{

�2u − λ(a + b
∫
Ω |∇u|2dx)�u = f(x, u), x ∈ Ω,

u = 0,∇u = 0 on Ω.

More recently, there are several papers having studied (1.1) with h(x) = 0, see for
example [5-6].

In (1.1), let a = 0, V (x) = 0 and h(x) = 0, then problem (1.1) can be rewritten
as the following fourth order equation of Kirchhoff type:

(1.6)
�2u − b(

∫
Ω

|∇u|2dx)�u = f(x, u) in Ω,

u = ∇u = 0 on ∂Ω.

By the variational methods, T. F. Ma and F. Wang etc. studied (1.6) and obtained the
existence and multiplicity of solutions, see [7-9].

If a = 1, b = 0 and h(x) = 0, then (1.1) reduces to the following equations:

(1.7)
�2u −�u + V (x)u = f(x, u), x ∈ RN ,

u ∈ H2(RN ).

In recent years, there are many results for (1.7), see for instance [10-12]. The solvability
of (1.1) without �2 has also been well studied by various authors (see [13-14] and the
references therein).
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Obviously, the problem (1.1) is nonlocal because of the presence of the term∫
RN

|∇u|2dx which provokes some mathematical difficulties. This phenomenon makes

the study of such a class of problems particularly interesting. To my best knowledge,
there are no any work on the existence and multiplicity solutions for the nonhomoge-
neous fourth order elliptic equation of Kirchhoff type. The object of this paper is to
establish the first results in this case. Our tools is the Mountain Pass Theorem [15] and
the Ekeland,s variational principle [16] in the critical theory. Throughout this paper,
Ci denotes various positive constants.

2. MAIN RESULTS

In order to deduce our results, we need the following lemmas. Motivated by Lemma
3.4 in [1], we can first prove the following Lemma 2.1 in the same way. Here we omit
it.

Lemma 2.1. Under the assumption (V ), the embedding E ↪→ Ls(RN ) is compact
for any s ∈ [2, 2∗). Then, for each s ∈ [2, 2∗), there exists ηs > 0 such that ‖u‖Ls ≤
ηs‖u‖, ∀u ∈ E, where ‖u‖Ls := (

∫
RN

|u|sdx)
1
s , for any s ∈ [1,∞) is the norm of

the usual Lebesgue space Ls(RN ).

Lemma 2.2. Assume (V ) and (f1)-(f2) hold. Let h ∈ L2(RN ), then there exist
some constants ρ, α, m0 > 0 such that I(u) ≥ α > 0 with ‖u‖ = ρ for all u ∈ E

and h satisfying ‖h‖L2 < m0.

Proof. By (f1) and (f2), there exists c(ε) > 0 such that

(2.1) |f(x, u)| ≤ ε|u|+ c(ε)|u|p−1,

and for all (x, u) ∈ RN × R, one has

(2.2) |F (x, u)| ≤ ε

2
|u|2 +

c(ε)
P

|u|p.

It follows from (1.2), (2.2), the Hölder inequality and Lemma 2.1 that

(2.3)

I(u) ≥ 1
2
‖u‖2 −

∫
RN

(
ε

2
|u|2 +

c(ε)
P

|u|p)dx − ‖h‖L2‖u‖L2

=
1
2
‖u‖2 − ε

2
‖u‖2

L2 − c(ε)
P

‖u‖p
Lp − ‖h‖L2‖u‖L2

≥ ‖u‖[(1
2
− εη2

2

2
)‖u‖ − C1‖u‖p−1 − η2‖h‖L2].
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Taking ε =
1

2η2
2

and setting g(t) =
1
4
t − C1t

p−1 for t ≥ 0. By direct calculations, we

see that max
t≥0

g(t) = g(ρ) > 0, where ρ = [
1

4C1(p − 1)
]

1
p−2 > 0. Then it follows from

(2.3) that, if ‖h‖L2 < m0 :=
g(ρ)
2η2

> 0, there exists α > 0 such that I(u)|‖u‖=ρ ≥
α > 0.

Lemma 2.3. Assume that (V ), h(x) ∈ L2(RN ), h ≥ ( �≡)0 and (f1)-(f4) hold,
then there exists a function v ∈ E with ‖v‖ > ρ such that I(v) < 0, where ρ is given
by Lemma 2.2.

Proof. For any x ∈ RN , |z| ≥ r, set

τ(t) = F (x, t−1z)tμ, ∀t ∈ [1,
|z|
r

].

By (f3), one has

τ ′(t) = tμ−1[μF (x, t−1z) − t−1zf(x, t−1z)] ≤ 0.

Hence, τ(1) ≥ τ( |z|r ), that is

(2.4) F (x, z) ≥ F (x,
r

|z|z)
|z|μ
rμ

≥ inf
x∈RN ,‖u‖=r

F (x, u)
|z|μ
rμ

≥ C2|z|μ

for any x ∈ RN , |z| ≥ r. By (f2), there exists δ ≤ r such that

|f(x, z)z
z2

| = |f(x, z)
z

| ≤ 1,

for all x ∈ RN , 0 < |z| < δ. It follows from (f1) that there exists a positive constant
M1 such that

|f(x, z)z
z2

| ≤ a2(1 + |z|p−1)|z|
z2

≤ M1,

Thus, one has
f(x, z)z ≥ −(M1 + 1)|z|2

for all x ∈ RN , 0 < |z| < δ. Using the definition of F (x, z), we have

(2.5) F (x, z) ≥ −1
2
(M1 + 1)|z|2

for all x ∈ RN , 0 < |z| < δ. Setting C3 = 1
2 (M1 + 1) + C2, we obtain from (2.4) and

(2.5) that

(2.6) F (x, z) ≥ C2|z|μ − C3|z|2
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for a.e. x ∈ R3 and all z ∈ R. Since E ↪→ L2(RN) and L2(RN ) is a separable Hilbert
space, E has a countable orthogonal basis {ej}. Set Ek = span{e1, e2, ..., ek}. Then
E = Ek⊕E⊥

k and Ek is finite-dimensional space. Moreover, for any finite dimensional
subspace F̃ ⊂ E , there is a positive integral number m such that F̃ ⊂ Em. Hence, by
(2.6) and the assumptions on h(x), we get

I(u) ≤ 1
2
‖u‖2 +

C4

4
‖u‖4 − C2‖u‖μ

Lμ + C3‖u‖2
L2 +

∫
RN

h(x)|u|dx

≤ 1
2
‖u‖2 +

C4

4
‖u‖4 − C2γ

μ‖u‖μ + C3η
2
2‖u‖2 +

∫
RN

h(x)|u|dx

for all u ∈ Em, where in the last inequality we use the equivalence of all norms on the
finite dimensional subspace Em. Consequently, by μ > 4, there is a point e ∈ E with
‖e‖ > ρ such that I(e) < 0, which completes this lemma.

Lemma 2.4. Assume (V ) and (f3)-(f4) hold. Let h ∈ L2(RN ) and {un} is a
(PS) sequence, then {un} is bounded in E if ‖h‖L2 < m0.

Proof. Consider a sequence {un} which satisfies I(un) → c and 〈I ′(un), un〉 → 0.
If {un} is unbounded in E , we can assume ‖un‖ → +∞ as n → ∞. Set ωn =

un

‖un‖ ,

then ‖ωn‖ = 1 and ‖ωn‖Ls ≤ ηs for s ∈ [2, 2∗). Going if necessary to a subsequence,
we may assume that

(2.7) ωn ⇀ ω in E, ωn → ω in Ls(RN)(2 ≤ s < 2∗), ωn → ω a .e. on RN .

Set Ω = {x ∈ R3 : ω(x) �= 0}. If meas(Ω) > 0, then |un| → +∞ a.e. x ∈ Ω as
n → ∞. It follows from (2.6) that

f(x, un)un ≥ C5|un|μ − C6|un|2

for a.e. x ∈ R3 and all un ∈ R. Hence

(2.8)
∫

RN

f(x, un)un

‖un‖μ
dx ≥ C5‖ωn‖μ

Lμ − C7
‖ωn‖2

L2

‖un‖μ−2
.

Since μ > 4 and

〈I ′(un, un〉
‖un‖μ

=
1

‖un‖μ−4
+

b(
∫

RN |∇un|2dx)2

‖un‖μ

−
∫

RN

f(x, un)un

‖un‖μ
dx −

∫
RN

h(x)
un

‖un‖μ
dx,

one has

(2.9) lim
n→∞

∫
RN

f(x, un)un

‖un‖μ
dx = 0.
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Consequently, we obtain from (2.8) and (2.9) that

0 = lim
n→∞

∫
RN

f(x, un)un

‖un‖μ
dx ≥ C5‖ωn‖μ

Lμ > 0,

which is a contradiction. Hence, meas(Ω) = 0. Therefore, ω(x) = 0 a.e.x ∈ RN . It
follows from (f1)-(f3) that

|uf(x, u)− μF (x, u)| ≤ C8u
2, for all (x, u) ∈ RN × R.

Thus, for ‖h‖L2 < m0,

(2.10)

1
‖un‖2

[I(un) − 1
μ
〈I ′(un), un〉]

= (
1
2
− 1

μ
) + (

b

4
− b

μ
)(

∫
RN

|∇un|2dx)2/‖un‖2

+
∫

RN
[
1
μ

f(x,un)un−F (x,un)]/‖un‖2dx+(
1
μ
−1)‖h‖L2‖un‖L2/‖un‖2

≥ (
1
2
− 1

μ
) − C8

μ

∫
RN

ω2
ndx + (

1
μ
− 1)m0

η2

‖un‖ .

Since μ > 4, (2.10) implies 0 ≥ 1
2 − 1

μ , a contradiction. Hence, {un} is bounded in E .

Lemma 2.5. Let (V ), (f1)-(f2) hold and {un} is a bounded Palais-Smale sequence
of I , then {un} has a strongly convergent subsequence in E.

Proof. By (1.3), we have

〈I ′(un) − I ′(u), un − u〉 ≥ ‖un − u‖2 − b(
∫

RN
|∇u|2dx

−
∫

RN

|∇un|2dx)
∫

RN
∇u∇(un − u)dx

−
∫

RN
[f(x, un) − f(x, u)](un − u)dx,

then, one has

(2.11)

‖un − u‖2 ≤ 〈I ′(un) − I ′(u), un − u〉 + b(
∫

RN
|∇u|2dx

−
∫

RN
|∇un|2dx)

∫
RN

∇u∇(un − u)dx

+
∫

RN
[f(x, un) − f(x, u)](un − u)dx.

Since {un} is bounded in E , going if necessary to a subsequence, we may assume that
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(2.12) un ⇀ u in E, un → u in Ls(RN)(2 ≤ s < 2∗), un → u a.e. on RN .

Then, it follows from (2.1), the boundedness of {un} and the Hölder inequality
that

(2.13)

∫
RN

|f(x, un) − f(x, u)||un − u|dx

≤
∫

RN
(|f(x, un)|+ |f(x, u)|)|un − u|dx

≤
∫

RN
ε(|un| + |u|)|un − u|dx + c(ε)

∫
RN

(|un|p−1 + |u|p−1)|un − u|dx

≤ ε[(
∫

RN
|un|2dx)

1
2 + (

∫
RN

|u|2dx)
1
2 ](

∫
RN

|un − u|2dx)
1
2

+c(ε)[(
∫

RN
|un|pdx)

p−1
p + (

∫
RN

|u|pdx)
p−1

p ](
∫

RN
|un − u|pdx)

1
p

≤ C7‖un − u‖L2 + C8‖un − u‖Lp → 0, n → +∞.

Define the linear functional g : E → R by g(w) =
∫

RN ∇u∇wdx. Since g(w) ≤
‖u‖‖w‖, we can deduce that g is continuous on E . Using un ⇀ u in E , one has∫

RN
∇u∇(un − u)dx → 0, as n → ∞.

Thus, we get from the boundedness of {un} in E that

(2.14) b(
∫

RN
|∇un|2dx −

∫
RN

|∇u|2dx)
∫

RN
∇u∇(un − u)dx → 0, as n → ∞.

Clearly,

(2.15) 〈I ′(un)− I ′(u), un − u〉 → 0, as n → ∞.

It follows from (2.11), (2.13), (2.14) and (2.15) that ‖un − u‖ → 0. The proof is
complete.

The following theorems are our main results.

Theorem 2.1. Assume that h(x) ∈ L2(RN) and h(x) ≥ ( �≡)0. Let (V ) and (f1)-
(f4) hold, then there exists a constant m0 > 0 such that problem (1.1) possesses at
least two nontrivial solutions u0 ∈ E and u1 ∈ E satisfying I(u0) < 0 < I(u1) when
‖h‖L2 < m0.

Proof. We prove Theorem 2.1 by the following two steps.
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Step 1. There exists u0 ∈ E such that I(u0) > 0 and I ′(u0) = 0.
By Lemma 2.2, 2.3 and the Mountain Pass Theorem [15], there exists a sequence

{un} ⊂ E satisfying I(un) → c1 > 0, I ′(un) = 0. Then it follows from Lemma
2.4 and 2.5 that there exists u0 ∈ E such that I(u0) = c1 > 0 and I ′(u0) = 0 if
‖h‖L2 < m0.

Step 2. There exists u1 ∈ E such that I(u1) < 0 and I ′(u1) = 0. Since
h ∈ L2(RN ) and h �≡ 0, we can choose a function φ ∈ E such that

(2.16)
∫

RN
h(x)φ(x)dx > 0.

Then, it follows from (1.2), (2.6) and (2.16) that

I(tφ) ≤ t2

2
‖φ‖2 +

bt4

4
(
∫

RN
|∇φ|2dx)2 − C2t

μ‖φ‖μ
Lμ

+C3t
2‖φ‖2

L2 − t

∫
RN

h(x)φdx < 0

for t > 0 small enough. Then, we get c0 = inf{I(u) : u ∈ B̄ρ} < 0, where ρ is
given by Lemma 2.2, Bρ = {u ∈ E, ‖u‖ < ρ}. It follows from Ekeland,s variational
principle [16] that there exists a sequence {un} ⊂ B̄ρ such that c0 ≤ I(un) ≤ c0 + 1

n
and I(ω) ≥ I(un) − 1

n‖ω − un‖ for all ω ∈ B̄ρ. Then by a standard procedure, we
can show that {un} is a bounded Palais-Smale sequence of I . In view of Lemma 2.5,
we obtain that there exists a function u1 ∈ E such that I ′(u1) = 0, I(u1) = c0 < 0.
The proof is complete.

Theorem 2.2. If we replace the conditions (f3)-(f4) by the following conditions:
(f ′

3) There exist μ > 4 such that

μF (x, u) ≤ uf(x, u), ∀(x, u) ∈ RN × R

and
(f ′

4)
inf

x∈RN |u|=1
F (x, u) > 0,

then the conclusion of Theorems 2.1 remains true.

Proof. Obviously, (f ′
3) and (f ′

4) imply (f3) and (f4) with r = 1. The proof of
Theorem 2.2 is complete.

Theorem 2.3. Assume that h(x) ∈ L2(RN) and h(x) ≥ ( �≡)0. Let (V ), (f1)-(f3)
and the following conditions:
(f5) There exists 4 < α < 2∗ such that

lim inf
|u|→∞

F (x, u)
|u|α > 0, uniformly for x ∈ RN
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hold, then there exists a constant m0 > 0 such that problem (1.1) possesses at least
two nontrivial solutions u0 ∈ E and u1 ∈ E satisfying I(u0) < 0 < I(u1) when
‖h‖L2 < m0.

Proof. It is sufficient to prove (f4). In fact, by (f5), we can choose ε ∈
(0, lim inf

|u|→∞
F (x,u)
|u|α ) small enough such that

(2.17) F (x, u) ≥ ε|u|α for |u| large enough,

then we obtain from (2.17) that (f4) satisfies. This completes the proof.

Theorem 2.4. The conclusions of Theorem 2.1, 2.2 and 2.3 hold if we replace (f3)
or (f ′

3) by the following condition:
(f6) There exists μ > 4 such that u → f(x,u)

|u|μ−1 is increasing on (−∞, 0) and (0, +∞).

Proof. It is sufficient to prove (f6) implies (f3) or (f ′
3). Indeed, whenever u < 0,

F (x, u) =
∫ 1

0

f(x, tu)udt

= −
∫ 1

0

f(x, tu)
(−ut)μ−1

(−u)μtμ−1dt

= −
∫ 1

0

f(x, tu)
|ut|μ−1

|u|μtμ−1dt

≤ −
∫ 1

0

f(x, u)
|u|μ−1

|u|μtμ−1dt =
1
μ

f(x, u)u.

Whenever u > 0,

F (x, u) =
∫ 1

0
f(x, tu)udt =

∫ 1

0

f(x, tu)
(ut)μ−1

uμtμ−1dt

≤
∫ 1

0

f(x, u)
uμ−1

uμtμ−1dt =
1
μ

f(x, u)u.

It shows that (f ′
3) holds and then (f3) follows. This completes the proof.

Remark 2.1. To the best of our knowledge, it seems that Theorem 2.1, 2.2, 2.3 and
2.4 are the first results about the existence of multiple solutions for the nonhomogeneous
fourth order elliptic equation of Kirchhoff type.

Remark 2.2. For (f ′3) and (f ′
4) imply (f3) and (f4), Theorem 2.1 generalizes

Theorem 2.2. For (f5) implies (f4), Theorem 2.2 generalizes Theorem 2.3. Moreover,
Theorem 2.3 generalizes Theorem 2.4 for (f6) implies (f3).
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Remark 2.3. There are functions, which satisfy all conditions of Theorem 2.1, but
not satisfy Theorem 2.2. For example, set

f(x, t) =

{ |t|q−2t(q ln |t| + 1), |t| ≥ 1,

−|t|3t, |t| ≤ 1,

where 4 < q < 2∗. Simple computation shows that

F (x, t) =

⎧⎪⎨
⎪⎩

|t|q ln |t| − 1
5
, |t| ≥ 1,

−1
5
|t|5, |t| ≤ 1,

and

tf(x, t) − μF (x, t) = (q − μ)|t|q ln |t| + |t|q − 1
5
μ, ∀x ∈ RN , |t| ≥ 1.

Setting 4 < μ < min{q, 5}, it is easy to check that f(x, t) satisfies all the conditions
in Theorems 2.1, but not satisfy (f ′

3) for tf(x, t) − μF (x, t) < 0 when |t| ≤ 1. So
f(x, t) does not satisfy Theorem 2.2. Moreover, set f(x, t) = |t|q−2t, 4 < q < 2∗.
Then f(x, t) satisfies all the conditions in Theorems 2.1, 2.2 and 2.3, but not satisfy
(f6). So not satisfy Theorem 2.4.
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