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L(3, 2, 1)-LABELING FOR THE PRODUCT OF A COMPLETE GRAPH
AND A CYCLE

Byeong Moon Kim, Woonjae Hwang and Byung Chul Song*

Abstract. Given a graph G = (V, E), a function f on V is an L(3, 2, 1)-labeling
if for each pair of vertices u, v of G, it holds that |f(u)− f(v)| ≥ 4− dist(u, v).
L(3, 2, 1)-labeling number for G, denoted by λ3,2,1(G), is the minimum span of
all L(3, 2, 1)-labeling f for G. In this paper, when G = Km�Cn is the Cartesian
product of the complete graph Km and the cycle Cn, we show that the lower
bound of λ3,2,1(G) is 5m− 1 for m ≥ 3, and the equality holds if and only if n
is a multiple of 5. Moreover, we show that λ3,2,1(K3�Cn) = 15 when n ≥ 28
and n �≡ 0 (mod 5).

1. INTRODUCTION

A distance labeling problem for a graph G = (V, E) is an effective assignment
of labels on V in such a way that the labels assigned to each vertex satisfy certain
distance constraints. A channel assignment problem is a motivation of the distance
labeling problem of graphs. It is to find a proper assignment of channels to transmitters
in a wireless network. If two transmitters in a broadcasting network, are located
close to each other and the channels assigned on them are equal or have a very small
difference, then there can be interference between them. The channels assigned to
transmitters must satisfy certain distance constraints to avoid the existing interference
between nearby transmitters. There should be a large difference between two channels
assigned to two transmitters which are located very close. And two channels assigned
to two transmitters which are closely located have a little difference. Because of the
tremendous increases of the demand calls in the wireless networks, it is necessary to
find an efficient assignment of channels to the network with minimum span.
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Hale [10] proposed a mathematical modeling for the distance constrained channel
assignment problem. He considered a wireless communication network as a graph in
such a way that the vertices are the transmitters and two vertices are adjacent if the
corresponding transmitters are very closely located. After his work, Griggs and Yeh
[9] introduced the distance two labeling, or L(j, k)-labeling, of graphs G.

A natural variant for distance two labeling problem is to expand the distance
condition between transmitters. In some wireless network system, we need the con-
straints concerning the distance of not only one or two but also three or more. For
a graph G = (V, E) and nonnegative integers j0, j1, · · · , jd−1 with d ≤ diam(G), an
L(j0, j1, · · · , jd−1)-labeling (or distance d labeling) is a function f : V → {0, 1, 2 · · ·}
such that for u, v ∈ V with δ = dist(u, v), the labeling condition |f(u)−f(v)| ≥ jδ−1

is satisfied. The labeling number λj0,j1,··· ,jd−1
(G) for G is the smallest integer N such

that there is an L(j0, j1, · · · , jd−1)-labeling f : V → [0, N ]. The radio labeling for G
is the L(d, d− 1, · · · , 2, 1)-labeling f where d = diam(G). In this case, the labeling
condition between two vertices u and v is |f(u)−f(v)| ≥ d−dist(u, v)+1. The radio
number for G, denoted by rn(G), is the minimum span of radio labelings for G. The
classical work of the L(j, k)-labeling problems is the L(2, 1)-labeling problem. In par-
ticular, λ2,1(G) is known as the λ-number of G and is denoted by λ(G). For surveys
of the λj,k(G)-labeling problem, including λ-number of graphs, see [4, 5, 7, 9, 18].
The most natural concepts of distance three labeling problem is the L(3, 2, 1)-labeling
problem [11]. If diam(G) = 3, then λ3,2,1(G) = rn(G).

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product
G = G1�G2 = (V, E) of G1 and G2 is the graph such that V = V1 × V2 and two
vertices (u1, u2) and (v1, v2) are adjacent if u1 = v1 and {u2, v2} ∈ E2, or u2 = v2

and {u1, v1} ∈ E1. The direct product G′ = G1 ×G2 = (V ′, E ′) of G1 and G2 is the
graph such that V ′ = V = V1 × V2 and two vertices (u1, u2) and (v1, v2) are adjacent
if {u1, v1} ∈ E1 and {u2, v2} ∈ E2. In Figure 1, two examples of the Cartesian and
direct product of paths P3 and P4 are given.

D. Liu and X. Zhu [16] completely determine the radio numbers for paths and
cycles. D. Liu [14] treated the radio number for trees. D. Liu and M. Xie [15]
determine the radio number for the square of paths and partially square of cycles.
There are some results on the distance 3 labelings for graphs. Especially λ1,1,1(G) and
λ2,1,1(G) are computed when G is a path, a cycle, a grid, a complete binary tree or a
cube[1, 2, 3, 14, 16, 19]. One of the important problems on distance three labeling is
to find the values of λ3,2,1(G) for classes of graphs G [6, 8, 12, 17].

Let G = Km�Cn be the Cartesian product of the complete graph Km of order m

and the cycle Cn of order n. The λ-number for G = Km�Cn was investigated in[13].
In this paper, we investigate λ3,2,1(Km�Cn) when m, n ≥ 3. We show that the lower
bound of λ3,2,1(Km�Cn) is 5m − 1 for m ≥ 3 and it is optimal onlywhen n is a multiple
of 5. Moreover we show that λ3,2,1(K3�Cn) = 15 when n ≥ 28 and n �≡ 0 (mod 5).
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2. SOME LEMMAS AND MAIN THEOREMS

From now on, we assume that m, n ≥ 3. Let G = Km�Cn = (V, E) be the
Cartesian product of a complete graph Km of order m ≥ 3 and a path Cn of order n.
Let V = {(i, j)|0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} and two vertices (i, j), (i′, j ′) are
adjacent if i′ = i and j ′ ≡ j ± 1 (mod n), or i′ �= i and j ′ = j.

Fig. 1. P3�P4 and P3 × P4

Define Tj = {(i, j)|0 ≤ i ≤ m − 1} for j ∈ [0, n − 1]. For convenience we
define Tj for all j ∈ Z such that Tj = Tj′ where j ′ is the residue of j modulo n. For
examples Tn = T0 and T2n+1 = T1. Figure 2 represents the graph K4�C6 and the
vertex set T2.

Fig. 2. K4�C6 and T2

Let f : V → [0, N ] be an L(3, 2, 1)-labeling of G. Since any two vertices in Tj

are adjacent the following lemma is obvious.

Lemma 1. For each j, |f(Tj)| = m.
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For S ⊂ [0, N ], we define Ŝ = {x ∈ [0, N ]||x− a| = 1 for some a ∈ S}. Note
that if a ∈ f(Tj) for some j, then

a /∈ (f(Tj−2) ∪ f(Tj−1) ∪ f(Tj+1) ∪ f(Tj+2))

and
a ± 1 /∈ (f(Tj−1) ∪ f(Tj+1)).

Also if a1, a2 ∈ f(Tj) and a1 �= a2, then |a1 − a2| ≥ 3.

Lemma 2. For each j, f(Tj−1), f(Tj), f(Tj+1) and f̂(Tj) are mutually disjoint.

Proof. If a, b ∈ Tj and a �= b, then since a and b are adjacent f(a) �= f(b).
If a ∈ Tj and b is a vertices in Tj−1 or Tj+1, then they are within distance two and
|f(a) − f(b)| ≥ 2. The two vertices a and b choosing from each Tj−1 and Tj+1

respectively, are of distance two or three and so f(a) �= f(b). Hence f(Tj−1), f(Tj)
and f(Tj+1) are mutually disjoint. If x ∈ f̂(Tj), then there is a ∈ Tj such that
|x − f(a)| = 1. If b ∈ Tj and a �= b, then |f(a) − f(b)| ≥ 3. And we have
|x− f(b)| ≥ |f(a)− f(b)| − |x− f(a)| = 2. If b ∈ Tj−1 ∪Tj+1, then dist(a, b) is one
or two. Since |f(a)−f(b)| ≥ 2, we have |x−f(b)| ≥ |f(a)−f(b)| − |x−f(a)| ≥ 1.
So f(Tj−1) ∪ f(Tj) ∪ f(Tj+1) and f̂(Tj) are disjoint.

Thus we have the following lemma.

Lemma 3. If h is the number of elements of f(Tj)∩{0, N}, then |f̂(Tj)| = 2m−h.

Proof. Let A = {x ∈ [0, N ]|x = a + 1, a ∈ f(Tj)} and B = {x ∈ [0, N ]|x =
a−1, a ∈ f(Tj)}. If N ∈ f(Tj), then |A| = m−1. And if N /∈ f(Tj), then |A| = m.
We also have if 0 ∈ f(Tj), then |B| = m − 1, and if 0 /∈ f(Tj), then |B| = m. Since
A ∩ B = ∅, we have

f̂(Tj) = |A ∪ B| = |A|+ |B| =

⎧⎪⎨
⎪⎩

2m if 0, N /∈ f(Tj)
2m− 2 if 0, N ∈ f(Tj)
2m− 1 otherwise.

Thus we have the result.

Corollary 1. If 0, N /∈ f(Tj), then |f̂(Tj)| = 2m .

Proposition 1. λ3,2,1(Km�Cn) ≥ 5m− 1 for m, n ≥ 3.

Proof. Let f : V → [0, N ] be an L(3, 2, 1)-labeling of G = Km�Cn with span
N . Since f(Tj−1), f(Tj) and f(Tj+1) are mutually disjoint, there is j0 such that
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0, N /∈ f(Tj0) and 0 ≤ j0 ≤ 2. By Lemma 1 and Corollary 1, we have

λ3,2,1(G) = N ≥ |f(Tj0−1) ∪ f(Tj0) ∪ f(Tj0+1) ∪ f̂(Tj0)| − 1

= |f(Tj0−1)| + |f(Tj0))|+ |f(Tj0+1))|+ |f̂(Tj0)| − 1

= 5m− 1.

In the next theorem when n is a multiple of 5, by providing an L(3, 2, 1)-labeling
for Km�Cn we show that λ3,2,1(Km�Cn) = 5m − 1.

Proposition 2. If n is a multiple of 5, then λ3,2,1(Km�Cn) = 5m−1 for m, n ≥ 3.

Proof. By Proposition 1, it is enough to show that λ3,2,1(Km�Cn) ≤ 5m − 1.
Let f : V → [0, 5m− 1] such that

f(i, j) =
{

5i − 3t, if i ≥ 3
5 t,

5m + 5i− 3t, if i < 3
5 t,

where t is the residue of j modulo 5. Then f is an L(3, 2, 1)-labeling of Km�Cn with
span 5m − 1. Table 1 represents f .

Thus λ3,2,1(Km�Cn) = 5m − 1.

In what follows we assume that there is an L(3, 2, 1)-labeling f of Km�Cn with
span 5m − 1. Let f(Tj) = {a1,j, a2,j, · · · , am,j} such that a1,j > a2,j > · · · > am,j .

In the following we will show that the lower bound 5m − 1 for λ3,,2,1(Km�Cn)
arises only when n is a multiple of 5.

Claim 1. If 0, 5m− 1 /∈ f(Tj), then [0, 5m− 1] = f(Tj−1) ∪ f(Tj) ∪ f(Tj+1) ∪
f̂(Tj).

Proof. By Lemmas 1, 2 and Corollary 1, we have

|f(Tj−1)∪f(Tj)∪f(Tj+1)∪f̂(Tj)| = |f(Tj−1)|+|f(Tj))|+|f(Tj+1))|+|f̂(Tj)| = 5m.

Thus [0, 5m− 1] = f(Tj−1) ∪ f(Tj) ∪ f(Tj+1) ∪ f̂(Tj).

By a similar method as above, we have

[0, 5m− 1] = f(Tj−1) ∪ f(Tj) ∪ f(Tj+1) ∪ f̂(Tj) ∪ {x}

for some x if exactly one of 0 and 5m − 1 belongs to f(Tj) and

[0, 5m− 1] = f(Tj−1) ∪ f(Tj) ∪ f(Tj+1) ∪ f̂(Tj) ∪ {x1, x2}

for some x1, x2 if both of 0 and 5m − 1 belong to f(Tj).
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Claim 2. If 0, 5m − 1 /∈ f(Tj) for some j, then for any t with 0 ≤ t ≤ 5m − 3
we have [t, t + 2] ∩ (f(Tj) ∪ f̂(Tj)) �= ∅. Hence for any t with 0 ≤ t ≤ 5m − 5 we
have [t, t + 4] ∩ f(Tj) �= ∅.

Table 1. L(3, 2, 1)- labeling for Km�C5t

0 5m − 3 5m − 6 5m − 9 5m − 12 0 5m − 3 · · · 5m − 12

5 2 5m − 1 5m − 4 5m − 7 5 2 · · · 5m − 7

10 7 4 1 5m − 2 10 7 · · · 5m − 2

15 12 9 6 3 15 12 · · · 3
20 17 14 11 8 20 17 · · · 8
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

5m − 5 5m − 8 5m − 11 5m − 14 5m − 17 5m − 5 5m − 8 · · · 5m − 17

Proof. If there is t ∈ [0, 5m− 3] such that [t, t + 2] ∩ (f(Tj) ∪ f̂(Tj)) = ∅. By
Claim 1 we have [t, t + 2] ⊂ f(Tj−1) ∪ f(Tj+1). Since any two vertices in Tj+1 are
adjacent, the labeling difference between them is at least 3. So f(Tj+1) contains at
most one number in [t, t+2] and f(Tj−1) also contains at most one number in [t, t+2].
This contradicts that [t, t + 2] ⊂ f(Tj−1) ∪ f(Tj+1).

For t ∈ [0, 5m− 5], if [t, t + 4] ∩ f(Tj) = ∅, then 1 ≤ t + 1 ≤ 5m − 4 and we
have [t + 1, t + 3] ∩ f̂(Tj) = ∅. This is a contradiction.

Claim 3. For any j and t with 0 ≤ t ≤ 5m − 6, we have [t, t + 5] ∩ f(Tj) �= ∅.

Proof. Suppose [t, t + 5] ∩ f(Tj) = ∅ for some j and t with 0 ≤ t ≤ 5m − 6.
Consider the set

S = {t ≥ 0| [t, t + 5] ∩ f(Tj) = ∅ for some j}.

Since S is nonempty there is the minimum, say it h, of the set. Let [h, h+5]∩f(Tl) = ∅
for some l.

If 0 < h < 5m−6, then by the minimality of h, we have h−1 ∈ f(Tl). By Claim
2, 0 or 5m− 1 belong to f(Tl). Since f(Tl+1) ∩ f(Tl−1) = ∅, at least one of f(Tl+1)
and f(Tl−1) doesn’t contain both 0 and 5m − 1. Thus without loss of generality
we may assume that 0, 5m − 1 /∈ f(Tl−1). If h + 1, h + 2 /∈ f(Tl−1), then since
[h− 1, h + 2]∩ f(Tl−1) = ∅, we have h, h + 1 /∈ ̂f(Tl−1). Since 0, 5m− 1 /∈ f(Tl−1)
and h, h+1 /∈ f(Tl−1)∪ ̂f(Tl−1)∪f(Tl), by Claim 1, we have h, h+1 ∈ f(Tl−2), which
is impossible. Thus one of h + 1, h+ 2 is an element of f(Tl−1). If h + 1 ∈ f(Tl−1),
then h + 2, h+ 3 /∈ f(Tl−1). In this case if h + 4 ∈ f(Tl−1), then since h− 1 ∈ f(Tl)
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and h + 1, h + 4 ∈ f(Tl−1), we have [h − 1, h + 4] ∩ f(Tl−2) = ∅, and which
contradicts the minimality of h. Thus h + 4 /∈ f(Tl−1). If h + 5 /∈ f(Tl−1), then since
[h+2, h+5]∩f(Tl−1) = ∅, we have h+3, h+4 /∈ f(Tl−1)∪ ̂f(Tl−1)∪f(Tl). Since
0, 5m− 1 /∈ f(Tl−1), by Claim 1, h + 3, h + 4 ∈ f(Tl−2), which is also impossible.
Thus h + 5 ∈ f(Tl−1). It follows that h + 6 /∈ f(Tl). Since h + 2, h + 3, h + 4 /∈
f̂(Tl) and at most one of them belong to f(Tl+1), there are at least two numbers
among [0, 5m− 1] which doesn’t belong to f(Tl) ∪ f̂(Tl) ∪ f(Tl−1) ∪ f(Tl+1). Thus
0, 5m−1 ∈ f(Tl). If h+2 /∈ f(Tl+1), then since 0, 5m−1 /∈ f(Tl+1) and h, h+1 /∈
f(Tl+1)∪ ̂f(Tl+1)∪f(Tl), we have h, h+1 /∈ f(Tl+2), which is a contradiction. Thus
h + 2 ∈ f(Tl+1). If h /∈ f(Tl+2), then [h− 1, h+ 3]∩ f(Tl+2) �= ∅, which contradicts
Claim 2 since 0, 5m− 1 /∈ f(Tl+2). Thus h ∈ f(Tl+2). Since h + 3, h+ 5 /∈ f(Tl+1),
so h+4 /∈ f(Tl+1)∪ ̂f(Tl+1). This implies that h+4 ∈ f(Tl+2). Since h+2 ∈ f(Tl+1)
and h, h+4 ∈ f(Tl+2), we obtain [h−1, h+4]∩f(Tl+3) = ∅. This is a contradiction
and thus we have h+1 /∈ f(Tl−1). As a consequence h+2 ∈ f(Tl−1). By the similar
method as above, we can show that h+6 ∈ f(Tl−1). Also we have h, h+4 ∈ f(Tl−2).
It follows that [h − 1, h + 4] ∩ f(Tl−3) = ∅, a contradiction.

If h = 0, then [0, 5]∩ f(Tl) = ∅. By Claim 2, we have 5m − 1 ∈ f(Tl). Thus

[0, 5m− 1] = f(Tl−1) ∪ f(Tl) ∪ f(Tl+1) ∪ f̂(Tl) ∪ {x}

for some x. We may assume 5m−1 /∈ f(Tl−1). Since [0, 4]∩ (f(Tl)∪ f̂(Tl)) = ∅, we
have [0, 4] ⊂ (f(Tl−1)∪ f(Tl+1)∪ {x}). Since each of f(Tl−1) and f(Tl+1) contains
at most two elements of [0, 4], they each contains two numbers in [0, 4] respectively.
We may assume that 0, 3 ∈ f(Tl−1) and 1, 4 ∈ f(Tl+1). As a consequence [0, 4] ∩
f(Tl+2) = ∅. Since 5m − 1 ∈ f(Tl), 5m − 1 /∈ f(Tl+2), which contradict Lemma 5.
Thus [t, t + 5] ∩ f(Tj) �= ∅ for all j and t with 0 ≤ t ≤ 5m − 6.

Let g : V → [0, 5m − 1] be defined as g(v) = 5m − 1 − f(v). Since g is an
L(3, 2, 1)-labeling of G and g(Tl) ∩ [0, 5] = ∅, we also have a contradiction when
h = 5m − 6.

By above it is obvious to see that there is no t such that 0 ≤ t ≤ 5m − 8 and
t, t + 1, · · · , t + 7 /∈ f(Tj). As a consequence we have the following observation:
If f(Tj) = {a1,j, a2,j, · · · , am,j} such that a1,j > a2,j > · · · > am,j , then for all
1 ≤ i ≤ m − 1 we have ai+1,j − ai,j ≤ 6.

Lemma 4. If f is an L(3, 2, 1)-labeling of Km�Cn with span 5m−1 for m, n ≥ 3,
then there is no j such that f(Tj) contains both 0 and 5m − 1.

Proof. Assume that 0, 5m − 1 ∈ f(Tj) for some j. Since |f̂(Tj)| = 2m − 2,
we have [0, 5m − 1] = f(Tj−1) ∪ f(Tj) ∪ f(Tj+1) ∪ f̂(Tj) ∪ {x1, x2} for some
x1, x2. Since am,j − a1,j =

∑m−1
i=1 (ai+1,j − ai,j) = 5m − 1 = 5(m − 1) + 4,
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and ai+1,j − ai,j ≤ 6 by the above observation, there are at least three i such that
ai+1,j − ai,j = 6. Thus among such three i’s there is i0 such that ai0+1,j − ai0,j = 6
and x1, x2 /∈ {ai0,j + 2, ai0,j + 3, ai0,j + 4}. Then ai0,j + 2, ai0,j + 3, ai0,j + 4 ∈
f(Tj−1) ∪ f(Tj+1). This is a contradiction.

In the next proposition we find the exact difference of ai+1,j − ai,j and by using
them we get the main result.

Proposition 3. If f(Tj) = {a1,j, a2,j, · · · , am,j} such that a1,j > a2,j > · · · >
am,j , then for all 1 ≤ i ≤ m − 1 we have ai+1,j − ai,j �= 3, 4.

Proof. Suppose ai+1,j − ai,j = 3 for some j. We may assume that ai,j is the
smallest among ai′+1,j′ −ai′,j′ = 3. In other words, if ai′+1,j′ −ai′,j′ = 3, then ai′,j′ ≥
ai,j . If f(Tj−1) doesn’t contain both 0 and 5m−1, then since ai,j+1, ai,j+2 /∈ ̂f(Tj−1)
and by Claim 1, ai,j +1 and ai,j +2 belong to f(Tj−2), which is a contradiction. Thus
f(Tj−1) contains 0 or 5m − 1. Similarly f(Tj+1) also contains 0 or 5m − 1. As a
consequence f(Tj) doesn’t contain both 0 and 5m− 1. Since 0 ∈ f(Tj−1)∪ f(Tj+1),
we have ai,j ≥ 2. By considering g : V → [0, 5m−1] such that g(v) = 5m−1−f(v),
we also have ai+1,j = ai,j +3 ≤ 5m−3. It follows that ai,j−2, ai,j−1, · · · , ai,j +4 /∈
f(Tj+1). Since ai,j − 1, ai,j, · · · , ai,j + 3 /∈ f(Tj+1)∪ ̂f(Tj+1), all but at most one of
ai,j − 1, ai,j, · · · , ai,j + 3 belongs to f(Tj) ∪ f(Tj+2). Since ai,j, ai,j + 3 ∈ f(Tj), at
most two of ai,j, ai,j +1, ai,j +2 belongs to f(Tj+2). Since ai,j−1, ai,j +2 ∈ f(Tj+2).
This contradicts the minimality of ai,j . So ai+1,j − ai,j �= 3.

Assume that ai+1,j − ai,j = 4. we may assume that ai,j + 2 /∈ f(Tj−1). If ai,j

is 0 or 1, then since 0, 1, · · · , 5 /∈ f(Tj−1), 0, 1, · · · , 4 /∈ f(Tj−1) ∪ ̂f(Tj−1). Thus
f(Tj−2) ∪ f(Tj) contains [0, 4] except at most one of them. Since 0, 4 ∈ f(Tj) or
1, 5 ∈ f(Tj), f(Tj−2) contains at least two of 0, 1, 2, 3. This is impossible. Thus
ai,j ≥ 2. Similarly ai+1,j = ai,j + 4 ≤ 5m − 3. Since ai,j − 1, ai,j, · · · , ai,j + 5 /∈
f(Tj−1)∪ ̂f(Tj−1), we have ai,j, · · · , ai,j +4 /∈ f(Tj−1). Since ai,j, ai,j +4 ∈ f(Tj),
at least two of ai,j + 1, ai,j + 2, ai,j + 3 belong to f(Tj−1). This is a contradiction.

Corollary 2. If 0, 5m− 1 /∈ f(Tj) for some j, then ai+1,j − ai,j = 5 for all i.

Corollary 3. If 0, 5m− 1 /∈ f(Tj) for some j, then f(Tj) = {ai,j + 5s|0 ≤ s ≤
m − 1}.

Theorem 1. If λ3,2,1(Km�Cn) = 5m− 1 for m, n ≥ 3, then n is a multiple of 5.

Proof. Without loss of generality we may assume 0 ∈ f(T0) and 5m−1 /∈ f(T1).
Let Ut = {5s + t| 0 ≤ s ≤ m− 1} for t ∈ [0, 4]. Let a be the minimum of f(T1). By
Corollary 2, f(T1) = Ua. Since a0 ≥ 2 and a + 5(m− 1) ≤ 5m − 2, we have a is 2
or 3.

If a = 2, then f(T1) = U2 and f̂(T1) = U1 ∪ U3. Thus f(T0) ⊂ (U0 ∪ U4).
If there is x ∈ f(T0) such that x ∈ U4, then there is i such that ai+1,0 ∈ U4 and
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ai,0 ∈ U0. Since ai+1,0 − ai,0 ≡ 4 (mod 5) and ai+1,0 − ai,0 ≥ 5 by Proposition 3,
ai+1,0 − ai,0 ≥ 9, which contradicts Corollary 2. It follows that f(T0) = U0. Thus
f(T2) = [0, 5m−1]\(f(T0)∪f(T1)∪ f̂(T1)) = [0, 5m−1]\(U0∪U1∪U2∪U3) = U4

by Lemma 3. Hence f̂(T2) = U0 ∪ U3 \ {0}. Therefore f(T3) ⊂ U1 ∪ {0}. If
0 ∈ f(T3), then 1 /∈ f(T3). As a consequence f(T3) = {0} ∪ (U1 \ {1}). Since
1, 2, 3, 4, 5 /∈ f(T3), we have 2, 3, 4 /∈ f̂(T3). Since 4 ∈ f(T2), 2 or 3 belongs to
f(T4). Since 0 ∈ f(T3) and 5m − 1 ∈ f(T2), f(T4) doesn’t contain both 0 and
5m − 1. Thus f(T4) is U2 or U3. Since 6 ∈ f(T3), 7 /∈ f(T4) Hence f(T4) = U3.
Since f̂(T4) = U2 ∪ U4, 5m − 1 /∈ f(T5). Since 1 /∈ (f(T3) ∪ f(T4) ∪ f̂(T4)),
1 ∈ f(T5). Thus f(T5) = U1 and contains 6, which contradicts the fact 6 ∈ f(T3).
Hence 0 /∈ f(T3). It follows that f(T3) = U1. Since 0, 5m − 1 /∈ f(T3), we have
f(T4) = [0, 5m−1]\(f(T2)∪f(T3)∪ f̂(T3)) = [0, 5m−1]\(U4∪U1∪U2∪U0) = U3.
Since 0, 5m− 1 /∈ f(T4), we have f(T5) = [0, 5m− 1] \ (f(T3) ∪ f(T4) ∪ f̂(T4)) =
[0, 5m− 1] \ (U1 ∪U3 ∪ U2 ∪U4) = U0. Since f̂(T5) = Û0 = (U1 ∪ U4) \ {5m− 1},
f(T6) ⊂ U2 ∪ {5m − 1}. If 5m − 1 ∈ f(T6), then 5m − 3 /∈ f(T6). Thus f(T6) =
(U2∪{5m−1})\{5m−3}. Since 0 ∈ f(T5) and 5m−1 ∈ f(T6), f(T7) doesn’t contain
both 0 and 5m−1. Since 0, 1, 2, 3 ∈ f(T5)∪f(T6)∪ f̂(T6), the minimum of f(T7) is
at least 4. Thus the maximum of f(T7) is at least 4+5(m−1) = 5m−1 by Proposition
3. This gives a contradiction since 5m− 1 ∈ f(T6). Thus 5m− 1 /∈ f(T6). It follows
that f(T6) = U2. By the same method we can prove f(T5t) = U0, f(T5t+1) = U2,
f(T5t+2) = U4, f(T5t+3) = U1 and f(T5t+4) = U3 by induction.

If a = 3, then by the same method, we can prove that f(T5t) = U0, f(T5t+1) = U3,
f(T5t+2) = U1, f(T5t+3) = U4 and f(T5t+4) = U2 by induction.

In any case, f(Tn) = f(T0) = U0. Thus n is a multiple of 5.

When m = 3, by providing two L3,2,1-labelings of K3�C5 and K3�C8, we find
the cases that λ3,2,1-number equals to 15. For 4 ≤ n ≤ 9, Shao and Vesel [17]
computed λ3,2,1(K3�Cm).

Theorem 2. If n ≥ 28 and n �≡ 0 (mod 5), then λ3,2,1(K3�Cn) = 15.

Proof. For any n ≥ 28, n is a linear combination of 5 and 8. In other words,
n = 5s + 8t for some nonnegative s, t. Note that the leftmost two columns of the
patterns in Table 2 coincide and they can be located to the right side of each pattern
as an L(3, 2, 1)- labelings. By repeating Pattern A s times and Pattern B t times
horizontally, we obtain L(3, 2, 1)-labeling for K3�Cn with span 15. By Theorem 1,
λ3,2,1(K3�Cn) > 14 and we have λ3,2,1(K3�Cn) = 15.
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Table 2. L(3, 2, 1)-Labelings of K3�C5 and K3�C8

0 13 10 7 3
6 2 15 12 9
11 8 4 1 14

Pattern A

0 13 10 6 14 11 7 4
6 2 15 12 3 0 13 9
11 8 4 1 9 5 2 15

Pattern B
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