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MORDUKHOVICH SUBGRADIENTS OF THE VALUE FUNCTION
IN A PARAMETRIC OPTIMAL CONTROL PROBLEM

Nguyen Thi Toan

Abstract. This paper is devoted to the study the first-order behavior of the value
function of a parametric optimal control problem with linear constraints and a
nonconvex cost function. By establishing an abstract result on the Mordukhovich
subdifferential of the value function of a parametric mathematical programming
problem, we derive a formula for computing the Mordukhovich subdifferential of
the value function to a parametric optimal control problem.

1. INTRODUCTION

A wide variety of problems in optimal control problem can be posed in the following
form.

Determine a control vector u ∈ Lp([0, 1], Rm) and a trajectory x ∈ W 1,p([0, 1], Rn),
1 < p < ∞, which minimize the cost

g
(
x(1)

)
+
∫ 1

0
L
(
t, x(t), u(t), θ(t)

)
dt(1)

with the state equation

(2) ẋ(t) = A(t)x(t) + B(t)u(t) + T (t)θ(t) a.e. t ∈ [0, 1],

and the initial value

(3) x(0) = α.

Here W 1,p([0, 1], R
n) is the Sobolev space, which consists of absolutely continuous

functions x : [0, 1] → Rn such that ẋ ∈ Lp([0, 1], Rn). Its norm is given by

‖x‖1,p = |x(0)|+ ‖ẋ‖p.
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The notations in (1)–(3) have the following meanings:
x, u are the state variable and the control variable, respectively,
(α, θ) ∈ R

n × Lp([0, 1], R
k) are parameters,

g : R
n → R̄, L : [0, 1]× R

n × R
m × R

k → R̄ are given functions,
A(t) =

(
aij(t)

)
n×n

, B(t) =
(
bij(t)

)
n×m

and T (t) =
(
cij(t)

)
n×k

are matrix-
valued functions. Put

X = W 1,p([0, 1], R
n), U = Lp([0, 1], R

m), Z = X × U,

Θ = Lp([0, 1], R
k), W = R

n × Θ.

It is well known that X, U, Z, Θ and W are Asplund spaces. For each w = (α, θ) ∈ W ,
the optimal value and the solution set of the problem (1)-(3) corresponding to parameter
w ∈ W are denoted by V (w) and S(w), respectively. Thus,

V : W → R̄

is an extended real-valued function, which is called the value function or the marginal
function of the problem (1)–(3). It is assumed that V is finite at w̄ and z̄ = (x̄, ū) is
a solution of the problem corresponding to a parameter w̄, that is z̄ = (x̄, ū) ∈ S(w̄).

The study of the first-order behavior of value functions is important in variational
analysis and optimization. An example is the study of distance functions and its appli-
cations to optimal control problems (see [2, 10, 28]). There are many papers dealing
with differentiability properties and the Fréchet subdifferential of value functions (see
[8, 9, 15, 16, 17, 20]). By considering a set of assumptions, which involves a kind
of coherence property, Penot [20] showed that the value functions are Fréchet differ-
entiable. The results of Penot gave sufficient conditions under which the value func-
tions are Fréchet differentiable rather than formulas for computing their derivatives.
In [17], Mordukhovich, Nam and Yen derived formulas for computing and estimat-
ing the Fréchet subdifferential and Mordukhovich subdifferential of value functions of
parametric mathematical programming problems in Banach spaces.

Besides the study of the first-order behavior of value functions in parametric mathe-
matical programming, the study of the first-order behavior of value functions in optimal
control problems has attracted attention of many researchers (see [4, 6, 7, 12, 18, 19,
21, 22, 23, 24, 25, 26] and [27]). Recently, Toan and Kien [25] have derived a formula
for an upper evaluation of the Fréchet subdifferential of the value function V for the
case where g and L were not assumed to be convex. Under some assumptions which
are weaker than the ones in [25], Chieu, Kien and Toan in [6] have obtained a formula
for an upper evaluation of the Fréchet subdifferential of the value function V , which
complements the results in [25].

However, we still could not find a suitable upper evaluation for the Mordukhovich
subdifferential of the value function V in the case g and L not assumed to be convex.
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It is known that Mordukhovich subdifferential is the outer limit of a family of the ε-
Fréchet subdifferentials. Hence, upper estimates for the Mordukhovich subdifferential
of the value function V are more complicated than the corresponding results in [6] and
[25].

The aim of this paper is to derive some new formulas for computing the Mor-
dukhovich subdifferential of V at w̄ via the tool of generalized differentiation. In
order to obtain the result, we first establish a formula for computing and estimating the
Mordukhovich differential of value functions for a special class of parametric math-
ematical programming problems. We then apply the obtained result to our problem
together with using some techniques of functional analysis. We note that upper esti-
mates for the Fréchet subdifferential in [6] are at the same time upper estimates for the
Mordukhovich subdifferential of the value function V if the solution map S is V -inner
semicontinuous at (w̄, z̄). Besides, the Mordukhovich subdifferential of the value func-
tion V at w̄ contains the Fréchet subdifferential of V at w̄. So, the upper-evaluation
in this paper is better than the corresponding evaluation in [6].

Let us recall some notions on generalized differentiation, which are related to our
problem. The notions and results of generalized differentiation can be found in [3],
[13] and [14]. Let Z be an Asplund space, ϕ : Z → R̄ be an extended real-valued
function and z̄ ∈ Z be such that ϕ(z̄) is finite. For each ε ≥ 0, the set

∂̂εϕ(z̄) :=
{
z∗ ∈ Z∗| lim inf

z→z̄

ϕ(z) − ϕ(z̄) − 〈z∗, z − z̄〉
‖z − z̄‖ ≥ −ε

}
is called the ε-Fréchet subdifferential of ϕ at z̄. A given vector z∗ ∈ ∂̂εϕ(z̄) is called
an ε-Fréchet subgradient of ϕ at z̄. The set ∂̂ϕ(z̄) = ∂̂0ϕ(z̄) is called the Fréchet
subdifferential of ϕ at z̄ and the set

(4) ∂ϕ(z̄) := Limsup
ϕ

z→z̄
ε↓0

∂̂εϕ(z)

is called the Mordukhovich subdifferential of ϕ at z̄, where the notation z
ϕ−→ z̄ means

z → z̄ and ϕ(z) → ϕ(z̄). Hence

z∗ ∈ ∂ϕ(z̄) ⇐⇒ there exist sequences zk
ϕ−→ z̄, εk → 0+, and z∗k ∈ ∂̂εk

ϕ(zk)

such that z∗k
w∗
−−→ z∗. If ϕ is lower semicontinuous around z̄, then we can equivalently

put ε = 0 in (4). Moreover, we have ∂ϕ(z̄) �= ∅ for every locally Lipschitzian
function. It is known that the Mordukhovich subdifferential reduces to the classical
Fréchet derivative for strictly differentiable functions and to subdifferential of convex
analysis for convex functions. The set

∂∞ϕ(z̄) := Limsup
ϕ

z→z̄
λ,ε↓0

λ∂̂εϕ(z)
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is called the singular subdifferential of ϕ at z̄. Hence

z∗ ∈ ∂∞ϕ(z̄) ⇐⇒ there exist sequences zk
ϕ−→ z̄, εk → 0+, λk → 0+,

and z∗k ∈ λk∂̂εk
ϕ(zk) such that z∗k

w∗
−−→ z∗.

Let Ω be a nonempty set in Z and z0 ∈ Ω. The set

N̂ε(z0; Ω) :=
{
z∗ ∈ Z∗| lim sup

z
Ω−→z0

〈z∗, z − z0〉
‖z − z0‖

≤ ε
}

is called the ε-Fréchet normal cone to Ω at z0 and the set

N (z0; Ω) := lim
Ω

z→z0
ε↓0

N̂ε(z; Ω)

is called the Mordukhovich normal cone to Ω at z0. It is also known that if Ω is
a convex set, then the Mordukhovich normal cone coincides with the Fréchet normal
cone and coincides with normal cone of convex analysis for convex sets.

A set Ω is called sequentially normally compact (SNC) at z̄ if for any sequences
εk ↓ 0, zk

Ω−→ z̄, and z∗k ∈ N̂εk
(zk; Ω) one has[

z∗k
w∗
−−→ 0

]
=⇒

[
‖z∗k‖ → 0

]
as k → ∞,

where εk can be omitted if Ω is locally closed around z̄. An extended real-valued
function ϕ on Z is called sequentially normally epi-compact (SNEC) at z̄ if its epigraph
is SNC at (z̄, ϕ(z̄)).

We say that a set-valued map F : Z ⇒ E , where Z and E are Asplund spaces,
admits a locally upper Lipschitzian selection at (z̄, v̄) ∈ gphF :=

{
(z, v) ∈ Z ×

E|v ∈ F (z)
}

if there is a single-valued mapping φ : Z → E , which is locally upper
Lipschitzian at z̄, that is there exist numbers η > 0 and l > 0 such that

‖φ(z)− φ(z̄)‖ ≤ l‖z − z̄‖ whenever z ∈ B(z̄, η),

which satisfies φ(z̄) = v̄ and φ(z) ∈ F (z) for all z in a neighborhood of z̄.

We now return to the problem (1)–(3). For each w = (α, θ) ∈ W , we put

J(x, u, w) = g
(
x(1)

)
+
∫ 1

0
L
(
t, x(t), u(t), θ(t)

)
dt

and

G(w) =
{
z = (x, u) ∈ X × U |(2) and (3) are satisfied

}
.(5)
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Then the problem (1)–(3) can be formulated in the following form:

V (w) = inf
z∈G(w)

J(z, w).(6)

We say that the solution map S(w) is V -inner semicontinuous at (w̄, z̄) if for every
sequence wk

V−→ w̄
(
i.e., wk → w̄ and V (wk) → V (w̄)

)
, there is a sequence {zk} with

zk ∈ S(wk) for all k, which contains a subsequence converging to z̄.
To deal with our problem, we impose the following assumptions:

(H1) The functions L : [0, 1]× R
n × Rm ×Rk → R̄ and g : Rn → R̄ have properties

that L(·, x, u, v) is measurable for all (x, u, v) ∈ R
n ×R

m × R
k, L(t, ·, ·, ·) and

g(·) are continuously differentiable for almost every t ∈ [0, 1], and there exist
constants c1 > 0, c2 > 0, r ≥ 0, a nonnegative function ω1 ∈ Lp([0, 1], R),
constants 0 ≤ p1 ≤ p, 0 ≤ p2 ≤ p − 1 such that

|L(t, x, u, v)| ≤ c1

(
ω1(t) + |x|p1 + |u|p1 + |v|p1

)
,

max
{
|Lx(t, x, u, v)|, |Lu(t, x, u, v)|, |Lv(t, x, u, v)|

}
≤c2

(
|x|p2+|u|p2+|v|p2

)
+r

for all (t, x, u, v) ∈ [0, 1]× R
n × R

m × R
k.

(H2) The matrix-valued functions A : [0, 1] → Mn,n(R), B : [0, 1] → Mn,m(R) and
T : [0, 1] → Mn,k(R) are measurable and essentially bounded.

(H3) There exists a constant c3 > 0 such that

|T T (t)v| ≥ c3|v| ∀ v ∈ R
n, a.e. t ∈ [0, 1].

We are now ready to state our main result.

Theorem 1.1. Suppose that the solution map S is V -inner semicontinuous at
(w̄, z̄) ∈ gphS, and assumptions (H1)–(H3) are fulfilled. Then for a vector (α∗, θ∗) ∈
R

n × Lq([0, 1], R
k) to be a Mordukhovich subgradient of V at (ᾱ, θ̄), it is necessary

that there exists a function y ∈ W 1,q([0, 1], Rn) such that the following conditions are
satisfied:

α∗ = g′
(
x̄(1)

)
+
∫ 1

0
Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt −

∫ 1

0
AT (t)y(t)dt,(7)

y(1) = −g′
(
x̄(1)

)
(8)

and (
ẏ(t) + AT (t)y(t), BT (t)y(t), θ∗(t) + T T (t)y(t)

)
= ∇L

(
t, x̄(t), ū(t), θ̄(t)

)
a.e. t ∈ [0, 1].(9)
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The above conditions are also sufficient for (α∗, θ∗) ∈ ∂V (ᾱ, θ̄) if the solution
map S has a locally upper Lipschitzian selection at (w̄, x̄, ū). Here, AT stands for
the transpose of A, ∇L

(
t, x̄(t), ū(t), θ̄(t)

)
stands for the gradient of L(t, ·, ·, ·) at(

x̄(t), ū(t), θ̄(t)
)

and q is the conjugate number of p, that is, 1 < q < +∞ and
1/p + 1/q = 1.

In order to prove Theorem 1.1 we first reduce the problem (1)–(3) to a math-
ematical programming problem and then establish some formulas for computing the
Mordukhovich subdifferential of its value function. This procedure is presented in
Section 2. A complete proof for Theorem 1.1 will be provided in Section 3.

2. THE OPTIMAL CONTROL PROBLEM AS A PROGRAMMING PROBLEM

In this section, we suppose that X , W and Z are Asplund spaces with the dual
spaces X∗, W ∗ and Z∗, respectively. Assume that M : Z → X and T : W → X

are continuous linear mappings. Let M∗ : X∗ → Z∗ and T ∗ : X∗ → W ∗ be
adjoint mappings of M and T , respectively. Let function f : W × Z → R̄ be lower
semicontinuous around (w̄, z̄). For each w ∈ W , we put

H(w) :=
{
z ∈ Z| Mz = Tw

}
.

Consider the problem of computing the Mordukhovich subdifferential of the value
function

h(w) := inf
z∈H(w)

f(w, z).(10)

This is an abstract model for (6).
We denote by Ŝ(w) the solution set of (10) corresponding to parameter w ∈ W .

Assume that the value function h is finite at w̄ and z̄ is a solution of the problem
corresponding to a parameter w̄, that is z̄ ∈ Ŝ(w̄).

We now derive a formula for computing the Mordukhovich subdifferential and the
singular subdifferential of the value function to the parametric programming problem
(10). Note that the structure of the formulas for evaluation of the Mordukhovich
subdifferential ∂h(w̄) and singular subdifferential ∂∞h(w̄) is different from (although
having some similarities) those established in [6]. The main differences are that we
do not assume ∂+f(w̄, z̄) �= ∅ and instead of using the intersection over (w∗, z∗) ∈
∂+f(w̄, z̄) as in [6, Theorem 3.1], we use the union over (w∗, z∗) ∈ ∂f(w̄, z̄) or
(w∗, z∗) ∈ ∂∞f(w̄, z̄) to evaluate ∂h(w̄) and ∂∞h(w̄). On the other hand, we need
additional assumptions that the objective function f is SNEC at (w̄, z̄) and the solution
map Ŝ is h-inner semicontinuous at (w̄, z̄).

Theorem 2.1. Suppose the solution map Ŝ is h-inner semicontinuous at (w̄, z̄) ∈
gphŜ, f is SNEC at (w̄, z̄) and
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(i) the following qualification condition is satisfied[
∂∞f(w̄, z̄)

]
∩
[{

(T ∗x∗,−M∗x∗) : x∗ ∈ X∗}] = {0},

(ii) there exists a constant c > 0 such that

‖T ∗x∗‖ ≥ c‖x∗‖, ∀x∗ ∈ X∗.

Then one has

∂h(w̄) ⊆
⋃

(w∗,z∗)∈∂f(w̄,z̄)

[
w∗ + T ∗((M∗)−1(z∗)

)]
.(11)

∂∞h(w̄) ⊆
⋃

(w∗,z∗)∈∂∞f(w̄,z̄)

[
w∗ + T ∗((M∗)−1(z∗)

)]
.(12)

Moreover, assume that f is strictly differentiable at (w̄, z̄) and the solution map
Ŝ admits a local upper Lipschitzian selection at (w̄, z̄). Then

∂h(w̄) = ∇wf(w̄, z̄) + T ∗((M∗)−1(∇zf(w̄, z̄))
)
.(13)

For the proof of this theorem, we need the following lemma from [6]. Here we put
Q = gphH .

Lemma 2.2. Suppose that assumptions of Theorem 2.1 are satisfied. Then for each
(w̄, z̄) ∈ Q, one has

N
(
(w̄, z̄); Q

)
=
{
(−T ∗x∗, M∗x∗)|x∗ ∈ X∗}.

We now consider the mapping ϑ : W × Z → R̄ defined by setting

ϑ(w, z) = f(w, z) + δ
(
(w, z); Q

)
,

where δ
(
·; Q
)

is the indicator function of Q, that is δ
(
(w, z); Q

)
= 0 if (w, z) ∈ Q

and δ
(
(w, z); Q

)
= +∞ otherwise.

Proof of Theorem 2.1. Take any w∗ ∈ ∂h(w̄). Then there exist sequences wk
h−→

w̄, εk → 0+, and w∗
k ∈ ∂̂εk

h(wk) such that w∗
k

w∗
−−→ w∗ as k → ∞. Hence, there is a

sequence ηk ↓ 0 such that

〈w∗
k, w − wk〉 ≤ h(w)− h(wk) + 2εk ‖ w − wk ‖, ∀w ∈ wk + ηkBW .

So
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〈w∗
k, w − wk〉 + 〈0, z − zk〉 ≤ ϑ(w, z)− ϑ(wk, zk) + 2εk(‖ w − wk ‖ + ‖ z − zk ‖),

for all zk ∈ Ŝ(wk), (w, z) ∈ (wk, zk) + ηkBW×Z , ∀k ∈ N. This gives (w∗
k, 0) ∈

∂̂ε̃k
ϑ(wk, zk) with ε̃k = 2εk . Since Ŝ is h-inner semicontinuous at (w̄, z̄), we can

select a sequence of zk ∈ Ŝ(wk) converging to z̄. Observe that ϑ(wk, zk) → ϑ(w̄, z̄)
due to h(wk) → h(w̄). Hence

∂h(w̄) ⊂
{
w∗ ∈ W ∗ : (w∗, 0) ∈ ∂ϑ(w̄, z̄)

}
=
{
w∗ ∈ W ∗ : (w∗, 0) ∈ ∂

[
f(w, z) + δ

(
(w, z); Q

)]
(w̄, z̄)

}
.

From the assumed SNEC property of f at (w̄, z̄), condition (i) and [13, Theorem 3.36],
it follows that

∂h(w̄) ⊂
{
w∗ ∈ W ∗ : (w∗, 0) ∈ ∂f(w̄, z̄) + N

(
(w̄, z̄); Q

)}
,

which is equivalent to

∂h(w̄) ⊂
{
w∗ ∈ W ∗ : (w∗, 0) ∈

⋃
(w∗

1,z∗1 )∈∂f(w̄,z̄)

[
(w∗

1, z
∗
1) + N

(
(w̄, z̄); Q

)]}
.

By Lemma 2.2, there exists x∗ ∈ X∗ such that

w∗ − w∗
1 = −T ∗(x∗) and − z∗1 = M∗(x∗),

for some (w∗
1, z

∗
1) ∈ ∂f(w̄, z̄). Hence

w∗ = w∗
1 + T ∗(−x∗) and − x∗ = (M∗)−1(z∗1).

Consequently
w∗ ∈ w∗

1 + T ∗[(M∗)−1(z∗1)
]
,

for some (w∗
1, z

∗
1) ∈ ∂f(w̄, z̄). We obtain the inclusion (11).

To prove the inclusion (12), take any w∗ ∈ ∂∞h(w̄). Then there exist sequences
wk

h−→ w̄, εk → 0+, ξk → 0+, and w∗
k ∈ ξk∂̂εk

h(wk) such that w∗
k

w∗
−−→ w∗ as k → ∞.

So 1
ξk

w∗
k ∈ ∂̂εk

h(wk), ∀k ∈ N. Hence, there is a sequence ηk ↓ 0 such that

〈 1
ξk

w∗
k, w − wk〉 ≤ h(w) − h(wk) + 2εk ‖ w − wk ‖, ∀w ∈ wk + ηkBW .

So

〈 1
ξk

w∗
k, w−wk〉+ 〈0, z− zk〉 ≤ ϑ(w, z)−ϑ(wk, zk)+ 2εk(‖ w−wk ‖ + ‖ z − zk ‖),



Mordukhovich Subgradients of the Value Function in a Parametric Optimal Control Problem 1059

for all zk ∈ Ŝ(wk), (w, z) ∈ (wk, zk) + ηkBW×Z , ∀k ∈ N. This gives 1
ξk

(w∗
k, 0) ∈

∂̂ε̃k
ϑ(wk, zk) with ε̃k = 2εk. So (w∗

k, 0) ∈ ξk∂̂ε̃k
ϑ(wk, zk). Since Ŝ is h-inner

semicontinuous at (w̄, z̄), we can select a sequence of zk ∈ Ŝ(wk) converging to z̄.
Observe that ϑ(wk, zk) → ϑ(w̄, z̄) due to h(wk) → h(w̄). Hence

∂∞h(w̄) ⊂
{
w∗ ∈ W ∗ : (w∗, 0) ∈ ∂∞ϑ(w̄, z̄)

}
=
{
w∗ ∈ W ∗ : (w∗, 0) ∈ ∂∞[f(w, z) + δ

(
(w, z); Q

)]
(w̄, z̄)

}
.

From the assumed SNEC property of f at (w̄, z̄), condition (i), [13, Theorem 3.36]
and [13, Prosition 1.79], it follows that

∂∞h(w̄) ⊂
{
w∗ ∈ W ∗ : (w∗, 0) ∈ ∂∞f(w̄, z̄) + N

(
(w̄, z̄); Q

)}
.

By using similar arguments, we can show that

w∗ ∈ w∗
2 + T ∗[(M∗)−1(z∗2)

]
,

for some (w∗
2, z

∗
2) ∈ ∂∞f(w̄, z̄). Hence, we obtain the first assertion.

In order to prove the second assertion, we will prove

∂h(w̄) ⊃
[
∇wf(w̄, z̄) + T ∗((M∗)−1(∇zf(w̄, z̄))

)]
.

Since ∂̂h(w̄) ⊂ ∂h(w̄), it is sufficient to show that

∂̂h(w̄) ⊃
[
∇wf(w̄, z̄) + T ∗((M∗)−1(∇zf(w̄, z̄))

)]
.

On the contrary, suppose that there exists w∗ ∈ W ∗ such that

w∗ ∈
[
∇wf(w̄, z̄) + T ∗((M∗)−1(∇zf(w̄, z̄))

)]
\∂̂h(w̄).(14)

Then we can find γ̄ > 0 and a sequence wk −→ ω̄ such that

〈w∗, wk − w̄〉 > h(wk) − h(w̄) + γ̄||wk − w̄||, ∀k ∈ N.(15)

Let φ be an upper Lipschitzian selection of the solution map Ŝ. Putting zk = φ(wk),
we have zk ∈ Ŝ(wk) and ||zk − z̄|| � l||wk − w̄|| for k > 0 sufficiently large. Hence,
(15) implies

〈w∗, wk − w̄〉 > h(wk) − h(w̄) + γ̄||wk − w̄||

= f(wk, zk) − f(w̄, z̄) + γ̄||wk − w̄||

= 〈∇zf(w̄, z̄), zk − z̄〉 + 〈∇wf(w̄, z̄), wk − w̄〉

+ 0(||zk − z̄|| + ||wk − w̄||) + γ̄||wk − w̄||

� 〈∇zf(w̄, z̄), zk − z̄〉 + 〈∇wf(w̄, z̄), wk − w̄〉

+ 0(||zk − z̄|| + ||wk − w̄||) +
γ̄

2
||wk − w̄||+ γ̄

2l
||zk − z̄||.
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Putting γ̂ = min{ γ̄
2 , γ̄

2l}, we get from the above inequality that

〈(w∗ −∇wf(w̄, z̄),−∇zf(w̄, z̄)), (wk − w̄, zk − z̄)〉

> 0(||zk − z̄|| + ||wk − w̄||) + γ̂(||zk − z̄||+ ||wk − w̄||).

Consequently,

lim sup
(w,z)

Q−→(w̄,z̄)

〈(
w∗ −∇wf(w̄, z̄),−∇zf(w̄, z̄)

)
, (w − w̄, z − z̄)

〉
||z − z̄|| + ||w − w̄|| � γ̂,

which means that (
w∗ −∇wf(w̄, z̄),−∇zf(w̄, z̄)

)
/∈ N
(
(w̄, z̄); Q

)
.

By Lemma 2.2, we have(
w∗−∇wf(w̄, z̄),−∇zf(w̄, z̄)

)
/∈ N
(
(w̄, z̄); Q

)
=
{
(−T ∗x∗, M∗x∗)|x∗∈X∗}.(16)

From (14),
w∗ −∇wf(w̄, z̄) ∈ T ∗((M∗)−1(∇zf(w̄, z̄))

)
.

So there exists x∗ ∈ (M∗)−1
(
∇zf(w̄, z̄)

)
such that

w∗ −∇wf(w̄, z̄) = T ∗(x∗).

Hence

w∗ −∇wf(w̄, z̄) = −T ∗(−x∗) and −∇zf(w̄, z̄) = M∗(−x∗).

Consequently,(
w∗ −∇wf(w̄, z̄),−∇zf(w̄, z̄)

)
∈ N

(
(w̄, z̄); Q

)
=
{
(−T ∗v∗, M∗v∗)|v∗ ∈ X∗},

which contradicts (16). Thus, the second assertion is valid and the proof of the theorem
is complete.

The next example demonstrates that the inclusion (11) of the Theorem 2.1 may
hold as equality with no strict differentiability assumption on the objective function f
as in (13).

Example 2.1 Let Z = R
3, W = R

2,

f(w, z) =
√

z3
1 + 3|w1|z2 − w3

1 − |w2|
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and H(w) =
{
(z1, z2, z3) ∈ R

3 : z1 + z2 = 2w1, z3 = 2w2

}
. Assume that w̄ = (1, 0).

Then assumptions of Theorem 2.1 are satisfied and ∂h(w̄) =
{
(−3

4 ,−1); (−3
4, 1)

}
.

Besides, ∂̂h(w̄) = ∅.
Indeed, for w̄ = (1, 0) we have

h(w̄) = inf
(z1,z2,z3)∈H(w̄)

{√
z3
1 + 3z2 − 1

}
,

where H(w̄) =
{
(z1, z2, z3) ∈ R

3 : z1 + z2 = 2, z3 = 0
}

. It is easy to check that
z̄ = (1, 1, 0) is the unique solution of the problem corresponding to w̄ and therefore
h(w̄) = 1.

By a direct computation, we see that

Ŝ(w) =
{(√

|w1|, 2w1 −
√

|w1|, 2w2

)}
,

where w = (w1, w2). Thus, the solution map Ŝ : R
2 ⇒ R

3 is h-inner simicontinuous
at (w̄, z̄). It is easy to check that f is locally Lipschitzian around (w̄, z̄). By [13,
Corollary 1.81], we have ∂∞f(w̄, z̄) = {0}. So, condition (i) of Theorem 2.1 is
satisfied. Note that

M∗ =

⎡⎣1 0
1 0
0 1

⎤⎦ and T∗ =
[
2 0
0 2

]
from which it follows that condition (ii) of Theorem 2.1 is satisfied. It is known that
if g(w) = −|w|, then ∂g(0) = {−1, 1} and ∂̂g(0) = ∅. Hence, (11) becomes

(17)
∂h(w̄) ⊂

⋃
(w∗,z∗)∈∂f(w̄,x̄)

[
w∗ + T ∗((M∗)−1(z∗)

)]
=
{(

− 9
4
,−1
)
+T ∗

(
(M∗)−1

(3
4
,
3
4
, 0
))

;
(
− 9

4
, 1
)
+T ∗

(
(M∗)−1

(3
4
,
3
4
, 0
))}

.

We have (M∗)−1( 3
4 , 3

4 , 0) = ( 3
4 , 0) and T ∗((M∗)−1( 3

4 , 3
4 , 0)

)
= ( 3

2 , 0). Combining
this with (17), we get ∂h(w̄) ⊂

{
(−3

4 ,−1); (−3
4, 1)

}
. By computing directly, we see

that ∂h(w̄) =
{
(−3

4 ,−1); (−3
4, 1)

}
and ∂̂h(w̄) = ∅.

The next example demonstrates that the upper Lipschitzian assumption of Theo-
rem 2.1 is sufficient but not necessary to ensure the equality in the Mordukhovich
subgradient inclusion (13) for value functions.

Example 2.2 Let Z = R
3, W = R

2,

f(w, z) = (w1 − z2
1)

2
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and H(w) =
{
(z1, z2, z3) ∈ R

3 : z2 = 2w1, z3 = 2w2

}
. Assume that w̄ = (0, 0).

Then assumptions of Theorem 2.1 are satisfied and ∂h(w̄) =
{
(0, 0)

}
but the solution

map Ŝ(·) does not admit an upper Lipschitzian selection.
Indeed, for w̄ = (0, 0) we have

h(w̄) = inf
(z1,z2,z3)∈H(w̄)

z4
1 ,

where H(w̄) =
{
(z1, z2, z3) ∈ R3 : z2 = 0, z3 = 0

}
. It is easy to check that

z̄ = (0, 0, 0) is the unique solution of the problem corresponding to w̄ and therefore
h(w̄) = 0.

By a direct computation, we see that

Ŝ(w) =

⎧⎨⎩
{
(−√

w1, 2w1, 2w2), (
√

w1, 2w1, 2w2)
}

if w1 > 0{
(0, 2w1, 2w2)

}
if w1 ≤ 0,

where w = (w1, w2). Thus, the solution map Ŝ : R
2 ⇒ R

3 is h-inner simicontinuous
at (w̄, z̄). But Ŝ has no locally upper Lipschitzian selection at (w̄, z̄). It is easy to
check that f is locally Lipschitzian around (w̄, z̄). By [13, Corollary 1.81], we have
∂∞f(w̄, z̄) = {0}. So, condition (i) of Theorem 2.1 is satisfied. Note that

M∗ =

⎡⎣0 0
1 0
0 1

⎤⎦ and T∗ =
[
2 0
0 2

]

from which it follows that condition (ii) of Theorem 2.1 is satisfied. Hence, (11)
becomes

∂h(w̄) ⊂
[
�wf(z̄, w̄) + T ∗((M∗)−1(�zf(z̄, w̄))

)]
⊂
[
(0, 0) + T ∗((M∗)−1(0, 0, 0)

)]
.

Thus, we get ∂h(w̄) ⊂
{
(0, 0)

}
. By computing directly, we see that

h(w) =

{
w2

1 if w1 ≤ 0
0 if w1 > 0,

Hence, we have ∂h(w̄) = {(0, 0)}.

3. PROOF OF THE MAIN RESULT

To prove Theorem 1.1, we first formulate problem (1)–(3) in the form to which
Theorem 2.1 can be applied to. We now consider the following linear mappings:
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A : X → X defined by

Ax := x −
∫ (·)

0

A(τ)x(τ)dτ,

B : U → X defined by

Bu := −
∫ (·)

0
B(τ)u(τ)dτ,

M : X × U → X defined by
M(x, u) := Ax + Bu(18)

and T : W → X defined by

T (α, θ) := α +
∫ (·)

0
T (τ)θ(τ)dτ.(19)

Under the hypotheses (H2) and (H3), (5) can be written in the form

G(w) =
{
(x, u) ∈ X × U | x = α +

∫ (·)

0
Axdτ +

∫ (·)

0
Budτ +

∫ (·)

0
Tθdτ

}
=
{
(x, u) ∈ X × U | x −

∫ (·)

0
Axdτ −

∫ (·)

0
Budτ = α +

∫ (·)

0
Tθdτ

}
=
{
(x, u) ∈ X × U | M(x, u) = T (w)

}
.

Recall that for 1 < p < ∞, we have Lp([0, 1], R
n)∗ = Lq([0, 1], R

n), where
1 < q < +∞, 1/p + 1/q = 1.

Besides, Lp([0, 1], R
n) is pared with Lq([0, 1], R

n) by the formula

〈x∗, x〉 =
∫ 1

0
x∗(t)x(t)dt,

for all x∗ ∈ Lq([0, 1], Rn) and x ∈ Lp([0, 1], Rn).
Also, we have W 1,p([0, 1], Rn)∗ = R

n × Lq([0, 1], R
n) and W 1,p([0, 1], R

n) is
pared with R

n × Lq([0, 1], R
n) by the formula

〈(a, u), x〉 = 〈a, x(0)〉+
∫ 1

0
u(t)ẋ(t)dt,

for all (a, u) ∈ R
n × Lq([0, 1], Rn) and x ∈ W 1,p([0, 1], R

n) (see [11, p. 21]).
In the case of p = 2, W 1,2([0, 1], Rn) becomes a Hilbert space with the inner

product given by

〈x, y〉 = 〈x(0), y(0)〉+
∫ 1

0

ẋ(t)ẏ(t)dt,

for all x, y ∈ W 1,2([0, 1], Rn).

In the sequel, we shall need the following lemmas.
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Lemma 3.1. ([25, Lemma 2.3]). Suppose that M∗ and T ∗ are adjoint mappings
of M and T , respectively. Then the following assertions are valid:

(a) The mappings M and T are continuous.
(b) T ∗(a, u) =

(
a, T Tu

)
for all (a, u) ∈ R

n × Lq([0, 1], R
n).

(c) M∗(a, u) =
(
A∗(a, u),B∗(a, u)

)
, where B∗(a, u) = −BT u and

A∗(a, u) =
(
a−
∫ 1

0
AT (t)u(t)dt; u +

∫ (·)

0
AT (τ)u(τ)dτ −

∫ 1

0
AT (t)u(t)dt

)
,

for all (a, u) ∈ Rn × Lq([0, 1], Rn).

Recall that
Z = X × U

and
G(w) =

{
(x, u) ∈ X × U | M(x, u) = T (w)

}
.

Then our problem can be written in the form

V (w) := inf
z∈G(w)

J(z, w)

with z = (x, u) ∈ Z, w = (α, θ) ∈ W and

G(w) =
{
z ∈ Z : M(z) = T (w)

}
,

where M : Z → X and T : W → X are defined by (18) and (19), respectively.

Lemma 3.2. ([25, Lemma 3.1]) Suppose that assumptions (H1), (H2) and (H3)
are valid. Then the following assertions are fulfilled:

(a) There exists a constant c > 0 such that

||T ∗x∗|| � c||x∗||, ∀x∗ ∈ X∗.

(b) The functional J is strictly differentiable at (z̄, w̄) and ∇J(z̄, w̄) is given by

∇wJ(z̄, w̄) =
(
0, Lθ

(
t, x̄(t), ū(t), θ̄(t)

))
,

∇zJ(z̄, w̄) =
(
Jx(x̄, ū, θ̄), Ju(x̄, ū, θ̄)

)
with

Ju(x̄, ū, θ̄) = Lu(·, x̄, ū, θ̄)

and

Jx(x̄, ū, θ̄) =
(
g′
(
x(1)

)
+
∫ 1

0

Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt,

g′
(
x(1)

)
+
∫ 1

(·)
Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt
)
.
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We now return to the proof of Theorem 1.1, our main result.
Since J(x, u, w) is strictly differentiable at (x̄, ū, w̄), it is also locally Lipschitzian

around (x̄, ū, w̄) (see [13, p. 19]). By [13, Corollary 1.81], we have ∂∞J(x̄, ū, w̄) =
{0}. So qualification condition (i) of Theorem 2.1 is satisfied. From [13, p. 121], it
follows that J is SNEC at (x̄, ū, w̄). By Lemma 3.2, all conditions of Theorem 2.1 are
fulfilled. According to Theorem 2.1, we obtain

∂V (w̄) ⊂ ∇wJ(z̄, w̄) + T ∗((M∗)−1(∇zJ(z̄, w̄))
)
.(20)

We now take (α∗, θ∗) ∈ ∂V (w̄). By (20), it follows that

(α∗, θ∗) −∇wJ(z̄, w̄) ∈ T ∗((M∗)−1(∇zJ(z̄, w̄))
)
,

which is equivalent to(
α∗, θ∗ − Jθ(z̄, w̄)

)
∈ T ∗((M∗)−1(∇zJ(z̄, w̄))

)
.

Hence, there exists (a, v) ∈ R
n × Lq([0, 1], R

n) such that(
α∗, θ∗ − Jθ(z̄, w̄)

)
= T ∗(a, v) and ∇zJ(z̄, w̄) = M∗(a, v).(21)

By Lemma 3.1, we get

(21) ⇔
{

α∗ = a; θ∗ − Jθ(z̄, w̄) = T T (·)v(·)(
Jx(x̄, ū, w̄), Ju(x̄, ū, w̄)

)
=
(
A∗(a, v),B∗(a, v)

)
.

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗ = a

θ∗ = Lθ

(
·, x̄(·), ū(·), θ̄(·)

)
+ T T (·)v(·)

g′
(
x̄(1)

)
+
∫ 1

0

Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt = a −

∫ 1

0

AT (t)v(t)dt

g′
(
x̄(1)

)
+
∫ 1

(·)
Lx

(
τ, x̄(τ), ū(τ), θ̄(τ)

)
dτ

= v(·) +
∫ (·)

0
AT (τ)v(τ)dτ −

∫ 1

0
AT (t)v(t)dt

Lu

(
·, x̄(·), ū(·), θ̄(·)

)
= −BT (·)v(·).

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗ = a

θ∗ = Lθ

(
·, x̄(·), ū(·), θ̄(·)

)
+ T T (·)v(·)

g′
(
x̄(1)

)
+
∫ 1

0
Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt = a −

∫ 1

0
AT (t)v(t)dt

g′
(
x̄(1)

)
−
∫ (·)

1

Lx

(
τ, x̄(τ), ū(τ), θ̄(τ)

)
dτ = v(·) +

∫ (·)

1

AT (τ)v(τ)dτ

Lu

(
·, x̄(·), ū(·), θ̄(·)

)
= −BT (·)v(·).
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(22) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v ∈ W 1,q([0, 1], Rn)

θ∗ − T T (·)v(·) = Lθ

(
·, x̄(·), ū(·), θ̄(·)

)
α∗ = g′

(
x̄(1)

)
+
∫ 1

0
Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt +

∫ 1

0
AT (t)v(t)dt

v(1) = g′
(
x̄(1)

)
−v̇(·)− AT (·)v(·) = Lx

(
·, x̄(·), ū(·), θ̄(·)

)
−BT (·)v(·) = Lu

(
·, x̄(·), ū(·), θ̄(·)

)
.

Putting y = −v, we have

(22) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α∗ = g′
(
x̄(1)

)
+
∫ 1

0
Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt −

∫ 1

0
AT (t)y(t)dt

y(1) = −g′
(
x̄(1)

)(
ẏ(t) + AT (t)y(t), BT (t)y(t), θ∗(t) + T T (t)y(t)

)
= ∇L

(
t, x̄(t), ū(t), θ̄(t)

)
,

for a.e. t ∈ [0, 1]. This is the first assertion of the theorem. Using the second
conclusion of Theorem 2.1, we also obtain the second assertion of the theorem. The
proof is complete.

Example 3.1. We will illustrate the obtained result by a concrete problem.
Put

X = W 1,2([0, 1], R
2), U = L2([0, 1], R

2),

Θ = L2([0, 1], R
2), W = R

2 × Θ.

Consider the problem

J(x, u, θ) = −x2(1) +
∫ 1

0

(
u2

1 +
1

1 + u2
1

+ u2
2 + θ2

1 + θ2
2

)
dt −→ inf

(23) subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = 2x1 + u1 + θ1

ẋ2 = x2 + u2 + θ2

x1(0) = α1

x2(0) = α2.

Let (ᾱ, θ̄) =
(
(1, 1), (0, 0)

)
. The following assertions are valid:

(i) The pair (x̄, ū), where

x̄ =
(
e2t, (1 +

e

4
)et − e

4
e−t
)
, ū =

(
0,

1
2
e−t+1

)
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is a solution of the problem corresponding to (ᾱ, θ̄).

(ii) If (α∗, θ∗) ∈ ∂V (ᾱ, θ̄), then α∗ = (0,−e) and θ∗ = (0,−e1−t).

Indeed, for (ᾱ, θ̄) =
(
(1, 1), (0, 0)

)
the problem becomes

J0(x, u) = −x2(1) +
∫ 1

0

(
u2

1 +
1

1 + u2
1

+ u2
2

)
dt −→ inf

(24) subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = 2x1 + u1

ẋ2 = x2 + u2

x1(0) = 1
x2(0) = 1.

By a direct computation, we see that the pair (x̄, ū) satisfies (24). Besides,

J0(x̄, ū) = −e2

8
− e +

9
8
.

Note that (x̄, ū) is a solution of the problem. In fact, for all (x, u) satisfying (24) we
have

(25)

J0(x, u) = −x2(1) +
∫ 1

0

(
u2

1 +
1

1 + u2
1

+ u2
2

)
dt

≥ −x2(1) +
∫ 1

0

(
1 + u2

2

)
dt

= −x2(1) +
∫ 1

0

(
1 + (ẋ2 − x2)2

)
dt

=
∫ 1

0

(
(ẋ2 − x2)2 − ẋ2

)
dt.

We now consider the variational problem

Ĵ(x2) :=
∫ 1

0

(
(ẋ2 − x2)2 − ẋ2

)
dt −→ inf.(26)

By solving the Euler equation with noting that Ĵ is a convex function, we obtain that
x̂2(t) = cet + (1− c)e−t is a solution of (26), where c is determined by c = ae−1

e2−1
and

a = x2(1). Hence

Ĵ(x2) � Ĵ(x̂2) = 1 + 2
e2 − 1

e2
(c − 1)2 +

1
e
(c − 1) − e(c − 1) − e.(27)

Combining (25) with (27) and putting r = c− 1, we obtain
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J0(x, u) � 1 + 2
e2 − 1

e2
r2 +

1
e
r − er − e

� −e2

8
− e +

9
8

= J0(x̄, ū).

Hence, (x̄, ū) is a solution of the problem corresponding to (ᾱ, θ̄). Assertion (i) is
proved.

It remains to prove (ii). We first prove that the solution map S is V -inner semi-
continuous at (w̄, z̄) with w̄ = (ᾱ, θ̄) and z̄ = (x̄, ū). Indeed, for α = (α1, α2) ∈ R

2

and θ = (θ1, θ2) ∈ L2([0, 1], R2), we recall the problem

J(x, u, θ) = −x2(1) +
∫ 1

0

(
u2

1 +
1

1 + u2
1

+ u2
2 + θ2

1 + θ2
2

)
dt −→ inf

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = 2x1 + u1 + θ1

ẋ2 = x2 + u2 + θ2

x1(0) = α1

x2(0) = α2.

Let

L = λ0

(
u2

1 +
1

1 + u2
1

+ u2
2 + θ2

1 + θ2
2

)
+ p1

(
ẋ1 − 2x1 − u1 − θ1

)
+ p2

(
ẋ2 − x2 − u2 − θ2

)
and

l
(
x(0), x(1)

)
= λ0

(
− x2(1)

)
+ λ1

(
x1(0)− α1

)
+ λ2

(
x2(0) − α2

)
be the Lagrangian and endpoint functional, respectively. By the Pontryagin maximum
principle (see [1] and [5]), there exist Lagrange multipliers λ0 > 0, λ1, λ2 and abso-
lutely continuous functions p1, p2, not all zero, such that

(28)
d

dt
Lẋ = Lx ⇔

{
ṗ1 = −2p1

ṗ2 = −p2,

(29)

{
Lẋ(0) = lx(0)

Lẋ(1) = −lx(1)

⇔
{

p1(0) = λ1

p2(0) = λ2

and

{
p1(1) = 0
p2(1) = λ0

and

(30) Lu = 0 ⇔
{

2λ0

(
u1 − u1

(1+u2
1)

2

)
− p1 = 0

2λ0u2 − p2 = 0.

By a simple computation, from (28)-(30) we obtain

u(t) = (u1(t), u2(t)) =
(
0,

1
2
e1−t

)
.
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From the equations

ẋ2(t) = x2(t) +
1
2
e1−t + θ2(t), a.e. t ∈ [0, 1]

and
˙̄x2(t) = x̄2(t) +

1
2
e1−t, a.e. t ∈ [0, 1],

we have
ẋ2(t)− ˙̄x2(t) =

(
x2(t) − x̄2(t)

)
+ θ2(t), a.e. t ∈ [0, 1].

It follows that

(31) |ẋ2(t) − ˙̄x2(t)| ≤ |x2(t) − x̄2(t)| + |θ2(t)|, a.e. t ∈ [0, 1].

Since x2(t)−x̄2(t) = (α2−1)+
∫ t
0

(
ẋ2(s)− ˙̄x2(s)

)
ds, we get from the above inequality

that

|x2(t) − x̄2(t)| ≤ |α2 − 1|+
∫ t

0
|x2(s) − x̄2(s)|ds +

∫ t

0
|θ2(s)|ds

≤ |α2 − 1|+
∫ t

0
|x2(s) − x̄2(s)|ds +

∫ 1

0
|θ2(s)|ds

≤ |α2 − 1|+
∫ t

0
|x2(s) − x̄2(s)|ds + ‖ θ2 ‖ .

By the Gronwall inequality (see [5, Lemma 18.1.i]), we get

|x2(t) − x̄2(t)| ≤
(
|α2 − 1|+ ‖ θ2 ‖

)
e.

Combining this with (31), we obtain

|ẋ2(t) − ˙̄x2(t)| ≤ e
(
|α2 − 1|+ ‖ θ2 ‖2

)
+ |θ2(t)|, a.e. t ∈ [0, 1].

We note that ‖ x2 − x̄2 ‖1,2 = |α2 − 1|+ ‖ ẋ2 − ˙̄x2 ‖2 and

‖ ẋ2 − ˙̄x2 ‖2 =
(∫ 1

0
|ẋ2(t) − ˙̄x2(t)|2dt

) 1
2

≤ e
(
|α2 − 1|+ ‖ θ2 ‖2

)
+ ‖ θ2 ‖2 .

So
‖ x2 − x̄2 ‖1,2 ≤ (e + 1)

(
|α2 − 1|+ ‖ θ2 ‖2

)
.

Hence, if (
(αk

1, α
k
2), (θ

k
1 , θk

2)
) V−→

(
(1, 1), (0, 0)

)
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and (
(xk

1, x
k
2), (u

k
1, u

k
2)
)
∈ S
(
(αk

1 , αk
2), (θ

k
1 , θk

2)
)
, ∀k ∈ N

then xk
2 → x̄2. By using similar arguments, we also show that xk

1 → x̄1. It is easy to
see that (uk

1, u
k
2) → (ū1, ū2). Thus, the solution map S is V -inner semicontinuous at(

(ᾱ, θ̄), (x̄, ū)
)
.

From (23), we have

A =
(

2 0
0 1

)
, B =

(
1 0
0 1

)
, T =

(
1 0
0 1

)
.

It is easy to see that conditions (H2) and (H3) are fulfilled. Since

L(t, x, u, θ) = u2
1 +

1
1 + u2

1

+ u2
2 + θ2

1 + θ2
2,

we have
|L(t, x, u, θ)| � |u|2 + |θ|2 + 1,

|Lu(t, x, u, θ)| � 2(|u|+ 1); |Lθ(t, x, u, θ)| � 2|θ|
for all (x, u, θ) ∈ R

2 × R2 × R2 and a.e. t ∈ [0, 1]. Thus, condition (H1) is also
valid. Hence, all conditions of Theorem 1.1 are fulfilled. Let (α∗, θ∗) ∈ ∂V (ᾱ, θ̄). By
Theorem 1.1, there exists y = (y1, y2) ∈ W 1,2([0, 1], R2) such that

{
ẏ + ATy = ∇xL(t, x̄, ū, θ̄)
y(1) = −g′(x(1)).

⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẏ1 = −2y1

ẏ2 = −y2

y1(1) = 0
y2(1) = 1.

This implies that (y1, y2) = (ȳ1, ȳ2) = (0, e1−t). By (9), we have

θ∗ = −T Ty + ∇θL(t, x̄, ū, θ̄) = −T T y.

It follows that θ∗(t) = (0,−e1−t). On the other hand, from (7) we get

α∗ = g′
(
x̄(1)

)
+
∫ 1

0
Lx

(
t, x̄(t), ū(t), θ̄(t)

)
dt −

∫ 1

0
AT (t)y(t)dt.(32)

Substituting y = ȳ into (32), we obtain α∗ = (0,−e).
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