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AN HARDY ESTIMATE FOR COMMUTATORS
OF PSEUDO-DIFFERENTIAL OPERATORS

Ha Duy Hung and Luong Dang Ky*

Abstract. Let T be a pseudo-differential operator whose symbol belongs to the
Hörmander class Sm

ρ,δ with 0 ≤ δ < 1, 0 < ρ ≤ 1, δ ≤ ρ and −(n + 1) < m ≤
−(n + 1)(1 − ρ). In present paper, we prove that if b is a locally integrable
function satisfying

sup
balls B⊂Rn

log(e+ 1/|B|)
(1 + |B|)θ

1
|B|

∫
B

∣∣∣f(x) − 1
|B|

∫
B

f(y)dy
∣∣∣dx <∞

for some θ ∈ [0,∞), then the commutator [b, T ] is bounded on the local Hardy
space h1(Rn) introduced by Goldberg [9].

As a consequence, when ρ = 1 and m = 0, we obtain an improvement of a
recent result by Yang, Wang and Chen [21].

1. INTRODUCTION

Let T be a Calderón-Zygmund operator. A classical result of Coifman, Rochberg
and Weiss (see [6]), states that the commutator [b, T ], defined by [b, T ](f) = bTf −
T (bf), is continuous on Lp(Rn) for 1 < p < ∞, when b ∈ BMO(Rn). Unlike the
theory of Calderón-Zygmund operators, the proof of this result does not rely on a weak
type (1, 1) estimate for [b, T ]. In fact, it was shown in [13, 18] that, in general, the
linear commutator fails to be of weak type (1, 1) and fails to be of type (H1, L1), when
b is in BMO(Rn). Instead, an endpoint theory was provided for this operator.

Let T be a pseudo-differential operator which is formally defined as

Tf(x) =
∫

Rn

σ(x, ξ)e2πix·ξf̂ (ξ)dξ, f ∈ S(Rn),
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where f̂ denotes the Fourier transform of f and σ(x, ξ) is a symbol in the Hörmander
class Sm

ρ,δ for some m, ρ, δ ∈ R (see Section 2). Remark that T is a Calderón-Zygmund
operator if the symbol σ(x, ξ) satisfies some additional assumptions (cf. [12]). In
analogy with the classical results in the setting of Calderón-Zygmund operators, when
b ∈ BMO(Rn), the boundedness of [b, T ] on Lebesgue spaces Lp(Rn), 1 < p < ∞,
have been established, see for example [2, 5, 16, 19]. We refer to [8, 11, 15] for some
similar results in the setting of metric measure spaces. It is well-known that under
certain conditions of m, ρ, δ, the operator T is bounded on h1(Rn) and bounded on
bmo(Rn) (cf. [9, 10, 22, 23]). A natural question is that can one find functions b for
which [b, T ] is bounded on h1(Rn) ? Recently, some endpoint results have obtained by
Yang, Wang and Chen [21]. More precisely, in [21], the authors proved the following.

Theorem A. Let b ∈ LMO∞(Rn). Suppose that T is a pseudo-differential oper-
ator with symbol σ(x, ξ) in the Hörmander class S0

1,δ with 0 ≤ δ < 1. Then,
(i) [b, T ] is bounded from H1(Rn) into L1(Rn).
(ii) [b, T ] is bounded from L∞(Rn) into BMO(Rn).

Our main theorem is as follows.

Theorem 1.1. Let b ∈ LMO∞(Rn). Suppose that T is a pseudo-differential
operator with symbol σ(x, ξ) in the Hörmander class Sm

ρ,δ with 0 ≤ δ < 1, 0 < ρ ≤
1, δ ≤ ρ and −(n+ 1) < m ≤ −(n+ 1)(1− ρ). Then,

(i) [b, T ] is bounded from h1(Rn) into itself.
(ii) [b, T ] is bounded from bmo(Rn) into itself.

Throughout the whole paper, C denotes a positive geometric constant which is inde-
pendent of the main parameters, but may change from line to line. For any measurable
set A ⊂ Rn, denote by |A| the Lebesgue measure of A.

The paper is organized as follows. In Section 2, we give some notations and
preliminaries about the spaces of BMO type, Hardy spaces and pseudo-differential
operators. Section 3 is devoted to prove Theorem 1.1. An appendix will be given in
Section 4.

2. SOME PRELIMINARIES AND NOTATIONS

As usual, S(Rn) denotes the Schwartz class of test functions on R
n, S ′(Rn) the

space of tempered distributions, and C∞
c (Rn) the space of C∞-functions with compact

support.
Let m, ρ and δ be real numbers. A symbol in the Hörmander class Sm

ρ,δ will be a
smooth function σ(x, ξ) defined on Rn × Rn, satisfying the estimates

|Dα
xD

β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|β|+δ|α|, α, β ∈ N

n.
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We say that an operator T is a pseudo-differential operator associated with the
symbol σ(x, ξ) ∈ Sm

ρ,δ if it can be written as

Tf(x) =
∫

Rn

σ(x, ξ)e2πix·ξf̂ (ξ)dξ, f ∈ S(Rn),

where f̂ denotes the Fourier transform of f . Denote by L m
ρ,δ the class of pseudo-

differential operators whose symbols are in Sm
ρ,δ.

Let 0 < ρ ≤ 1, 0 ≤ δ < 1 and m ∈ R. It is well-known (see [10, Proposition 3.1])
that if T ∈ L m

ρ,δ with the symbol σ(x, ξ), then T has the distribution kernel K(x, y)
given by

K(x, y) = lim
ε→0

∫
Rn

e2πi(x−y)·ξσ(x, ξ)ψ(εξ)dξ,

where ψ ∈ C∞
c (Rn) satisfies ψ(ξ) ≡ 1 for |ξ| ≤ 1, the limit is taken in S ′(Rn) and

does not depend on the choice of ψ.
The following useful estimates of the kernels are due to Alvarez and Hounie [1,

Theorem 1.1].

Proposition 2.1. Let 0 < ρ ≤ 1, 0 ≤ δ < 1 and T ∈ L m
ρ,δ. Then, the distribution

kernel K(x, y) of T is smooth outside the diagonal {(x, x) : x ∈ R
n}. Moreover,

(i) For any α, β ∈ N
n, N > 0,

sup
|x−y|≥1

|x− y|N |Dα
xD

β
yK(x, y)| ≤ C(α, β, N ).

(ii) If M ∈ N satisfies M +m+ n > 0, then

sup
|α+β|=M

|Dα
xD

β
yK(x, y)| ≤ C(M)

1

|x− y|M+m+n
ρ

, x �= y.

Here and in what follows, for any ball B ⊂ Rn and f ∈ L1
loc(R

n), we denote

fB :=
1
|B|

∫
B
f(x)dx.

Let 0 ≤ θ < ∞. Following Bongioanni, Harboure and Salinas [3], we say that a
locally integrable function f is in BMOθ(Rn), if

‖f‖BMOθ
:= sup

B

1
(1 + rB)θ|B|

∫
B
|f(y)− fB|dy <∞,

where the supremum is taken over all balls B ⊂ R
n. We then define

(2.1) BMO∞(Rn) = ∪θ≥0BMOθ(Rn).
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A locally integrable function f is said to belongs LMOθ(Rn) if

‖f‖LMOθ
:= sup

B

log(e+ 1/rB)
(1 + rB)θ

1
|B|

∫
B
|f(y)− fB |dy <∞,

where the supremum is taken over all balls B ⊂ R
n. We define

(2.2) LMO∞(Rn) = ∪θ≥0LMOθ(Rn).

Let φ be a Schwartz function satisfying
∫

Rn φ(x)dx = 1. According to Goldberg
[9], we define h1(Rn) as the set of all f ∈ S ′(Rn) such that

‖f‖h1 := ‖mφf‖L1 <∞,

where mφf(x) := sup0<t≤1 |f ∗ φt(x)| with φt(x) := t−nφ(t−1x).
Given 1 < q ≤ ∞, a function a is called an (h1, q)-atom related to the ball

B = B(x0, r) if r ≤ 2 and
(i) supp a ⊂ B,
(ii) ‖a‖Lq ≤ |B|1/q−1,
(iii) if 0 < r < 1, then

∫
Rn a(x)dx = 0.

The following useful fact is due to Yang and Zhou [24, Proposition 3.2] (see also
[4, 22, 23]).

Proposition 2.2. Let 1 < q < ∞. If T is a bounded linear operator on Lq(Rn)
satisfying ‖Ta‖h1 ≤ C for all (h1, q)-atoms a, then T can be extended to a bounded
linear operator on h1(Rn).

It is well-known (see [9]) that the dual space of h1(Rn) is bmo(Rn), namely, the
space of locally integrable functions f such that

‖f‖bmo := sup
B∈D

1
|B|

∫
B
|f(x)− fB|dx+ sup

B∈Dc

1
|B|

∫
B
|f(x)|dx <∞,

where D = {B(x0, r) ⊂ Rn : 0 < r < 1} and Dc = {B(x0, r) ⊂ Rn : r ≥ 1}.
Denote by vmo(Rn) the closure of C∞

c (Rn) in the space bmo(Rn). Thanks to [7,
Theorem 9], we have the following.

Theorem B. The dual of the space vmo(Rn) is the space h1(Rn).

The following result is due to Hounie and Kapp [10, Theorem 4.1].

Theorem C. Let T ∈ L m
ρ,δ with 0 ≤ δ < 1, 0 < ρ ≤ 1, δ ≤ ρ and m ≤

−n(1 − ρ)/2. Then, T is bounded on h1(Rn).
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3. PROOF OF THEOREM 1.1

Here and in what follows, for any ball B = B(x0, r) and k ∈ N, we denote

2kB := B(x0, 2kr).

In order to prove Theorem 1.1, we need the following three technical lemmas.

Lemma 3.1. Let 1 ≤ q <∞ and 0 ≤ θ <∞. Then,
(i) There exists a constant C = C(q, θ) > 0 such that

( 1
|2kB|

∫
2kB

|f(y) − fB |q
)1/q ≤ Ck(1 + 2kr)2θ‖f‖BMOθ

for all f ∈ BMOθ(Rn), k ≥ 1 and for all balls B = B(x0, r) ⊂ R
n.

(ii) There exists a constant C = C(q, θ) > 0 such that

( 1
|2kB|

∫
2kB

|f(y)− fB|q
)1/q ≤ C

k(1 + 2kr)2θ

log
(
e+ 1

2kr

)‖f‖LMOθ

for all f ∈ LMOθ(Rn), k ≥ 1 and for all balls B = B(x0, r) ⊂ Rn.

Lemma 3.2. Let 1 < q <∞ and T ∈ L m
ρ,δ with 0 < ρ ≤ 1, 0 ≤ δ < 1,−n−1 <

m ≤ −(n + 1)(1− ρ). Then, for each N > 0, there exists C = C(N ) > 0 such that

‖Ta‖Lq(2k+1B\2kB) ≤ C
2−ck

(1 + 2kr)N
|2kB|1/q−1

holds for all (h1, q)-atom a related to the ball B = B(x0, r) and for all k = 1, 2, 3, . . .,
where c = min{1, 1+n+m

ρ }.

Lemma 3.3. Let T ∈ L m
ρ,δ with 0 < ρ ≤ 1, 0 ≤ δ < 1,−n − 1 < m ≤

−(n+ 1)(1− ρ). Then the following two statements hold:
(i) If b ∈ BMOθ(Rn) for some θ ∈ [0,∞), then there exists a constant C > 0 such

that for every (h1, 2)-atom a related to the ball B = B(x0, r),

‖(b− bB)Ta‖L1 ≤ C‖b‖BMOθ
.

(ii) If b ∈ LMOθ(Rn) for some θ ∈ [0,∞), then there exists a constant C > 0 such
that for every (h1, 2)-atom a related to the ball B = B(x0, r),

log(e+ 1/r)‖(b− bB)Ta‖L1 ≤ C‖b‖LMOθ
.
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The proof of Lemma 3.1 can be found in [14, Lemmas 5.3 and 6.6] as the special
cases. Now let us give the proofs for Lemmas 3.2 and 3.3.

Proof of Lemma 3.2 If 1 < r ≤ 2, then for every x ∈ 2k+1B \ 2kB and y ∈ B =
B(x0, r), we have |x − y| ≥ |x − x0| − |y − x0| ≥ 2kr − r ≥ 1. Hence, by (i) of
Proposition 2.1 and the Hölder inequality,

|Ta(x)| =
∣∣∣∣
∫

Rn
K(x, y)a(y)dy

∣∣∣∣ ≤
∫

B
|K(x, y)||a(y)|dy

≤ C

∫
B

1
|x− y|N+n+1

|a(y)|dy

≤ C
1

|x− x0|N+n+1
‖a‖Lq|B|1−1/q

≤ C
1

(2kr)N+n+1

for all x ∈ 2k+1B \ 2kB. This implies that

‖Ta‖Lq(2k+1B\2kB) ≤ C
1

(2kr)N+n+1
|2k+1B \ 2kB|1/q

≤ C
1

2kr

1
(1 + 2kr)N

|2kB|1/q−1

≤ C
2−ck

(1 + 2kr)N
|2kB|1/q−1.

In the case of 0 < r ≤ 1, we have
∫

B
a(y)dy = 0. Thus, for every x ∈ 2k+1B \

2kB, from 1 + n +m > 0, Proposition 2.1(ii) yields

(3.1)

|Ta(x)| = ∣∣∫
Rn K(x, y)a(y)dy

∣∣ ≤
∫

B

|K(x, y)−K(x, x0)||a(y)|dy

≤ C

∫
B

|y − x0|
|x− x0|

1+n+m
ρ

|a(y)|dy

≤ C
r

(2kr)
1+n+m

ρ

,

where we used the fact that |x − ξ| ∼ |x − x0| if ξ ∈ B. Let us now consider the
following two cases:

(a) If (2k − 1)r ≥ 1, then, by using Proposition 2.1(i), it is similar to the case
1 < r ≤ 2 that for every x ∈ 2k+1B \ 2kB,

|Ta(x)| ≤ C
1

(2kr)N+n+ 1+n+m
ρ

≤ C
2−ck

(2kr)N+n
.
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Therefore,

‖Ta‖Lq(2k+1B\2kB) ≤ C
2−ck

(2kr)N+n
|2k+1B \ 2kB|1/q

≤ C
2−ck

(1 + 2kr)N
|2kB|1/q−1.

(b) If (2k − 1)r < 1, then since m ≤ −(n+ 1)(1− ρ), (3.1) yields

‖Ta‖Lq(2k+1B\2kB) ≤ C
r

(2kr)
1+n+m

ρ

|2k+1B \ 2kB|1/q

≤ C
1
2k

1
(2kr)n

|2kB|1/q

≤ C
2−ck

(1 + 2kr)N
|2kB|1/q−1,

which ends the proof of Lemma 3.2.

Proof of Lemma 3.3. (i) Since r ≤ 2, by the Hölder inequality, the L2-boundedness
of T , Lemmas 3.1(i) and 3.2, we get

‖(b− bB)Ta‖L1

= ‖(b− bB)Ta‖L1(2B) +
∞∑

k=1

‖(b− bB)Ta‖L1(2k+1B\2kB)

≤ ‖b−bB‖L2(2B)‖Ta‖L2(2B)+
∞∑

k=1

‖b−bB‖L2(2k+1B\2kB)‖Ta‖L2(2k+1B\2kB)

≤ C|2B|1/2‖b‖BMOθ
‖a‖L2

+C
∞∑

k=1

(k + 1)(1 + 2k+1r)2θ|2k+1B|1/2‖b‖BMOθ

2−ck

(1 + 2kr)2θ
|2kB|−1/2

≤ C‖b‖BMOθ
+ C

∞∑
k=1

k2−ck‖b‖BMOθ

≤ C‖b‖BMOθ
,

where c = min{1, 1+n+m
ρ } > 0.

(ii) Setting ε = c/2 with c = min{1, 1+n+m
ρ } > 0, it is easy to check that there

exists a positive constant C = C(ε) such that

log(e+ kt) ≤ Ckε log(e+ t)
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for all k ≥ 1, t > 0. As a consequence, we get

log
(
e+

1
r

)
≤ C2εk log

(
e+

1
2kr

)

for all k ≥ 1. This, together with the Hölder inequality, Lemmas 3.1(i) and 3.2, gives

log(e+ 1/r)‖(b− bB)Ta‖L1

= log(e+ 1/r)‖(b− bB)Ta‖L1(2B)

+
∞∑

k=1

log(e+ 1/r)‖(b− bB)Ta‖L1(2k+1B\2kB)

≤ log(e+ 1/r)‖b− bB‖L2(2B)‖Ta‖L2(2B)

+
∞∑

k=1

log(e+ 1/r)‖b− bB‖L2(2k+1B\2kB)‖Ta‖L2(2k+1B\2kB)

≤ C log(e+ 1/r)
|2B|1/2

log(e+ 1/(2r))
‖b‖LMOθ

‖a‖L2

+C
∞∑

k=1

2εk log
(
e+

1
2kr

)(k + 1)(1 + 2k+1r)2θ

log
(
e+ 1

2k+1r

) |2k+1B|1/2

‖b‖LMOθ

2−ck

(1 + 2kr)2θ
|2kB|−1/2

≤ C‖b‖LMOθ
+C

∞∑
k=1

k2−εk‖b‖LMOθ

≤ C‖b‖LMOθ
,

where we used the facts that r ≤ 2 and c = 2ε.

We are now ready to prove the main theorem.

Proof of Theorem 1.1. (i) Assume that b ∈ LMOθ(Rn) for some θ ∈ [0,∞). By
Proposition 2.2, it is sufficient to show that

‖[b, T ](a)‖h1 ≤ C‖b‖LMOθ

holds for all (h1, 2)-atoms a related to the ballB = B(x0, r). To this ends, by Theorem
C, we need to prove that

(3.2) ‖(b− bB)a‖h1 ≤ C‖b‖LMOθ

and

(3.3) ‖(b− bB)Ta‖h1 ≤ C‖b‖LMOθ
.
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Thanks to Theorem B, to establish (3.2) and (3.3), it is sufficient to prove that

‖f(b− bB)a‖L1 ≤ C‖b‖LMOθ
‖f‖bmo

and
‖f(b− bB)Ta‖L1 ≤ C‖b‖LMOθ

‖f‖bmo

for all f ∈ C∞
c (Rn). Indeed, since f ∈ C∞

c (Rn), it is well-known that |fB| ≤
C log(e+ 1/r)‖f‖bmo. Therefore, by the Hölder inequality and Lemma 3.1(ii),

‖f(b− bB)a‖L1

≤ ‖(f − fB)(b− bB)a‖L1 + log(e+ 1/r)‖f‖bmo‖(b− bB)a‖L1

≤ ‖(f − fB)χB‖L4‖(b− bB)χB‖L4‖a‖L2

+ log(e+ 1/r)‖f‖bmo‖(b− bB)χB‖L2‖a‖L2

≤ C|B|1/4‖f‖BMO|B|1/4‖b‖LMOθ
|B|−1/2 + C‖f‖bmo|B|1/2‖b‖LMOθ

|B|−1/2

≤ C‖b‖LMOθ
‖f‖bmo,

where we used the facts that supp a ⊂ B and r ≤ 2.
By the Hölder inequality, the L2-boundedness of T and Lemmas 3.1(ii) and 3.2,

‖(f − fB)(b− bB)Ta‖L1

= ‖(f − fB)(b− bB)Ta‖L1(2B) +
∞∑

k=1

‖(f − fB)(b− bB)Ta‖L1(2k+1B\2kB)

≤ ‖f − fB‖L4(2B)‖b− bB‖L4(2B)‖Ta‖L2

+
∞∑

k=1

‖f − fB‖L4(2k+1B\2kB)‖b− bB‖L4(2k+1B\2kB)‖Ta‖L2(2k+1B\2kB)

≤ C|2B|1/4‖f‖BMO|2B|1/4‖b‖LMOθ
‖a‖L2

+C
∞∑

k=1

(k + 1)|2k+1B|1/4‖f‖BMO
(k + 1)(1 + 2k+1r)2θ

log(e+ 1
2k+1r

)
|2k+1B|1/4

‖b‖LMOθ

2−ck

(1 + 2kr)2θ
|2kB|−1/2

≤ C‖f‖BMO‖b‖LMOθ
,

where we used the facts that r ≤ 2 and c = min{1, 1+n+m
ρ } > 0. Combining this

with (ii) of Lemma 3.3 allow to conclude that

‖f(b− bB)Ta‖L1 ≤ ‖(f − fB)(b− bB)Ta‖L1 + |fB |‖(b− bB)Ta‖L1

≤ C‖b‖LMOθ
‖f‖BMO +C log(e+ 1/r)‖f‖bmo‖(b− bB)Ta‖L1

≤ C‖b‖LMOθ
‖f‖bmo,
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which completes the proof of (i).
(ii) By a symbol calculation (cf. [20, Proposition 0.3.B]), there exists σ∗ ∈ Sm

ρ,δ

such that T is the conjugate operator of Tσ∗ whose symbol is σ∗. So (ii) can be viewed
as a consequence of (i). This ends the proof of Theorem 1.1.

4. APPENDIX

The following theorem yields the converse of Theorem 1.1. Although, it can be
followed from Theorem 1.2 of Yang, Wang and Chen [21], however we also would like
to give a proof here for completeness. Also, it should be pointed out that our approach
is different from that of Yang, Wang and Chen.

Theorem 4.1. Let b be a function in BMO∞(Rn). Suppose that [b, T ] is bounded
on h1(Rn) for all T ∈ L m

ρ,δ with 0 ≤ δ < 1, 0 < ρ ≤ 1, δ ≤ ρ and −(n+ 1) < m ≤
−(n+ 1)(1− ρ). Then, b ∈ LMO∞(Rn).

Proof. Assume that b is a function in BMOθ(Rn), for some θ ∈ [0,∞), such that
[b, T ] is bounded on h1(Rn) for all T ∈ L m

ρ,δ with 0 ≤ δ < 1, 0 < ρ ≤ 1, δ ≤ ρ and
−(n+1) < m ≤ −(n+1)(1−ρ). Then, for any rj, j = 1, 2, . . . , n, the classical local
Riesz transform of Goldberg (see [9] for details), the commutator [b, rj] is bounded on
h1(Rn) since rj ∈ L 0

1,0 (e.g. [10]). Therefore, for every (h1, 2)-atom a related to the
ball B, (i) of Lemma 3.3 yields

‖rj((b− bB)a)‖L1 ≤ ‖(b− bB)rj‖L1 + C‖[b, rj](a)‖h1

≤ C‖b‖BMOθ
+ C‖[b, rj]‖h1→h1 .

By the local Riesz transforms characterization (see [9, Theorem 2]), we get

(4.1) ‖(b− bB)a‖h1 ≤ C

⎛
⎝‖b‖BMOθ

+
n∑

j=1

‖[b, rj]‖h1→h1

⎞
⎠ ,

for all (h1, 2)-atom a related to the ball B, where the constant C is independent of b
and a. We now prove that b ∈ LMOθ(Rn). To do this, since b ∈ BMOθ(Rn), it is
sufficient to show that

log(e+ 1/r)
(1 + r)θ

1
|B|

∫
B
|b(x)− bB|dx ≤ C

⎛
⎝‖b‖BMOθ

+
n∑

j=1

‖[b, rj]‖h1→h1

⎞
⎠

holds for all B = B(x0, r) the ball in R
n satisfying 0 < r < 1/2. Indeed, let f be the

signum function of b− bB and a = (2|B|)−1(f − fB)χB . Then it is easy to see that
a is an (h1, 2)-atom related to the ball B. We next consider the function

gx0,r(x) = χ[0,r](|x− x0|) log(1/r) + χ(r,1](|x− x0|) log(1/|x− x0|).
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Then, thanks to [17, Lemma 2.5], we have ‖gx0,r‖bmo ≤ C. Moreover, it is clear that
gx0,r(b− bB)a ∈ L1(Rn). By (4.1) and bmo(Rn) = (h1(Rn))∗,

log(e+ 1/r)
(1 + r)θ

1
|B|

∫
B

|b(x)− bB|dx ≤ 3 log(1/r)
1
|B|

∫
B

|b(x)− bB|dx

= 6
∣∣∣∣
∫

Rn

gx0,r(x)(b(x)− bB)a(x)dx
∣∣∣∣

≤ C‖gx0,r‖bmo‖(b− bB)a‖h1

≤ C

⎛
⎝‖b‖BMOθ

+
n∑

j=1

‖[b, rj]‖h1→h1

⎞
⎠ .

This proves that b ∈ LMOθ(Rn), moreover,

‖b‖LMOθ
≤ C

⎛
⎝‖b‖BMOθ

+
n∑

j=1

‖[b, rj]‖h1→h1

⎞
⎠ .

Let b ∈ L1
loc(R

n). A function a is called an h1
b-atom related to the ball B =

B(x0, r) if a is a (h1,∞)-atom related to the ball B = B(x0, r), and when 0 < r < 1,

it also satisfies
∫

Rn

a(x)b(x)dx= 0.

We define h1
b(R

n) as the space of finite linear combinations of h1
b -atoms. As usual,

the norm on h1
b(R

n) is defined by

‖f‖h1
b

= inf

⎧⎨
⎩

N∑
j=1

λjaj : f =
N∑

j=1

λjaj

⎫⎬
⎭ .

Given b ∈ BMO∞(Rn), similar to a result of Pérez [18, Theorem 1.4], we find
a subspace of h1(Rn) for which [b, T ] is bounded from this space into L1(Rn). In
particular, we have:

Theorem 4.2. Let b ∈ BMO∞(Rn) and T ∈L m
ρ,δ with 0 ≤ δ < 1, 0 < ρ ≤

1, δ ≤ ρ and −(n+ 1) < m ≤ −(n+ 1)(1− ρ). Then, [b, T ] is bounded from h1
b(R

n)
into L1(Rn).

Proof. Assume that b ∈ BMOθ(Rn) for some θ ∈ [0,∞). It is sufficient to
prove that for all h1

b -atom a related to the ball B = B(x0, r),

(4.2) ‖[b, T ](a)‖L1 ≤ C‖b‖BMOθ
.

Indeed, we first remark that supp ((b−bB)a)⊂B and ‖(b−bB)a‖L2 ≤C‖b‖BMOθ
|B|1/2

by (i) of Lemma 3.1. Moreover, if 0 < r < 1, then
∫

Rn
(b(x) − bB)a(x)dx =
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∫
Rn
a(x)b(x)dx − bB

∫
Rn
a(x)dx = 0. Therefore, (b − bB)a is a multiple of an

(h1, 2)-atom. So, by (i) of Lemma 3.3 and Theorem C, we get

‖[b, T ](a)‖L1 ≤ ‖(b− bB)Ta‖L1 + ‖T ((b− bB)a)‖L1

≤ C‖b‖BMOθ
,

which ends the proof of Theorem 4.2.
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