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AUTOMORPHISMS OF NEIGHBORHOOD SEQUENCE OF A GRAPH

Li-Da Tong

Abstract. Let G be a graph, u be a vertex of G, and B(u)(or BG(u)) be
the set of u with all its neighbors in G. A sequence (B1, B2, ..., Bn) of sub-
sets of an n-set S is a neighborhood sequence if there exists a graph G with
a vertex set S and a permutation (v1, v2, ..., vn) of S such that B(vi) = Bi

for i = 1, 2, ..., n. Define Aut(B1, B2, ..., Bn) as the set {f : f is a permu-
tation of V (G) and (f(B1), f(B2), ..., f(Bn)) is a permutation of B1, B2, ...,
Bn}. In this paper, we first prove that, for every finite group Γ, there exists
a neighborhood sequence (B1, B2, ..., Bn) such that Γ is group isomorphic to
Aut(B1, B2, ..., Bn). Second, we show that, for each finite group Γ, there exists
a neighborhood sequence (B1, B2, ..., Bn) such that, for each subgroup H of Γ,
H is group isomorphic to Aut(E1, E2, ..., Et) for some neighborhood sequence
(E1, E2, ..., Et) where Ei ⊆ Bji and j1 < j2 < · · · < jt. Finally, we give some
classes of graphs G with neighborhood sequence (B1, B2, ..., Bn) satisfying that
Aut(G) and Aut(B1, B2, ..., Bn) are different.

1. INTRODUCTION

The identifying codes were first introduced by Karpovsky, Chakrabarty, and Levitin
in [4]. Furthermore, they have formed a fundamental basis for a wide variety of
theoretical work and practical applications. If we settle that every vertex v of a graph
G only exhibits the messages from some neighbors of v in G, then we can get a code
with size ≤ M(G). We call such code an identifying set of a graph G. If two graphs
have the same neighborhood sequence, then they have the same minimum cardinality
of an identifying code [4] and the choice identification number [1].

Here we introduce some definitions used in the paper. Let G be a graph, u be a
vertex of G, and B(u)(or BG(u)) be the set of u with all its neighbors in G. And
N (u)(or NG(u)) is the set of all neighbors of u in G. Then B(u) = N (u) ∪ {u}. A
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sequence (B1, B2, ..., Bn) of subsets of an n-set S is a neighborhood sequence if there
exist a graph G with a vertex set S and a permutation (v1, v2, ..., vn) of S such that
B(vi) = Bi for i = 1, 2, ..., n.

An automorphism f of a graph G is a permutation of vertex set V (G) such that xy ∈
E(G) if and only if f(x)f(y) ∈ E(G). The collection Aut(G) of all automorphisms of
G is a group by a composition operator. Define Aut(B1, B2, ..., Bn) as the set {f : f
is a permutation of V (G) and (f(B1), f(B2), ..., f(Bn)) is a permutation of B1, B2,
..., Bn} where f(S) = {f(x) : x ∈ S} for S ⊆ V (G). Such permutation is called
a (B1, B2, ..., Bn)-automorphism. It is immediate that every automorphism f of G

is also an element of Aut(B1, B2, ..., Bn) where (B1, B2, ..., Bn) is the neighborhood
sequence of a graph G.

In this paper, we first prove that, for every finite group Γ, there exists a neighbor-
hood sequence (B1, B2, ..., Bn) such that Γ is isomorphic to Aut(B1, B2, ..., Bn). We
also get that, for each finite group Γ, there exists a neighborhood sequence (B1, B2, ...,

Bn) such that, for each subgroup H of Γ, H is group isomorphic to Aut(E1, E2, ..., Et)
for some neighborhood sequence (E1, E2, ..., Et) where Ei ⊆ Bji and j1 < j2 < · · · <
jt. In the last section, we give some classes of graphs G with neighborhood sequence
(B1, B2, ..., Bn) satisfying Aut(G) and Aut(B1, B2, ..., Bn) are different, and con-
struct non-isomorphic graphs with the same neighborhood sequence having different
automorphism groups.

2. Aut(B1, B2, ..., Bn)

Let [n] be the set {1, 2, ..., n} and B1, B2, ..., Bn be subsets of an n-set S. Then
we say (B1, B2, ..., Bn) has an adjacent SDR if there exist vi ∈ Bi for i = 1, 2, ..., n
such that v1, v2, ..., vn are distinct and vj ∈ Bi if and only if vi ∈ Bj .

Theorem 1. Let B1, B2, ..., Bn be subsets of an n-set S. Then (B1, B2, ..., Bn) is
a neighborhood sequence if and only if (B1, B2, ..., Bn) has an adjacent SDR.

Proof. Let (B1, B2, ..., Bn) be a neighborhood sequence of a graph G. Then
there exists a permutation (v1, v2, ..., vn) of V (G) such that B(vi) = Bi for all i; that
is, vj ∈ Bi{vi} if and only if vivj ∈ E(G). Thus we have an adjacent SDR.

Conversely, let (v1, v2, ..., vn) be an an adjacent SDR of (B1, B2, ..., Bn). Define
G as a graph with a vertex set {v1, v2, ..., vn} and an edge set {vivj : vi ∈ Bj}. It is
easy to check that G is a graph.

The girth of a graph G is the length of a shortest cycle in G.

Proposition 2. If the girth of a connected graph G is greater than or equal to 5,
then the neighborhood sequence of G has a uniquely adjacent SDR.
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Proof. Since the girth of G is greater than or equal to 5, we have that n ≥ 5.
Let (B1, B2, ..., Bn) be the neighbor sequence of a graph G and (v1, v2, ..., vn) be an
adjacent SDR of (B1, B2, ..., Bn). If |Bi| = 2, then it is easy to see that Bi = BH(vi)
for each graph H with the neighbor sequence (B1, B2, ..., Bn). If |Bj | ≥ 3, then
take any pair of two distinct vertices x and y in Bj − {vj}. Since the girth of G is
greater than or equal to 5, {x, y} is not contained in Bk for all k �= j. This implies
that Bj = BH(vj) for each graph H with the neighbor sequence (B1, B2, ..., Bn).
Therefore, (B1, B2, ..., Bn) has a uniquely adjacent SDR.

Corollary 3. Let G be a connected graph with a neighborhood sequence (B1, B2,
..., Bn). If the girth of G is greater than or equal to 5, then G is the unique graph
with neighborhood sequence (B1, B2, ..., Bn).

Proposition 4. Let G be a connected graph with a neighborhood sequence (B1, B2,
..., Bn). Then Aut(G) is a subset of Aut(B1, B2, ..., Bn).

Proof. It is immediate by definition.

Proposition 5. Let G be a graph with a neighborhood sequence (B1, B2, ..., Bn)
and (v1, v2, ..., vn) be an adjacent SDR of (B1, B2, ..., Bn). If f ∈ Aut(B1, B2, ..., Bn),
then (f(v1), f(v2), ..., f(vn)) is an adjacent SDR of (f(B1), f(B2), ..., f(Bn)).

Proof. If f(vj)f(vi) ∈ f(Bi), then vjvi ∈ Bi. By the definition of neigh-
borhood sequences, vivj ∈ Bj . This implies that f(vi)f(vj) ∈ f(Bj). That is,
(f(v1), f(v2), ..., f(vn)) is an adjacent SDR of (f(B1), f(B2), ..., f(Bn)).

Proposition 6. Let G be a graph with neighborhood sequence (B1, B2, ..., Bn). If
the sequence (B1, B2, ..., Bn) has the unique adjacent SDR, then Aut(G) = Aut(B1,

B2, ..., Bn).

Proof. By Proposition 4, we have that Aut(G) ⊆ Aut(B1, B2, ..., Bn). Let
f ∈ Aut(B1, B2, ..., Bn). Since (f(B1), f(B2), ..., f(Bn)) is a permutation of B1,
B2, ..., Bn and Proposition 5, if f(Bi) = Bj then f(vi) = vj ; that is, f is an
automorphism of G.

A graph G is called vertex transitive if for each pair (x, y) of vertices in G there
exists f ∈ Aut(G) such that f(x) = y. Similarly, we say that a neighborhood sequence
(B1, B2, ..., Bn) is vertex transitive if for each pair (x, y) of elements in ∪n

i=1Bi there
exists f ∈ Aut(B1, B2, ..., Bn) such that f(x) = y. In the following proposition, some
graphs are not vertex transitive, but their neighborhood sequences are vertex transitive.
Let both G and H be graphs and the join of G and H be the graph G+H with a vertex
set V (G)∪ V (H) and an edge set E(G)∪ E(H)∪ {uv : u ∈ V (H) and v ∈ V (H)}.
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Proposition 7. Let n be a positive integer with n ≥ 3, G be Kn,n with two
partite sets {a1, a2, ..., an} and {b1, b2, ..., bn}, H1 be Kn,n with two partite sets
{u1, u2, ..., un} and {v1, v2, ..., vn}, and H2 be a graph with a vertex set {u1, u2, ..., un}
∪ {v1, v2, ..., vn} and an edge set {vivj, uiuj : i �= j} ∪ {uivi : i = 1, 2, ..., n},
G1 = G + H1, and G2 = G + H2. Then G1 and G2 have the same vertex transitive
neighborhood sequence; but G2 is not vertex transitive.

Proof. Let (B1, B2, ..., B2n) be the neighborhood sequence of G1. By Proposi-
tion 4, we have that Aut(G1) ⊆ Aut(B1, B2, ..., B2n). Since G1 is vertex transitive,
Aut(B1, B2, ..., B2n) is vertex transitive. If G2 is vertex transitive, then there is an au-
tomorphism f on G2 such that f(a1) = u1. Since f(a1) = u1 and distG2(a1, ai) = 2
for i=2, 3, .., n, we have that f({a1, a2, ..., an})={u1, v2, ..., vn}. Since distG2(ai, aj)
= 2 for i �= j and v2v3 is an edge of G2, we have that f is not an automorphism, a
contradiction. Thus G2 is not vertex transitive.

Frucht [2] proved that, for every finite group Γ, there exists a simple graph G

such that Γ is group isomorphic to Aut(G). In the following, we show that, for every
finite group Γ, there exists a neighborhood sequence (B1, B2, ..., Bn) such that Γ is
isomorphic to Aut(B1, B2, ..., Bn). Frucht defined a useful colored digraph from a
group in [2]. We can use a subdigraph of the colored digraph in [2] to get the same
results. Let Γ be a group and S = {g1, g2, ..., gt} be a generator of Γ. Define DS(Γ)
as a digraph with a vertex set Γ and (x, y) with x �= y is an arc with color k if and
only if xy−1 = gk for some k. Let Aut∗(DS(Γ)) = {f : f is a permutation of Γ,
and both (u, v) and (f(u), f(v)) have the same color}. Then it is easy to check that
Aut∗(DS(Γ)) is a group with a composition operator. We have the following theorem.

Theorem 8. For each finite group Γ, Γ and Aut∗(DS(Γ)) are group isomorphic.

Proof. Let g ∈ Γ and pg be a permutation on Γ by pg(x) = xg for all x ∈ Γ.
If xy−1 = gk, then pg(x)pg(y)−1 = xg(yg)−1 = xy−1 = gk; that is, pg is in
Aut∗(DS(Γ)). Let f ∈ Aut∗(DS(Γ)) and f(1) = g where 1 is the identity of Γ. Claim
that f = pg. Take gi ∈ S. We have that (1, g−1

i ) and (g, g−1
i g) are arcs in DS(Γ) with

the same color i. Since f(1) = g, f(g−1
i ) = g−1

i g. Take gj ∈ S, Since (g−1
i , g−1

j g−1
i )

and (g−1
i g, g−1

j g−1
i g) are arcs in DS(Γ) with color j and f(g−1

i ) = g−1
i g, we have

that f(g−1
j g−1

i )=g−1
j g−1

i g. ByS being a generator ofΓ, wehave thatf(x)=pg(x) for all
x∈Γ. We can conclude that there is a group isomorphism from Γ to Aut∗(DS(Γ)).

Define P (x, y, k) as a graph with a vertex set {x = v0(x, y), v1(x, y), v2(x, y), ...,
vk+2(x, y), y = vk+3(x, y), u(x, y)} and an edge set {vi(x, y), vi+1(x, y) : i =
0, 1, ..., k + 2} ∪ {vk(x, y)u(x, y), u(x, y)vk+3(x, y)}.
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Theorem 9. For each finite group Γ, there exists a 2-connected graph with its
neighborhood sequence (B1, B2, ..., Bn) such that Γ is group isomorphic Aut(B1, B2,
..., Bn).

Proof. For the order of Γ being 2, we have the graph K2 with Aut({1, 2}, {1, 2})
being group isomorphic to Γ. Assume that the order of Γ ≥ 3. Let 1 be the identity
element of Γ, S be a generator of Γ with |S| ≥ 2 and 1 /∈ S, and GS(Γ) be a graph
obtained from DS(Γ) by P (x, y, k) instead of (x, y) with color k in DS(Γ). It is
easy to see that GS(Γ) is a 2-connected graph with girth 5. Since Corollary 3 and
Proposition 6, we have that Aut(GS(Γ)) = Aut(B1, B2, ..., Bn) where B1, B2, ..., Bn

is a neighborhood sequence of GS(Γ).
Claim that Aut∗(DS(Γ)) is group isomorphic to Aut(GS(Γ)). Define a function

g from Aut∗(DS(Γ)) to Aut(GS(Γ)) by g(f(x)) = f(x) for all x ∈ Γ. For each
f ∈ Aut∗(DS(Γ)), define an automorphism h of GS(Γ) by h(x) = f(x) for all x ∈ Γ
and if (x, y) is color k in DS(Γ) then h(u(x, y)) = u(f(x), f(y)) and h(vi(x, y)) =
vi(f(x), f(y)) for k = 0, 1, 2..., k + 3. Then h is the unique automorphism of GS(Γ)
with h(x) = f(x) for all x ∈ Γ. Then g is well defined and one to one.

On the other hand, let h be an automorphism of GS(Γ). By |S| = t ≥ 2, the degree
of v in GS(Γ) is 3t for v ∈ Γ and the degree of u is less than or equals to 3. Then
for each vertex x ∈ Γ, h(x) must be in Γ. Then we have that there exists P (x, y, k)
between x and y in GS(Γ) if and only there exists P (h(x), h(x), k) between h(x) and
h(y) in G(Γ). This implies that there exists f ∈ Aut∗(DS(Γ)) with f(x) = h(x) such
that g ◦ f = h. By this relation, we have a group isomorphism from Aut∗(DS(Γ)) to
Aut(GS(Γ)). The proof is complete.

If S is a minimum generator of Γ and |S| ≥ 2, then we can reduce the num-
ber of edges of graphs in Theorem 9. For cyclic groups, every minimum gener-
ator has only one element. Define P ∗(x, y) as a graph with a vertex set {x =
v0(x, y), v1(x, y), v2(x, y), v3(x, y), y = v4(x, y), u1, u2, u3} and an edge set {vi(x, y),
vi+1(x, y) : i = 0, 1, 2, 3}∪ {v1(x, y)u1, v4(x, y)u1, v2(x, y)u2, u2u3, v4(x, y)u3}. In
the proof of Theorem 9, P ∗(x, y) is instead of P (x, y, 1) for |S| = 1. Then we can
get a 2-connected graph with its neighborhood sequence (B1, B2, ..., Bn) for a cyclic
group Γ such that Γ is group isomorphic Aut(B1, B2, ..., Bn).

If we take S = Γ − {1} with 1 being the identity element of Γ, then for every
subgroup H of Γ, there exists an induced subgraph F of GS(Γ) such that H and
Aut(F ) are group isomorphic.

Proposition 10. Let Γ be a finite group, 1 be the identity element of Γ, and
S = Γ−{1}. Then there exists a 2-connected graph G with its girth ≥ 5 such that for
each subgroup H of Γ, H is group isomorphic to Aut(F ) for some induced subgraph
F of G.

Proof. Let G be GΓ(Γ) in the proof of Theorem 9, H = {h1, h2, ..., ht}, and
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U = ∪i�=jV (P (hi, hj, k)) ∪ H where V (P (hi, hj, k)) is the set of all vertices in
P (hi, hj, k). It is immediate that H is group isomorphic to the automorphism group
of the induced subgraph of U in G.

Corollary 11. Let Γ be a finite group, 1 be the identity element of Γ, and S = Γ−
{1}. Then there exists a neighborhood sequence (B1, B2, ..., Bn) such that, for each
subgroup H of Γ, H is group isomorphic to Aut(E1, E2, ..., Et) for some neighborhood
sequence (E1, E2, ..., Et) where Ei ⊆ Bji and j1 < j2 < · · · < jt.

Let n1, n2, ..., nt be positive integers. Define Tn1,n2,...,nt as a tree with a vertex
set {v} ∪ {(i, j) : 1 ≤ i ≤ t and 1 ≤ j ≤ ni} and an edge set {v(i, 1) : i =
1, 2, ..., t}∪ {(i, j)(i.j + 1) : 1 ≤ i ≤ t and 1 ≤ j ≤ ni − 1}.

Proposition 12. Let t ≥ 2, n1, n2, ..., n2t be positive integers with ni = ni+t

for i = 1, 2, ..., t and n1 < n2 < · · · < nt, and Γ = Aut(Tn1,n2,...,n2t). If Γ′ is a
subgroup of Γ, then there exists a subgraph H of Tn1,n2,...,n2t such that Aut(H) is
group isomorphic to Γ′.

Proof. Let p be an automorphism of Tn1,n2,...,n2t . Since deg(v) ≥ 4, p satisfies
p(v) = v. We can observe that p(i, ni), p(i + t, ni+t) ∈ {(i, ni), (i + t, ni+t)} for
i = 1, 2, ..., t. This implies that Aut(Tn1,n2,...,n2t) is group isomorphic to the carte-
sian product of t Z2s’ where Z2 is a group of order 2. Since every subgroup Γ′ of
Aut(Tn1,n2,...,n2t) is isomorphic to the cartesian product of s Z2s’ for some s ≤ t, we
have that Aut(Tn1,n2,...,n2s) is isomorphic to Γ′. The proof is complete.

But not all graphs G (neighborhood sequences (B1, B2, ..., Bn)) satisfy that, for
each subgroup Γ of Aut(G)(Aut(B1, B2, ..., Bn), resp.), there exists a subgraph H (a
neighborhood sequence (E1, E2, ..., Et), resp.) of G ((B1, B2, ..., Bn) with Ei ⊆ Bji

for some j1 < j2 < · · · < jt, resp.) such that Γ is group isomorphic Aut(H)
(Aut(E1, E2, ..., Et), resp.).

For example, let G be a graph of order n with its edge set being empty, the
automorphism group is the symmetric group of order n and each automorphism group
of a subgraph of G is also a symmetric group. If n ≥ 3, then G has no subgraph
H such that Aut(H) is group isomorphic to a cyclic group of order n. For the
automorphism groups of neighborhood sequences, we give an example C4. Let C4 be
a cycle of order 4 and (B1, B2, B3, B4) be the neighborhood sequence of C4. Then
Aut(B1, B2, B3, B4) is group isomorphic to the symmetric group of order 4 and has
a cyclic subgroup with 3 elements. But there is no subgraph H or neighborhood
sequence (E1, E2, ..., Et) with t ≤ 4 and Ei ⊆ Bji for some j1 < j2 < · · · < jt such
that Aut(H) or Aut(E1, E2, ..., Et) is isomorphic a cyclic group with 3 elements.

Proposition 13. Let Cn be a cycle of order n. If n ≥ 3, then Aut(Cn) has a cyclic
subgroup C′ of order n; but, Cn has no subgraph H with Aut(H) group isomorphic
to C′ .
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Proof. It is easy to see that a cyclic subgroup C′ of order n in Aut(Cn) is a
proper subgroup. If there is a subgraph H of Cn such that Aut(H) is group isomorphic
to C′, then H is a proper subgraph of Cn. Since automorphism groups of a path or
a null graph is not group isomorphic C′, H is neither a path nor a null graph. This
implies that H contains a component which is a path of order greater than or equal to
2. If H has at least two disjoint paths of order greater than or equal to 2, then Aut(H)
contains at least two elements of order 2; but every cycle contains at most one element
of order 2. Thus H has only one component which is a path (v0, v1, ..., vt−1) with
n−1 ≥ t ≥ 2. If t = n−1, then Aut(H) is group isomorphic to a cyclic subgroup of
order 2, a contradiction. If t ≤ n− 2, then Aut(H) is group isomorphic to Sn−t ×Z2

where Sn−t is a symmetric group of order n − t and Z2 is a cyclic group of order 2.
For each n − 1 ≥ t ≥ 2, Sn−t × Z2 and C′ are not group isomorphic. Therefore Cn

has no subgraph H with Aut(H) group isomorphic to C′.

Corollary 14. Let n ≥ 5 and (B1, B2, ..., Bn) be the neighborhood sequence of a
cycle Cn. Then Aut(B1, B2, ..., Bn) has a cyclic subgroup C′ of order n; but, there is
no neighborhood sequence (E1, E2, ..., Et) with Ei ⊆ Bji for some j1 < j2 < · · · < jt

such that Aut(E1, E2, ..., Et) group isomorphic to C′ .

In the following we prove that for n ≥ 3, there exists a subgroup G′ of Aut(Kn)
such that G′ is not group isomorphic to Aut(H) for all subgraph H of Kn.

Theorem 15. (Bertrand’s postulate). For each integer n with n ≥ 2, there exists
a prime number p with n < p < 2n − 2.

Proposition 16. Let Kn be a complete graph of order n. If n ≥ 3, then there
exists an integer p with n < p < 2n such that Aut(Kn) has a cyclic subgroup C′ of
order p; but there is no subgraph H of Kn such that Aut(H) group isomorphic to
C′.

Proof. Let V (Kn) = {0, 1, 2, ..., n− 1}. By Bertrand’s postulate, we have a
prime number p with n/2 < p ≤ n (if n = 3, then let p = 3). Then it is trivial
that Aut(Kn) has a cyclic subgroup C′ of order p. If there is a subgraph H of Kn

such that Aut(H) group isomorphic to a cyclic group of order p; that is, Aut(H) has
a generator {f} for some permutation f on V (H). Since p is a prime number and
p ≥ n/2, without loss of generality, f(i) = i+1 for i = 0, 1, 2, ..., p−2, f(p−1) = 0,
and f(j) = j for j /∈ {0, 1, 2, ..., p − 1}. Then we have that if ij ∈ E(H) with
i, j ∈ {0, 1, 2, ..., p − 1} then kl ∈ E(H) for each pair of i, j ∈ {1, 2, ..., p} with
k − l ≡ i − j (mod p). (In fact, the induced subgraph of {0, 1, 2, ..., p − 1} in H

is a circulant graph.) For each j with j /∈ {0, 1, 2, ..., p − 1}, if jk ∈ E(H) for
some 1 ≤ k ≤ p then ji ∈ E(H) for all 1 ≤ i ≤ p. Let g be a permutation on
V (H) with g(0) = 0, g(1) = p − 1,g(p − 1) = 1,...,g((p − 1)/2) = (p + 1)/2,
g((p + 1)/2) = (p − 1)/2 and g(j) = j for j /∈ {0, 1, 2, ..., p− 1}. Then g is an
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automorphism of H , but g can not be generated by f , a contradiction. Thus there is
no subgraph H of Kn such that Aut(H) group isomorphic to a cyclic group of order
p.

Proposition 17. Let n be an integer with n ≥ 3 and (B1, B2, ..., Bn) be the
neighborhood sequence of a complete graph Kn. Then there exists an integer p with
p ≤ n such that Aut(B1, B2, ..., Bn) has a cyclic subgroup C′ of order n, but there is
no neighborhood sequence (E1, E2, ..., Et) with Ei ⊆ Bji for some j1 < j2 < · · · < jt

such that Aut(E1, E2, ..., Et) group isomorphic to C′ .

Proof. Let V (Kn) = {0, 1, 2, ..., n−1} and (B1, B2, ..., Bn) be the neighborhood
sequence of a complete graph Kn. By Bertrand’s postulate, we have a prime number
p with n/2 < p ≤ n. Then it is trivial that Aut(B1, B2, ..., Bn) has a cyclic subgroup
C′ of order p. If there is a neighborhood sequence (E1, E2, ..., Et) with Ei ⊆ Bji for
some j1 < j2 < · · · < jt such that Aut(E1, E2, ..., Et) group isomorphic to C′; that
is, Aut(E1, E2, ..., Et) has a generator {f} for some permutation f on ∪t

i=1Ei. Since
p is a prime number, without loss of generality, f(i) = i + 1 for i = 0, 1, 2, ..., p− 2
and f(p − 1) = 0. If f(Ei) = Ei for all i, then Aut(E1, E2, ..., Et) is not a cyclic
group, a contradiction. If f(Ei) �= Ei for some i then Ei, f(Ei), ..., fn−1(Ei) are
different. Since p is prime, without loss of generality, we say f i−1(E1) = Ei for
i = 1, 2, ..., p. If there exist a �= b with f i(E1) = Ea = Eb for some i or f(Ek) /∈
{Ek, E1, E2, ..., Ep−1}, then t ≥ 2p, a contradiction. Thus f(Ek) = Ek for k ≥ p.
We can conclude that

(a) Ei ∩ {p, ..., n− 1} = Ej ∩ {p, ..., n− 1} for 0 ≤ i, j ≤ p − 1.
(b) Ek ∩ {0, 1, ..., p− 1} is either {0, 1, ..., p− 1} or empty set for k ≥ p.

Let (v1, v2, ..., vt) be an adjacent SDR of (E1, E2, ..., Et).
If {v1, v2, ..., vp} = {0, 1, ..., p − 1} then we have that vl ∈ Ek for each vl with
|vk−vl| ≡ |vi−vj| (mod p). Let g be a permutation on V (Kn) with g(0) = 0, g(1) =
p−1,...,g((n−1)/2) = (n+1)/2. Then g is an automorphism of Aut(E1, E2, ..., En),
but g can not be generated by f , a contradiction.
If there exists v ∈ {0, 1, ..., p− 1} − {v1, v2, ..., vp}, then v = vk and vi ≥ p for some
k ≥ p and 1 ≤ i ≤ p − 1. By (b), we have that vk ∈ Ej for j ≤ p and vj ≤ p − 1;
that is, vj ∈ Ek. By (a), vi ∈ Er for r ∈ {1, 2, ..., p} and vr ≤ p − 1. By above,
we have that Bj contains 0, 2, ..., p− 1 for j ≤ p. Then Aut(E1, E2, ..., Et) is not a
cyclic group. The proof is complete.

A permutation p on {1, 2, ..., n} is a transposition if there exist i �= j ∈ {1, 2, ..., n}
such that p(i) = j, p(j) = i, and p(x) = x for x /∈ {i, j}. A permutation p

on {1, 2, ..., n} is is even if it can be written as the composition of even number of
transpositions. The set of all even permutations on {1, 2, ..., n} is called the alternating
group An of order n. Then An is a subgroup of the symmetric group on {1, 2, ..., n}
(the set of all permutations with the composition operator).
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Proposition 18. Let Kn be a complete graph of order n. If n ≥ 3, then there is
no subgraph H of Kn such that Aut(H) group isomorphic to An.

Proof. Assume that there exists a subgroup of Kn such that Aut(H) group
isomorphic to An. Then H is regular and nontrivial. If xy ∈ E(G) and z ∈ {1, 2, ..., n}
then by (x, y, z) ∈ An, we have that yz ∈ E(H); that is, H is Kn, a contradiction.

Proposition 19. Let n be an integer with n ≥ 3. Then there is no neighborhood
sequence (B1, B2, ..., Bn) such that Aut(B1, B2, ..., Bn) group isomorphic to An.

Proof. Assume that there exists a neighborhood sequence (B1, B2, ..., Bn) such
that Aut(B1, B2, ..., Bn) group isomorphic to An. Then |Bi| is a constant k. If
k is either 1 or greater than or equal n − 1, then Aut(B1, B2, ..., Bn) is symmet-
ric group of order n, a contradiction. If n ≤ 4, then n = 4 and k = 2. With-
out loss of generality, let (B1, B2, B3, B4) = ({1, 2}, {1, 2}, {3, 4}, {3, 4}). Then
Aut({1, 2}, {1, 2}, {3, 4}, {3, 4}} is not group isomorphic to A4. Suppose that n ≥ 5
and 2 ≤ k ≤ n − 2. Let B1 = {x1, x2, ..., xk}. Let a, b, c be distinct in ∪n

i=1Bi and g

be a permutation g by g(a) = b, g(b) = c, g(c) = a, and g(x) = x for x /∈ {a, b, c}.
Since g is in An and g(B1) = Bj for some j, k(n − k) ≤ n. It contradicts that
2 ≤ k ≤ n − 2.

Corollary 20. Let n be an integer with n ≥ 3 and (B1, B2, ..., Bn) be the neigh-
borhood sequence of a complete graph Kn. Then An is group isomorphic to some sub-
group of Aut(B1, B2, ..., Bn), but there is no neighborhood sequence (E1, E2, ..., Et)
with Ei ⊆ Bji for some j1 < j2 < · · · < jt such that Aut(E1, E2, ..., Et) group
isomorphic to An.

Proof. It is easy to see that An is group isomorphic to some subgroup of
Aut(B1, B2, ..., Bn). Since |Aut(B1, B2, ..., Bn)|/|An| = 2, t = 2. By Proposition
19, we have that there is no neighborhood sequence (E1, E2, ..., Et) with Ei ⊆ Bji for
some j1 < j2 < · · · < jt such that Aut(E1, E2, ..., Et) group isomorphic to An.

3. Aut(G) AND Aut(B1, B2, ..., Bn)

Sometimes, in a graph G with a neighborhood sequence (B1, B2, ..., Bn), Aut(G)
and Aut(B1, B2, ..., Bn) are different. Let [n] = {1, 2, ..., n} and Qn be the n-cube.
Qn is a graph with its vertex set being the power set of [n] and AB being an edge of
Qn if and only if the symmetric difference of A and B having only one element.

Proposition 21. Let n be an integer with n ≥ 2 and (B1, B2, ..., Bm) be the
neighborhood sequence of Qn. Then Aut(Qn) is not equals to Aut(B1, B2, ..., Bm).
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Proof. Let S = {A : A ⊆ [n−1] and |A| is even} and S∗ = {A∪{n} : A ∈ S}.
Define a permutation f on V (Qn) by f(A) = A∪{n} for A ∈ S, f(C) = C−{n} for
C ∈ S∗, and f(D) = D for D ∈ V (Qn)− (S ∪ S∗). It is easy to see that f is not an
automorphism of Qn. Let A be a subset of [n]. If A ∈ S∪S∗, then f(B(A)) = B(A).
If A ∈ V (Qn) − (S ∪ S∗) with n /∈ A, then f(B(A)) = B(A ∪ {n}). These
imply that (f(B1), f(B2), ..., f(Bm)) is a permutation of (B1, B2, ..., Bm); that is,
f ∈ Aut(B1, B2, ..., Bm).

Proposition 22. Let f be the permutation in the proof of Proposition 21. Then
Aut(B1, B2, ..., Bm) is generated by Aut(Qn) ∪ {f}.

Proof. Let p ∈ Aut(B1, B2, ..., Bm). If p(B(x)) = B(y) with p(x) = y,
then we have that N (x) = {x1, x2, ..., xn} and N (y) = {y1, y2, ..., yn} such that
p(xi) = yi for all i. Since every pair of adjacent vertices are contained in exactly two
Bis’, p(B(xi)) = B(yi) for i = 1, 2, ..., n. By the similar arguments, we have that
p(B(u)) = B(p(u)) for all u ∈ V (Qn). This implies that p ∈ Aut(Qn).

If p(B(x)) = B(y) with p(x) = w for some w ∈ N (y), then there exists a vertex
z ∈ N (x) such that p(z) = y. Let a, b be different elements in [n], and fa and gab

be permutations of V (Qn) with fa(A) = A − {a} for a ∈ A, fa(B) = B ∪ {a}
for a /∈ B, gab(A) = (A − {a}) ∪ {b} for a ∈ A and b /∈ A, gab(B) = (B −
{b}) ∪ {a} for a /∈ B and b ∈ B, and gab(C) = C for a, b ∈ C or a, b /∈ C. It
is easy to see that fa and gab are in Aut(B1, B2, ..., Bm). Since the composition of
two automorphisms in Aut(B1, B2, ..., Bm), fa, and gab are in Aut(B1, B2, ..., Bm),
without loss of generality, we can assume that x and y are empty sets, and z and
w are {n}. Since p(B(x)) = B(y), let N (x) = {z1, z2, ..., zn = z} and N (y) =
{w1, w2, ..., wn = w} with p(zi) = wi for i = 1, 2, ..., n − 1. Since every pair of
adjacent vertices are contained in exactly two Bis’, p(B(z)) = B(w). We observe
that N (z) ∩ N (zi) = {x, z′i} and N (w) ∩ N (wi) = {y, w′

i} for i = 1, 2, ..., n −
1. Since p(zi) = wi for i = 1, 2, ..., n − 1, we have that p(B(zi)) = B(w′

i) and
p(B(z′i)) = B(wi) for i = 1, 2, ..., n− 1. By B(zi) ∩ B(z) = {x, z′i}, p(B(zi)) ∩
p(B(z)) = {p(x), p(z′i)}. Then {w, w′

i} = {w, p(z′i)}. Thus we have that p(z′i) = w′
i

for i = 1, 2, ..., n− 1. Let N (zj) = {u1, u2, ..., un−1 = x, un = z′j} and N (z′j) =
{v1, v2, ..., vn−1 = z, vn = zj} with utvt ∈ E(Qn) for all t. Since p(B(zj)) =
B(w′

j) and p(B(z′j)) = B(wj), let N (wj) = {r1, r2, ..., rn−1 = y, un = w′
j} and

N (w′
j) = {s1, s2, ..., sn−1 = w, vn = wj} with rtst ∈ E(Qn) for all t and p(ui) = si

for i = 1, 2, ..., n − 1. Since p(vi) ∈ {r1, r2, ..., rn−2} and si ∈ p(B(vi)), p(vi) =
ri for i = 1, 2, ..., n − 2. By the similar discussion, we have that p = f where
f is the permutation in the proof of Proposition 21. Therefore, every element of
Aut(B1, B2, ..., Bm) can be generated by Aut(Qn) ∪ {f}.

Let Km
2n be a graph obtained from the complete graph K2n deleting a perfect

matching.
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Proposition 23. For each positive integer n ≥ 2, Aut(Km
2n) is not equals to

Aut(B1, B2, ..., B2n) where (B1, B2, ..., B2n) is a neighborhood sequence of Km
2n.

Proof. Let V (Km
2n) be {1, 2, ..., 2n} and i(i + 1) /∈ E(Km

2n) for all odd number
i. Since B1, B2, ..., B2n is all (2n − 1)-subsets of {1, 2, ..., 2n}, every permutation of
{1, 2, ..., 2n} is in Aut(B1, B2, ..., B2n); that is, Aut(B1, B2, ..., B2n) is isomorphic to
the symmetric group S2n. But, let p be a permutation on {1, 2, ..., 2n} with p(1) = 3,
p(3) = 1, and p(x) = x for x ∈ {2, 4, 5, ..., 2n}, it is not an automorphism of Km

2n.

Remark. By the definitions of Proposition 23, Aut(B1, B2, ..., B2n) = S2n is the
symmetric group of order 2n and Aut(Km

2n) = {p ∈ S2n : p({i, i + 1}) = {j, j + 1}
for all odd integer i}.

The following proposition shows that there are two non-isomorphic graph G and H

with the same neighborhood sequence (B1, B2, ..., Bn), but Aut(G) = Aut(B1, B2, ...,
Bn) is not group isomorphic to Aut(H).

Proposition 24. Let G be the graph with a vertex set {1, 2, ..., 2n} and an edge set
{i(i+n) : i = 1, 2, ..., n}∪{ij : {i, j} ⊆ {1, 2, ..., n} or {i, j} ⊆ {n+1, n+2, ..., 2n}}
and H = Kn,n with two partite sets {1, 2, ..., n} and {n + 1, n + 2, ..., 2n}. Then

(1) G and H have the same neighborhood sequence (B1, B2, ..., B2n),
(2) Aut(G) is not group isomorphic to Aut(H), and
(3) Aut(H) = Aut(B1, B2, ..., B2n).

Proof. Let Bi = {i, n+1, n+2, ..., 2n} for i = 1, 2, ..., n and Bj = {j, 1, 2, ..., n}
for j = n + 1, n + 2, ..., 2n. Then it is easy to check that (B1, B2, ..., B2n) is a
neighborhood sequence of G and H .

We have that f is an automorphism of G if and only if {f(1), f(2), ..., f(n)} is
either {1, 2, ..., n} or {n + 1, n + 2, ..., 2n}. Let g be a permutation on {1, 2, ..., 2n}
with p(1) = 2, p(2) = 1, and p(x) = x for x /∈ {1, 2}. Then p ∈ Aut(H), but
p /∈ Aut(G). (In fact, Aut(G) is a proper subgroup of Aut(H).)

It is trivial that Aut(H) ⊆ Aut(B1, B2, ..., B2n). Take f ∈ Aut(B1, B2, ..., B2n).
(a) Assume that f(i) = j for some i, j ∈ {1, 2, ..., n}. If f({n + 1, ..., 2n}) =

{n+1, ..., 2n}, then f({1, ..., n}) = {1, ..., n}; that is, f ∈ Aut(H). If f(x) = y
for some x ∈ {n + 1, n + 2, ..., 2n} and y ∈ {1, 2, ..., n}, then f(Bi) = Bt for
some t ∈ {n + 1, ..., 2n}. This implies that there is a u ∈ {n + 1, ..., 2n}− {x}
and v ∈ {1, ..., n} − {y} such that, f(u) = v. Then we have that, for each
a ∈ {1, ..., n}, there exists b ∈ {n + 1, ..., 2n} such that f(Ba) = Bb. Since
f(Bi) = Bt and f(i) = j, there exists w ∈ {n + 1, ..., 2n} such that f(w) = t.
By above, we conclude that f(Bc) = Bt for all c ∈ {1, 2, ..., n}, a contradiction.

(b) Assume that f(i) = j for some i ∈ {1, 2, ..., n} and j ∈ {n + 1, n + 2, ..., 2n}.
If f({n + 1, ..., 2n}) = {1, ..., n}, then f({1, ..., n}) = {n + 1, ..., 2n}; that
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is, f ∈ Aut(H). If f(x) = y for some x ∈ {n + 1, n + 2, ..., 2n} and y ∈
{n + 1, n + 2, ..., 2n}, then f(Bi) = Bt for some t ∈ {1, ..., n}. This implies
that there is a u ∈ {n + 1, ..., 2n} − {x} and v ∈ {n + 1, ..., 2n} − {y} such
that, f(u) = v. Then we have that, for each a ∈ {1, ..., n}, there exists b ∈
{1, ..., n} such that f(Ba) = Bb. Since f(Bi) = Bt and f(i) = j, there
exists w ∈ {n + 1, ..., 2n} such that f(w) = t. By above, we conclude that
f(Bc) = Bt for all c ∈ {1, 2, ..., n}, it is also a contradiction. Therefore, every
automorphism in Aut(B1, B2, ..., B2n) must be an automorphism of G. Hence
Aut(H) = Aut(B1, B2, ..., B2n).

Remark. In the proposition 24, Aut(G) = {p : p is a permutation of {1, 2, ..., 2n}
and p({1, 2, ..., n}) is either {1, 2, ..., n} or {n + 1, n + 2, ..., 2n}} and Aut(H) =
{p ∈ Aut(G) : p({i, n + i}) = {j, j + n} for i = 1, 2, ..., n}.

ACKNOWLEDGMENTS

The author thanks the referee for many valuable and constructive suggestions.

REFERENCES

1. D.-B. Chang and L.-D. Tong, Choice identification of a graph, Discrete Applied Math-
ematics, accepted 2013.

2. R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio
Mathematica (in German), 6 (1939), 239-250.

3. S. Gravier, J. Moncel and A. Semri, Identifying codes of cycles, European J. of Combin.,
27 (2006), 767-776.

4. M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for
identifying vertices in graphs, IEEE Transactions on Information Theory, 44(2) (1998),
599-611.

5. M. G. Karpovsky, K. Chakrabarty, L. B. Levitin and D. R. Avreky, On the covering of
vertices for fault diagnosis in hypercubes, Inform. Process. Lett., 69 (1999), 99-103.

6. A. Raspaud and L.-D. Tong, Minimum identifying code graphs, Discrete Applied Math-
ematics, 160(9) (2012), 1385-1389.

7. M. Xu, K. Thulasiramanb and X. Hu, Identifying codes of cycles with odd orders,
European J. of Combin., 29 (2008), 1717-1720.

Li-Da Tong
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 804
Taiwan
E-mail: ldtong@math.nsysu.edu.tw


