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SLANT AND LEGENDRE CURVES IN BERGER su(2): THE LANCRET
INVARIANT AND QUANTUM SPHERICAL CURVES

C. Cǎlin and M. Crasmareanu*

Abstract. Slant and Legendre curves are considered on Berger su(2) and are
characterized through the scalar product between the normal at the curve and the
vertical vector field; in the helix case they have a proper (non-harmonic) mean
curvature vector field. The general expression of these curves is obtained as
well as their curvature and torsion. For the slant non-Legendre case we derive
a Lancret-type invariant. By using the exponential map we obtain remarkable
classes of curves on S3(1); in the helix case, and taking into account a B.-Y.
Chen characterization of Legendre curves, we get a 1-parameter family of curves
in relationship with the spectrum of the quantum harmonic oscillator. These
curves, called by us quantum spherical curves, and their mates, provided by
integer multiples of π, belong to antipodal Hopf fibres.

1. INTRODUCTION

An important notion of classical differential geometry of curves is that of curve of
constant slope, also called cylindrical helix. This is a curve in the Euclidean space E

3

for which the tangent vector field has a constant angle with a fixed direction called the
axis. The second name corresponds to the fact that there exists a cylinder on which the
curve moves in such a way that it cuts each ruling at a constant angle. The classical
characterization of these curves is the Bertrand-Lancret-de Saint Venant Theorem ([2]):
the curve γ in E

3 is of constant slope if and only if the ratio of the torsion τ and the
curvature κ is constant. More precisely, for a cylindrical helix we have the constant
ratio cos θ

| sin θ| = τ
κ and then, inspired by the title of [2], we define the Lancret invariant as

Lancret(γ) = cos θ
| sin θ| . By computing κ and τ in terms of θ we get the result above and

therefore the expression of Lancret invariant in the 3-dimensional Euclidean geometry
is:
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(1.1) Lancret(γ) =
τ

κ
.

An interesting generalization of this class of curves is that of slant curve in almost
contact metric geometry. This concept was introduced in [8] with the constant angle
θ between the tangent vector field and the Reeb vector field. The particular case of
θ = π

2 (or θ = 3π
2 ) is very important since we recover the Legendre curves of [1]. For

the same general expression cos θ
| sin θ| the Theorem 3.1. of [8, p. 362] gives the form of

Lancret invariant in 3-dimensional Sasakian geometry:

(1.2) Lancret(γ) =
τ ± 1

κ
.

Although the Bibliography in Legendre curves is very rich (see the references of
[6]), slant curves are studied until now only for the Sasakian geometry in [8], for the
contact pseudo-Hermitian geometry in [9], for trans-Sasakian geometry in [12], for the
f -Kenmotsu geometry in [6] and for almost paracontact geometry in [18]. So, the
purpose of this paper is to begin a study of slant curves in another important class of
3-dimensional geometries, namely Berger su(2). These spaces are obtained from the
Riemannian Hopf fibration S3 → S2 by varying the length of the S1-fibers with a
factor and a slant curve will be one that has constant angle with these fibers.

Our work is structured as follows. The second section is a very brief review of
Berger spheres and Frenet curves in general Riemannian geometry. The next section is
devoted to the study of slant (particularly Legendre) curves on these manifolds. So, we
obtain a characterization of slant curves similar to Proposition 3.1. of [8, p. 362]. We
obtain a complete description of slant curves and then we compute the curvature and
torsion which yield the corresponding Lancret invariant for the non-Legendre case. As
example we treat a class of helices (depending of a real parameter ω called angular
velocity) which are Legendre curves for all Berger su(2).

In the last part of third section we move our study on S3 by using the exponential
map. On this way we obtain remarkable classes of curves e.g. starting with helices
γ and taking into account a B.-Y. Chen characterization of Legendre curves in S3 we
get a class of curves exp(γ) such that the positive angular velocities of γ’s are the
inverse of energy eigenvalues for the quantum harmonic oscillator. Hence, we call
quantum spherical curves this class of curves and remark that they are periodical and
then, in a direct connection with the periodic curves from [14]. These curves and their
mates (provided by inverse of integer multiplies of π) are mapped by the Hopf bundle
projection in antipodal points on S2( 1

2). It follows a kind of ”mirror symmetry” in
R × C with the ”mirror” C placed in the origin of R. Moreover, we extend the B.-Y.
Chen characterization from Legendre to arbitrary slant curves in S3(c).

The last section is devoted to another main result namely that a slant curve of
helix type has a proper (non-harmonic) curvature vector field. We obtain the general
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expression of the corresponding eigenvalue function of the Laplacian in terms of angular
velocity ω.

2. BERGER su(2)’s AND FRENET CURVES IN RIEMANNIAN GEOMETRY

The starting point of this paper is provided by the Hopf bundle π : S3(1) →
S2( 1

2) ⊂ R ⊕ C where, by using the complex numbers, the projection is ([16, p. 4]):

(2.1) π(z, w) =
(

1
2
(|w|2 − |z|2), zw̄

)
.

Identifying S3(1) with SU(2) we get the parallelization of S3 given by the Pauli vector
fields ([16, p. 7]):

(2.2) X1 =
(

i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
.

Then S3(1) is also a Lie group with the Lie algebra su(2) spanned by Xi, 1 ≤ i ≤ 3.
For ε ∈ (0, 1] we define on su(2) the Riemannian metric gε by requiring the following
vector fields to be orthonormal:

(2.3) E1 =
X1

ε
, E2 = X2, E3 = X3.

We call the pair (su(2), gε) as Berger su(2) and the curvature can be computed with
[16, p. 81]:

(2.4)

{
∇E1E2 = 2−ε2

ε E3,∇E1E3 = −2−ε2

ε E2

∇E2E1 = −εE3,∇E3E1 = εE2,∇E2E3 = εE1 = −∇E3E2.

Here ∇ is the Levi-Civita connection of gε. The metric g1 is the canonical one of
su(2) so we call sometimes (su(2), g1) as the Euclidean su(2).

Next we recall the notion of Frenet curve after [3, p. 164]: let n and m be
integers with 1 ≤ m ≤ n. The curve γ : I ⊆ R → (Mn, g) parametrized by the
arc length s is called m-Frenet curve on M if there exists m orthonormal vector
fields E1 = γ ′, E2, . . . , Em along γ such that there exists positive smooth functions
κ1, . . . , κm−1 of s such that:

(2.5) ∇γ′E1 = κ1E2,∇γ′E2 = −κ1E1 + κ2E3, . . . ,∇γ′Em = κm−1Em−1.

The function κj is called the j-th curvature of γ while γ is:
(a) a geodesic if m = 1; then we get the well-known equation ∇γ′γ ′ = 0.
(b) a circle if m = 2 and κ1 is a constant: then we have ∇γ′E1 = κ1E2, ∇γ′E2 =

−κ1E1.
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(c) a helix of order m if κ1, . . . , κm−1 are constants.

The Frenet curve γ is called non-geodesic if κ1 > 0 everywhere on I and in dimension
3 it is called a generalized helix if κ2

κ1
= const.

3. SLANT AND LEGENDRE CURVES IN (su(2), gε): LANCRET INVARIANT AND A KIND OF

MIRROR SYMMETRY

Let γ : I → (su(2), gε) be a 3-Frenet curve for which we denote the Frenet frame
as usual (T = γ ′, N, B) and the Frenet equations:

(3.1) ∇TT = κN, ∇TN = −κT + τB, ∇T B = −τN,

where κ is the curvature and τ the torsion.

Definition 3.1. The structural angle of γ is the function θ : I → [0, 2π) given by:

(3.2) cos θ(s) = gε(T (s), E1).

The curve γ is a slant curve, or more precisely θ-slant curve, if θ is a constant function,
[8, p. 361]. In the particular case of θ = π

2 the curve γ is called a Legendre curve,
[1]. For a slant non-Legendre curve γ its Lancret invariant is:

(3.3) Lancret(γ) =
cos θ

| sinθ| .

From ∇EiEi = 0 it results that Ei are geodesic vector fields i.e. the integral curves
of Ei are geodesics. In particular the 0-slant and π-slant curves are geodesics. In the
following we suppose that γ is non-geodesic i.e. κ > 0 and θ ∈ (0, π) and it follows
a characterization of these curves:

Proposition 3.2. The Frenet curve γ is a θ-slant curve in (su(2), gε) if and only
if its normal vector field N is gε-orthogonal to E1|γ .

Proof. By taking the covariant derivative in the relation (2.2) along γ and using
the fact that E1 is a Killing vector field:

0 = −θ′(s) sinθ(s) = gε(κ(s)N (s), E1)

we derive the conclusion.

Remarks 3.3. In [15, p. 155] it is introduced the following notion: a non-geodesic
curve is called a slant helix if the principal normal lines of γ make a constant angle with
a fixed direction. Therefore, a slant curve is a slant helix with E1 as fixed direction.
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By using the definition of su(2) ([16, p. 6]) the curve γ has the expression:

(3.4) γ(s) =
(

iA(s) B(s) + iC(s)
−B(s) + iC(s) −iA(s)

)
:= (A(s), B(s), C(s)).

The main result of this Section is as follows:

Theorem 3.4. Suppose γ has the form γ(s) = (A(s), B(s), C(s)) ∈ su(2).
Then γ is a θ-slant curve if and only if there exists a real number A0 and a smooth
parametrization (cosu(s), sinu(s)) of S1 such that:

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(s) =
s cos θ

ε
+ A0

B(s) = sin θ

∫ s

0
cosu(t)dt

C(s) = sin θ

∫ s

0

sinu(t)dt.

Supposing u as being a strictly increasing function we have:

(3.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ(s) = sin θ

(
u′(s) + 2 cos θ

1 − ε2

ε

)

τ(s) = ε + cos θ

(
u′(s) + 2 cos θ

1 − ε2

ε

)
.

Its Lancret invariant is:

(3.7) Lancret(γ) =
τ − ε

κ
.

Therefore, γ is a helix if and only if u(s) = ωs with ω > 0.

Proof. Denote a = A′, b = B′, c = C′ . The derivative of γ is:

γ ′(s) =
(

a(s)i b(s) + ic(s)
−b(s) + ic(s) −a(s)i

)

equivalently:

(3.8) γ ′(s) = a(s)X1 + b(s)X2 + c(s)X3 = εa(s)E1 + b(s)E2 + c(s)E3

and the equation (3.2) yields (3.51). The unit speed of γ(s) means the existence of a
unit-length parametrization (cosu(s), sinu(s)) of S1 such that (3.52,3) hold. Also:

(3.9) T (s) = cos θE1 + sin θ cos u(s)E2 + sin θ sinu(s)E3
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The relation (3.61) follows from (3.8) taking into account the definition of the curva-
ture. More precisely:

(3.10)
κ(s)N (s)=

[
b′(s)−2c(s) cosθ

1−ε2

ε

]
E2+

[
c′(s)+2b(s) cosθ

1−ε2

ε

]
E3

= sin θ

(
b′

c
− 2 cos θ

1 − ε2

ε

)(
c

sin θ
E2 − b

sin θ
E3

)
.

Differentiating the above relation along γ and using the Frenet equations it follows:

(3.11) τB =
(

κ
cos θ

sin θ
+ ε

)
(sin θE1 − cos θ cosuE2 − cos θ sinuE3)

which yields (3.62) and (3.7).

Remarks 3.5. (i) We have now the Frenet frame:

(3.12) N (s) = − sinuE2+cosuE3, B(s) = sin θE1−cos θ cos uE2−cos θ sinuE3,

(3.13)
E1|γ = cos θT + sin θB,

∇γ′E1 = (εc(s))E2 + (−εb(s))E3 = (κ cos θ − τ sin θ)N.

Then the norm of ∇γ′E1 is independent of γ: ‖∇γ′E1‖ = ε sin θ.

(ii) For a helix γ = γA0,ω we can call ω > 0 as the angular velocity of γ and say
that γ is a ω-helix.

(iii) A slant curve is a Bertrand one i.e. there exist x, y ∈ R\{0} such that xκ+yτ =
1, namely x = −ε cos θ

sin θ and y = 1
ε .

Examples 3.6. Let A ∈ R and a smooth (increasing) real function u.

(i) (Legendre) The curve γA,u(s) =
(

Ai,

∫ s

0
eiu(s)

)
is an ”universal” (i.e. not

depending of ε) Legendre curve in (su(2), gε) with:

(3.14) κε,A,u = u′(s), τε,A,u = ε ≤ 1.

(ii) With ε = 1 we get the slant curve γ(s) = (s cos θ + A, sinθ
∫ s
0 eiu(t)dt) in the

Euclidean su(2).
(iii) For θ ∈ (π

2 , π) and ω = − (
ε

cos θ + 2 cosθ 1−ε
ε

)
the ω-helix γ becomes a circle

with κ = −ε tan θ.
(iv) For u(t) = arccos 1

cosh t we get: cosu(t) = 1
cosh t , sin u(t) = sinh t

cosh t ; then
B(s) = 2 sin θ arctan exp(t)|s0 = 2 sin θ(arctan exp(s)−π

4 ) and C(s) = sin θ ln
cosh t|s0 = sin θ ln cosh s.
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(v) For u(t) = t2 we derive that B(s) = sin θC(s) and C(s) = sin θS(s) where
S(s) and C(s) (of right hand-side) are the Fresnel transcendental functions. It
results that the projection of γ ∈ R3 on its last two coordinates is a conformal
deformation (with the constant factor sin θ) of the Euler-Cornu spiral.

A curve γ in a Lie group G endowed with a bi-invariant metric <, > is called
general helix in [10, p. 1598] if γ makes a constant angle with a left-invariant vector
field. The corresponding Lancret invariant is [10, p. 1599]:

(3.15) Lancret(G,<,>)(γ) =
τ − τ(G,<>)

κ

where:

(3.16) τ(G,<>) =
1
2

< [T, N ], B > .

For our framework:

(3.17) [T, N ] = (2ε sinθ)E1 −
(

2
ε

cos θ cosu

)
E2 −

(
2
ε

cos θ sin u

)
E3

and then:

(3.18) τ(SU (2),gε) = ε sin2 θ +
cos2 θ

ε
= ε + cos2 θ

1 − ε2

ε
.

For ε = 1 we reobtain τS3 = 1 of [10, p. 1599] and then our Lancret invariant (3.7)
coincides with that of the cited paper and also with (1.2) from Introduction; recall that
the Euclidean S3(1) is a Sasakian manifold. For an arbitrary ε the expression (3.18)
coincides with ε only for θ = π

2 , a case without Lancret invariant. Recall now the
exponential on SU(2); if X ∈ su(2) is different to 0 then:

(3.19) exp(X) = cos ‖X‖+
X

‖X‖ sin ‖X‖.

If γ is a ω-helix slant curve with A0 = 0 we have:

(3.20) ‖γ(s)‖ =

√
s2 cos2 θ

ε2
+

sin2 θ

ω2

and then, in a quaternion-type expression, it results the curve in (S3, gε):

(3.21)

exp(γ)(s) = cos

√
s2 cos2 θ

ε2
+

sin2 θ

ω2

+
sin

√
s2 cos2 θ

ε2 + sin2 θ
ω2√

s2 cos2 θ
ε2 + sin2 θ

ω2

(
s cos θ

ε
ī + sin θ

sin(ωs)
ω

j̄ − sin θ
cos(ωs)

ω
k̄

)
.
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In [7, p. 76] it is proved that an unit-speed curve z : I → C2 is a Legendre
curve in the Euclidean S3(c) (with c > 0) if and only if there exists a smooth function
λ : I → R such that:

(3.22) z′′ = iλz′ − cz.

A straightforward computation gives that the curve exp(γ) of (3.21) with θ =
π

2
,

although is not an unit-speed curve, satisfies (3.22) for c = 1 only when:

(3.23)

⎧⎪⎨
⎪⎩

ω = ωl :=
2

(2l + 1)π

λ =
ω2 − 1

ω
= constant

for arbitrary integers l. We call these curves as being quantum spherical curves since
the inverse of its angular velocity are particular cases of the energy eigenvalues of the
quantum harmonic oscillator, [11, p. 93]:

(3.24) El = �ω

(
l +

1
2

)

where ω is the frequency of the oscillator and now, l is a positive integer. With � = 1
and ω = π we get the 1/ωl’s of (3.23) for l ≥ 0. Let us remark that a quantization
problem regarding all periodic magnetic curves of arbitrary strength on a Sasakian
space form M3(c) is considered in [14].

Hence the expression of a quantum spherical curve is:

(3.25) exp(γl)(s) = (0, 0, sin(ωls),− cos(ωls)) ∈ S3(1)

with a constant λ = λl:

(3.26) λl =
2

(2l + 1)π
− (2l + 1)π

2
.

This curve is periodical with the principal period Tl = (2l + 1)π2 and for a positive l
we have λl < 0. The curvature and torsion of its source curve γl with l ∈ N are:

(3.27) κ = ωl =
2

(2l + 1)π
, τ = 1.

From a symmetry argument we can add the mate exp(γc
l ) of the quantum spherical

curve (3.25) by having as source curve the ωc
l -helix γc

l provided by:

(3.28) ωc
l =

1
lπ

, l ∈ N
∗ = {1, 2, ...}.
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Returning to the general curve exp(γ) of (3.21) its image through the Hopf pro-
jection (2.1) is:

π ◦ exp(γ)(s) = (π1(s), π2(s))

with:

(3.29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1(s) =
sin2

√
s2 cos2 θ

ε2 + sin2 θ
ω2

s2 cos2 θ
ε2 + sin2 θ

ω2

[
sin2 θ

2ω2
− s2 cos2 θ

2ε2

]

−1
2

cos2
√

s2 cos2 θ

ε2
+

sin2 θ

ω2
,

√
s2 cos2 θ

ε2 + sin2 θ
ω2

sin
√

s2 cos2 θ
ε2 + sin2 θ

ω2

ω

sin θ
π2(s) = cos

√
s2 cos2 θ

ε2
+

sin2 θ

ω2
sin(ωs)

−
sin

√
s2 cos2 θ

ε2 + sin2 θ
ω2√

s2 cos2 θ
ε2 + sin2 θ

ω2

s cos θ cos(ωs)
ε

+i

⎛
⎝s cos θ sin(ωs) sin

√
s2 cos2 θ

ε2 + sin2 θ
ω2

εω
√

s2 cos2 θ
ε2 + sin2 θ

ω2

+ cos(ωs) cos

√
s2 cos2 θ

ε2
+

sin2 θ

ω2

)
.

For the Legendre case we have:

(3.30)
π ◦ exp(γ)(s) =(
1
2
(sin2 1

ω
− cos2

1
ω

), sin
1
ω

cos
1
ω

(sin(ωs) + i cos(ωs))
)

∈ S2

(
1
2

)

and in the particular case of quantum spherical curves and their mates we get a unique
point:

(3.31) π ◦ exp(γl)(s) =
(

1
2
, 0

)
∈ R ⊕ C, π ◦ exp(γc

l )(s) =
(
−1

2
, 0

)
∈ R ⊕ C

and thus we have a point reflection across the origin (0, 0) ∈ R × C. It follows a
kind of ”geometrical mirror symmetry” in R × C with the ”mirror” C placed in the
origin of R. From a geometrical point of view, we can say that a quantum spherical
curve and its mate belongs to antipodal Hopf fibres: Hquantum = H1/2 = π−1

(
1
2

)
,

Hquantum,c = H−1/2 = π−1
(−1

2

)
; regarding them in S3(1) these are symmetrical
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with respect to the ”Equator” S2(1) × {0} ⊂ S3(1). In fact, by Lemma 1 of [17,
p. 380], H±1/2 is isometric to {0} × S1=the flat torus R

2/Λ, where Λ is the lattice
generated by (0, 0) and (2π, 0).

A final remark for this Section is that the equation (3.22) of B.-Y. Chen admits the
following generalization to the slant curves in S3(c):

(3.32) z′′(s) = λ(s)(iz′(s))− c(1 + λ(s) cos θ)z(s)

where λ is a real-valued function being λ =< z′′, iz′ > with respect to the Kähler
metric <, > of C

2.

4. THE MEAN CURVATURE VECTOR FIELD

Let h be the second fundamental form of γ in (su(2), gε) and H its mean curvature
field. We know that:

(4.1) H = trace(h) = h(T, T ) = ∇TT.

Then γ is called a curve with proper mean curvature vector field if there exists
ρ ∈ C∞(γ) such that:

(4.2) ΔH = ρH.

In particular, if ρ = 0 then γ is known as a curve with harmonic mean curvature
vector field. Here the Laplace operator Δ acts on the vector valued function H and it
is given by:

(4.3) ΔH = −∇T∇T∇TT.

Making use of Frenet equations, we can rewrite (4.2) as:

(4.4) −3κ′kT + (κ′′ − κ3 − κτ2)N + (2κ′τ + κτ ′)B = −λκN.

It follows that both κ and τ are constants, and the function λ becomes a constant too,
namely:

(4.5) ρ = κ2 + τ2.

(see also Theorem 1.1 in [13]). As consequence, it follows that there are no θ-slant,
non-geodesic curves in a 3-dimensional manifold with harmonic mean curvature vector
field.

For our framework we state the following:

Proposition 4.1. A non-geodesic θ-slant curve γ in (su(2), gε) has a proper mean
curvature vector field if and only if γ is a ω-helix and then:
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(4.6) ρ =
(

ω + 2 cosθ
1 − ε2

ε

)2

+ 2ε cos θ

(
ω + 2 cos θ

1 − ε2

ε

)
+ ε2.

In particular, a ω-helix Legendre curve has:

(4.7) ρ = ω2 + ε2 ∈ (ω2, 1 + ω2].

For example, the source γl of a quantum spherical curve exp(γl) and its mate γc
l

have:

(4.8) ρl = 1 +
4

(2l + 1)2π2
, ρc

l = 1 +
1

l2π2
.
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