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ENLARGING THE CONVERGENCE DOMAIN OF SECANT-LIKE
METHODS FOR EQUATIONS

I. K. Argyros, J. A. Ezquerro, M. A. Hernández-Verón,
S. Hilout and Á. A. Magreñán

Abstract. We present two new semilocal convergence analyses for secant-like
methods in order to approximate a locally unique solution of a nonlinear equation
in a Banach space setting. These methods include the secant, Newton’s method
and other popular methods as special cases. The convergence analysis is based
on our idea of recurrent functions. Using more precise majorizing sequences than
before we obtain weaker convergence criteria. These advantages are obtained
because we use more precise estimates for the upper bounds on the norm of
the inverse of the linear operators involved than in earlier studies. Numerical
examples are given to illustrate the advantages of the new approaches.

1. INTRODUCTION

Let X , Y be Banach spaces and D be a non-empty, convex and open subset in
X . Let U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X
with center x and radius r > 0. Denote by L(X ,Y) the space of bounded linear
operators from X into Y . In the present paper we are concerned with the problem of
approximating a locally unique solution x� of equation

(1.1) F (x) = 0,

where F is a Fréchet continuously differentiable operator defined on D with values in
Y .

A lot of problems from computational sciences and other disciplines can be brought
in the form of equation (1.1) using Mathematical Modelling [8, 10, 14]. The solution of
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these equations can rarely be found in closed form. That is why most solution methods
for these equations are iterative. In particular, the practice of numerical analysis for
finding such solutions is essentially connected to variants of Newton’s method [8, 10,
14, 22, 24, 26, 31].

A very important aspect in the study of iterative procedures is the convergence
domain. In general the convergence domain is small. This is why it is important to
enlarge it without additional hypotheses. Then, this is our goal in this paper.

In the present paper we study the secant-like method defined by

(1.2)

x−1, x0 are initial points

yn = λ xn + (1 − λ) xn−1, λ ∈ [0, 1]

xn+1 = xn −B−1
n F (xn), Bn = [yn, xn;F ] for each n = 0, 1, 2, · · · .

The family of secant-like methods reduces to the secant method if λ = 0 and to
Newton’s method if λ = 1. It was shown in [26] (see also [7, 8, 21] and the references
therein) that the R-order of convergence is at least (1 +

√
5)/2 if λ ∈ [0, 1), the same

as that of the secant method. In the real case the closer xn and yn are, the higher
the speed of convergence. Moreover in [19], it was shown that as λ approaches 1 the
speed of convergence is close to that of Newton’s method. Moreover, the advantages of
using secant-like method instead of Newton’s method is that the former method avoids
the computation of F ′(xn)−1 at each step. The study about convergence matter of
iterative procedures is usually centered on two types: semilocal and local convergence
analysis. The semilocal convergence matter is, based on the information around an
initial point, to give criteria ensuring the convergence of iterative procedure; while the
local one is, based on the information around a solution, to find estimates of the radii
of convergence balls. There is a plethora of studies on the weakness and/or extension
of the hypothesis made on the underlying operators; see for example [1-33].

The hypotheses used for the semilocal convergence of secant-like method are (see
[8, 18, 19, 21]):

(C1) There exists a divided difference of order one denoted by [x, y;F ] ∈ L(X ,Y)
satisfying

[x, y;F ](x− y) = F (x) − F (y) for all x, y ∈ D;

(C2) There exist x−1, x0 in D and c > 0 such that

‖ x0 − x−1 ‖≤ c;

(C3) There exist x−1, x0 ∈ D and M > 0 such that A−1
0 ∈ L(Y,X ) and

‖ A−1
0 ([x, y;F ]−[u, v;F ]) ‖≤M (‖ x−u ‖+‖ y−v ‖) for all x, y, u, v ∈ D;
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(C�
3) There exist x−1, x0 ∈ D and L > 0 such that A−1

0 ∈ L(Y,X ) and

‖ A−1
0 ([x, y;F ]− [v, y;F ]) ‖≤ L ‖ x− v ‖ for all x, y, v ∈ D;

(C��
3 ) There exist x−1, x0 ∈ D and K > 0 such that F (x0)−1 ∈ L(Y,X ) and

‖ F ′(x0)−1 ([x, y;F ]− [v, y;F ]) ‖≤ K ‖ x− v ‖ for all x, y, v ∈ D;

(C4) There exists η > 0 such that

‖ A−1
0 F (x0) ‖≤ η;

(C�
4) There exists η > 0 for each λ ∈ [0, 1] such that

‖ B−1
0 F (x0) ‖≤ η.

We shall refer to (C1)-(C4) as the (C) conditions. From analyzing the semilocal con-
vergence of the simplified secant method, it was shown [18] that the convergence
criteria are milder than those of secant-like method given in [20]. Consequently, the
decreasing and accessibility regions of (1.2) can be improved. Moreover, the semilocal
convergence of (1.2) is guaranteed.

In the present paper we show: an even larger convergence domain can be obtained
under the same or weaker sufficient convergence criteria for method (1.2). In view of
(C3) we have that

(C5) There exists M0 > 0 such that

‖ A−1
0 ([x, y;F ]− [x−1, x0;F ]) ‖

≤M0 (‖ x− x−1 ‖ + ‖ y − x0 ‖) for all x, y ∈ D.

We shall also use the conditions

(C6) There exist x0 ∈ D and M1 > 0 such that F ′(x0)−1 ∈ L(Y,X ) and

‖ F ′(x0)−1 ([x, y;F ]−F ′(x0)) ‖≤M1 (‖ x−x0 ‖+‖ y−x0 ‖) for all x, y ∈ D;

(C7) There exist x0 ∈ D and M2 > 0 such that F ′(x0)−1 ∈ L(Y,X ) and

‖ F ′(x0)−1 (F ′(x)−F ′(x0)) ‖≤M2 (‖ x−x0 ‖ + ‖ y−x0 ‖) for all x, y ∈ D.
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Note that M0 ≤ M , M2 ≤ M1, L ≤ M hold in general and M/M0, M1/M2, M/L

can be arbitrarily large [6, 7, 8, 9, 10, 14]. We shall refer to (C1), (C2), (C��
3 ), (C�

4 ), (C6)
as the (C�) conditions and (C1), (C2), (C�

3 ), (C�
4), (C5) as the (C��) conditions. Note that

(C5) is not additional hypothesis to (C3), since in practice the computation of constant
M requires that of M0. Note that if (C6) holds, then we can set M2 = 2M1 in (C7).

The paper is organized as follows. In Section 2 we use the (C�) and (C��) conditions
instead of the (C) conditions to provide new semilocal convergence analyses for method
(1.2) under weaker sufficient criteria than those given in [18, 19, 21, 25, 26]. This
way we obtain a larger convergence domain and a tighter convergence analysis. Two
numerical examples, where we illustrate the improvement of the domain of starting
points achieved with the new semilocal convergence results, are given in the Section 3.

2. SEMILOCAL CONVERGENCE OF SECANT-LIKE METHOD

We present the semilocal convergence of secant-like method. First, we need some
results on majorizing sequences for secant-like method.

Lemma 2.1. Let c ≥ 0, η > 0, M1 > 0, K > 0 and λ ∈ [0, 1]. Set t−1 = 0, t0 = c

and t1 = c+ η. Define scalar sequences {qn}, {tn}, {αn} for each n = 0, 1, · · · by

(2.1)
qn = (1 − λ) (tn − t0) + (1 + λ) (tn+1 − t0),

tn+2 = tn+1 +
K (tn+1 − tn + (1 − λ) (tn − tn−1))

1 −M1 qn
(tn+1 − tn),

(2.2) αn =
K (tn+1 − tn + (1 − λ) (tn − tn−1))

1 −M1 qn
,

function {fn} for each n = 1, 2, · · · by

(2.3)
fn(t) = K η tn +K (1− λ) η tn−1 +M1 η ((1− λ) (1 + t+ · · ·+ tn)+

(1 + λ) (1 + t+ · · ·+ tn+1))− 1

and polynomial p by

(2.4) p(t) = M1 (1 + λ) t3 + (M1 (1− λ) +K) t2 −K λ t−K (1 − λ).

Denote by α the smallest root of polynomial p in (0, 1). Suppose that

(2.5) 0 < α0 ≤ α ≤ 1 − 2M1 η.

Then, sequence {tn} is non-decreasing, bounded from above by t�� defined by

(2.6) t�� =
η

1 − α
+ c



Secant-like Methods 633

and converges to its unique least upper bound t� which satisfies

(2.7) c+ η ≤ t� ≤ t��.

Moreover, the following estimates are satisfied for each n = 0, 1, · · ·

(2.8) 0 ≤ tn+1 − tn ≤ αn η

and

(2.9) t� − tn ≤ αn η

1 − α
.

Proof. We shall first prove that polynomial p has roots in (0, 1). If λ �= 1, p(0) =
−(1 − λ)K < 0 and p(1) = 2M1 > 0. If λ = 1, p(t) = t p(t), p(0) = −K < 0 and
p(1) = 2M1 > 0. In either case it follows from the intermediate value theorem that
there exist roots in (0, 1). Denote by α the minimal root of p in (0, 1). Note that, in
particular for Newton’s method (i.e. for λ = 1) and for Secant method (i.e. for λ = 0),
we have, respectively by (2.4) that

(2.10) α =
2K

K +
√
K2 + 4M1K

and

(2.11) α =
2K

K +
√
K2 + 8M1K

.

It follows from (2.1) and (2.2) that estimate (2.8) is satisfied if

(2.12) 0 ≤ αn ≤ α.

Estimate (2.12) is true by (2.5) for n = 0. Then, we have by (2.1) that

t2 − t1 ≤ α (t1 − t0) =⇒ t2 ≤ t1 + α (t1 − t0)

=⇒ t2 ≤ η + t0 + α η = c+ (1 + α) η = c+
1− α2

1− α η
< t��.

Suppose that

(2.13) tk+1 − tk ≤ αk η and tk+1 ≤ c+
1− αk+1

1 − α
η.

Estimate (2.12) shall be true for k + 1 replacing n if

(2.14) 0 ≤ αk+1 ≤ α
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or

(2.15) fk(α) ≤ 0.

We need a relationship between two consecutive recurrent functions fk for each k =
1, 2, · · · . It follows from (2.3) and (2.4) that

(2.16) fk+1(α) = fk(α) + p(α)αk−1 η = fk(α),

since p(α) = 0. Define function f∞ on (0, 1) by

(2.17) f∞(t) = lim
n→∞ fn(t).

Then, we get from (2.3) and (2.17) that

(2.18)

f∞(α) = lim
n→∞ fn(α)

= K η lim
n→∞αn +K (1 − λ) η lim

n→∞αn−1

+M1 η

(
(1 − λ) lim

n→∞(1 + α+ · · ·+ αn)

+(1 + λ) lim
n→∞(1 + α+ · · ·+ αn+1)

)
− 1

= M1 η

(
1 − λ

1 − α
+

1 + λ

1 − α

)
− 1 =

2M1 η

1 − α
− 1,

since α ∈ (0, 1). In view of (2.15), (2.16) and (2.18) we can show instead of (2.15)
that

(2.19) f∞(α) ≤ 0,

which is true by (2.5). The induction for (2.8) is complete. It follows that sequence
{tn} is non-decreasing, bounded from above by t�� given by (2.6) and as such it
converges to t� which satisfies (2.7). Estimate (2.9) follows from (2.8) by using
standard majorization techniques [8, 10, 22]. The proof of Lemma 2.1 is complete.

Lemma 2.2. Let c ≥ 0, η > 0, M1 > 0, K > 0 and λ ∈ [0, 1]. Set r−1 = 0,
r0 = c and r1 = c+ η. Define scalar sequences {rn} for each n = 1, · · · by

(2.20)
r2 = r1 + β1 (r1 − r0)

rn+2 = rn+1 + βn (rn+1 − rn),

where
β1 =

M1 (r1 − r0 + (1− λ) (r0 − r−1))
1 −M1 q1

,
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βn =
K (rn+1 − rn + (1− λ) (rn − rn−1))

1 −M1 qn
for each n = 2, 3, · · ·

and function {gn} on [0, 1) for each n = 1, 2, · · · by

(2.21)

gn(t)

= K (t+(1−λ)) tn−1 (r2−r1)

+M1 t

(
(1−λ)

1−tn+1

1−t +(1+λ)
1−tn+2

1−t
)

(r2−r1)+(2M1 η−1) t.

Suppose that

(2.22) 0 ≤ β1 ≤ α ≤ 1− 2M1 (r2 − r1)
1 − 2M1 η

,

where α is defined in Lemma 2.1. Then, sequence {rn} is non-decreasing, bounded
from above by r�� defined by

(2.23) r�� = c+ η +
r2 − r1
1 − α

and converges to its unique least upper bound r� which satisfies

(2.24) c+ η ≤ r� ≤ r��.

Moreover, the following estimates are satisfied for each n = 1, · · ·
(2.25) 0 ≤ rn+2 − rn+1 ≤ αn (r2 − r1).

Proof. We shall use mathematical induction to show that

(2.26) 0 ≤ βn ≤ α.

Estimate (2.26) is true for n = 0 by (2.22). Then, we have by (2.20) that

0 ≤ r3 − r2 ≤ α (r2 − r1) =⇒ r3 ≤ r2 + α (r2 − r1)
=⇒ r3 ≤ r2 + (1 + α) (r2 − r1)− (r2 − r1)

=⇒ r3 ≤ r1 +
1 − α2

1 − α
(r2 − r1) ≤ r��.

Suppose (2.26) holds for each n ≤ k, then, using (2.20), we obtain that

(2.27) 0 ≤ rk+2 − rk+1 ≤ αk (r2 − r1) and rk+2 ≤ r1 +
1 − αk+1

1 − α
(r2 − r1).

Estimate (2.26) is certainly satisfied, if

(2.28) gk(α) ≤ 0,
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where gk is defined by (2.21). Using (2.21), we obtain the following relationship
between two consecutive recurrent functions gk for each k = 1, 2, · · ·
(2.29) gk+1(α) = gk(α) + p(α)αk−1 (r2 − r1) = gk(α),

since p(α) = 0. Define function g∞ on [0, 1) by

(2.30) g∞(t) = lim
k→∞

gk(t).

Then, we get from (2.21) and (2.30) that

(2.31) g∞(α) = α

(
2M1 (r2 − r1)

1 − α
+ 2M1 η − 1

)
.

In view of (2.28)-(2.31) to show (2.28), it suffices to have g∞(α) ≤ 0, which true
by the right hand hypothesis in (2.22). The induction for (2.26) (i.e. for (2.25)) is
complete. The rest of the proof is omitted (as identical to the proof of Lemma 2.1).
The proof of Lemma 2.2 is complete.

Remark 2.3. Let us see how sufficient convergence criterion on (2.5) for sequence
{tn} simplifies in the interesting case of Newton’s method. That is when c = 0 and
λ = 1. Then, (2.5) can be written for L0 = 2M1 and L = 2K as

(2.32) h0 =
1
8

(L+ 4L0 +
√
L2 + 8L0 L) η ≤ 1

2
.

The convergence criterion in [18] reduces to the famous for it simplicity and clarity
Kantorovich hypothesis

(2.33) h = L η ≤ 1
2
.

Note however that L0 ≤ L holds in general and L/L0 can be arbitrarily large [6, 7, 8,
9, 10, 14]. We also have that

(2.34) h ≤ 1
2

=⇒ h0 ≤ 1
2

but not necessarily vice versa unless if L0 = L and

(2.35)
h0

h
−→ 1

4
as

L

L0
−→ ∞.

Similarly, it can easily be seen that the sufficient convergence criterion (2.22) for
sequence {rn} is given by

(2.36) h1 =
1
8

(4L0 +
√
L0 L+ 8L2

0 +
√
L0 L) η ≤ 1

2
.
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We also have that

(2.37) h0 ≤ 1
2

=⇒ h1 ≤ 1
2

and

(2.38)
h1

h
−→ 0,

h1

h0
−→ 0 as

L0

L
−→ 0.

Note that sequence {rn} is tighter than {tn} and converges under weaker conditions.
Indeed, a simple inductive argument shows that for each n = 2, 3, · · · , if M1 < K,
then

(2.39) rn < tn, rn+1 − rn < tn+1 − tn and r� ≤ t�.

We have the following usefull and obvious extensions of Lemma 2.1 and Lemma
2.2, respectively.

Lemma 2.4. Let N = 0, 1, 2, · · · be fixed. Suppose that

(2.40) t1 ≤ t2 ≤ · · · ≤ tN ≤ tN+1,

(2.41)
1
M1

> (1− λ) (tN − t0) + (1 + λ) (tN+1 − t0)

and

(2.42) 0 ≤ αN ≤ α ≤ 1 − 2M1 (tN+1 − tN ).

Then, sequence {tn} generated by (2.1) is nondecreasing, bounded from above by t��

and converges to t� which satisfies t� ∈ [tN+1, t
��]. Moreover, the following estimates

are satisfied for each n = 0, 1, · · ·

(2.43) 0 ≤ tN+n+1 − tN+n ≤ αn (tN+1 − tN )

and

(2.44) t� − tN+n ≤ αn

1− α
(tN+1 − tN ).

Lemma 2.5. Let N = 1, 2, · · · be fixed. Suppose that

(2.45) r1 ≤ r2 ≤ · · · ≤ rN ≤ rN+1,

(2.46)
1
M1

> (1− λ) (rN − r0) + (1 + λ) (rN+1 − r0)
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and

(2.47) 0 ≤ βN ≤ α ≤ 1 − 2M1 (rN+1 − rN )
1 − 2M1 (rN − rN−1)

.

Then, sequence {rn} generated by (2.20) is nondecreasing, bounded from above by
r�� and converges to r� which satisfies r� ∈ [rN+1, r

��]. Moreover, the following
estimates are satisfied for each n = 0, 1, · · ·

(2.48) 0 ≤ rN+n+1 − rN+n ≤ αn (rN+1 − rN)

and

(2.49) r� − rN+n ≤ αn

1 − α
(rN+1 − rN).

Next, we present the following semilocal convergence result for secant-like method
under the (C�) conditions.

Theorem 2.6. Suppose that the (C�), Lemma 2.1 (or Lemma 2.4) conditions and

(2.50) U(x0, t
�) ⊆ D

hold. Then, sequence {xn} generated by the secant-like method is well defined, remains
in U(x0, t

�) for each n = −1, 0, 1, · · · and converges to a solution x� ∈ U(x0, t
�− c)

of equation F (x) = 0. Moreover, the following estimates are satisfied for each n =
0, 1, · · ·

(2.51) ‖ xn+1 − xn ‖≤ tn+1 − tn

and

(2.52) ‖ xn − x� ‖≤ t� − tn.

Furthemore, if there exists r ≥ t� such that

(2.53) U(x0, r) ⊆ D

and

(2.54) r + t� <
1
M1

or r + t� <
2
M2

,

then, the solution x� is unique in U(x0, r).
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Proof. We use mathematical induction to prove that

(2.55) ‖ xk+1 − xk ‖≤ tk+1 − tk

and

(2.56) U(xk+1, t
� − tk+1) ⊆ U(xk, t

� − tk)

for each k = −1, 0, 1, · · · . Let z ∈ U(x0, t
� − t0). Then, we obtain that

‖ z − x−1 ‖≤‖ z − x0 ‖ + ‖ x0 − x−1 ‖≤ t� − t0 + c = t� = t� − t−1,

which implies z ∈ U(x−1, t
� − t−1). Let also w ∈ U(x0, t

� − t1). We get that

‖ w − x0 ‖≤‖ w − x1 ‖ + ‖ x1 − x0 ‖≤ t� − t1 + t1 − t0 = t� = t� − t0.

That is w ∈ U(x0, t
� − t0). Note that

‖ x−1 − x0 ‖≤ c = t0 − t−1 and ‖ x1 − x0 ‖=‖ B−1
0 F (x0) ‖≤ η = t1 − t0 < t�,

which implies x1 ∈ U(x0, t
�) ⊆ D. Hence, estimates (2.51) and (2.52) hold for

k = −1 and k = 0. Suppose (2.51) and (2.52) hold for all n ≤ k. Then, we obtain
that

‖ xk+1 − x0 ‖≤
k+1∑
i=1

‖ xi − xi−1 ‖≤
k+1∑
i=1

(ti − ti−1) = tk+1 − t0 ≤ t�

and

‖ yk − x0 ‖≤ λ ‖ xk − x0 ‖ +(1 − λ) ‖ xk−1 − x0 ‖≤ λ t� + (1 − λ) t� = t�.

Hence, xk+1, yk ∈ U(x0, t
�). Let Ek := [xk+1, xk;F ] for each k = 0, 1, · · · . Using

(1.2), Lemma 2.1 and the induction hypotheses, we get that

(2.57)

‖ F ′(x0)−1 (Bk+1 − F ′(x0)) ‖≤M1 (‖ yk+1 − x0 ‖ + ‖ xk+1 − x0 ‖)
≤M1 ((1 − λ) ‖ xk − x0 ‖ +λ ‖ xk+1 − x0 ‖ + ‖ xk+1 − x0 ‖)
≤M1 ((1 − λ) (tk − t0) + (1 + λ) (tk+1 − t0)) < 1,

since, yk+1 − x0 = λ (xk+1 − x0) + (1 − λ) (xk − x0) and

‖ yk+1 − x0 ‖=‖ λ (xk+1 − x0) + (1 − λ) (xk − x0) ‖
≤ λ ‖ xk+1 − x0 ‖ +(1− λ) ‖ xk − x0 ‖ .
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It follows from (2.57) and the Banach lemma on invertible operators that B−1
k+1 exists

and

(2.58) ‖ B−1
k+1 F

′(x0) ‖≤ 1
1 − Θk

≤ 1
1 −M1 qk+1

,

where Θk = M1 ((1− λ) ‖ xk − x0 ‖ +(1 + λ) ‖ xk+1 − x0 ‖). In view of (1.2), we
obtain the identity

(2.59) F (xk+1) = F (xk+1)− F (xk) − Bk (xk+1 − xk) = (Ek −Bk) (xk+1 − xk).

Then, using the induction hypotheses, the (C�) condition and (2.59), we get in turn that

(2.60)

‖ F ′(x0)−1 F (xk+1) ‖
= ‖ F ′(x0)−1 (Ek −Bk) (xk+1 − xk) ‖
≤ K ‖ xk+1 − yk ‖ ‖ xk+1 − xk ‖
≤ K (‖ xk+1 − xk ‖ +(1 − λ) ‖ xk − xk−1 ‖) ‖ xk+1 − xk ‖
≤ K (tk+1 − tk + (1− λ) (tk − tk−1)) (tk+1 − tk),

since, xk+1 − yk = xk+1 − xk + (1− λ) (xk − xk−1) and

‖ xk+1−yk ‖≤‖ xk+1−xk ‖ +(1−λ) ‖ xk−xk−1 ‖≤ tk+1−tk +(1−λ) (tk−tk−1).

It now follows from (1.2), (2.1), (2.58)-(2.60) that

‖ xk+2 − xk+1 ‖ ≤ ‖ B−1
k+1 F

′(x0) ‖ ‖ F ′(x0)−1 F (xk+1) ‖
≤ K (tk+1 − tk + (1 − λ) (tk+1 − xk)) (tk+1 − tk)

1−M1 qk+1
= tk+2−tk+1,

which completes the induction for (2.55). Furthemore, let v ∈ U(xk+2, t
� − tk+2).

Then, we have that

‖ v − xk+1 ‖ ≤ ‖ v − xk+2 ‖ + ‖ xk+2 − xk+1 ‖
≤ t� − tk+2 + tk+2 − tk+1 = t� − tk+1,

which implies v ∈ U(xk+1, t
�−tk+1). The induction for (2.55) and (2.56) is complete.

Lemma 2.1 implies that {tk} is a complete sequence. It follows from (2.55) and (2.56)
that {xk} is a complete sequence in a Banach space X and as such it converges to some
x� ∈ U(x0, t

�) (since U(x0, t
�) is a closed set). By letting k −→ ∞ in (2.60), we

get that F (x�) = 0. Moreover, estimate (2.52) follows from (2.51) by using standard
majorization techniques [8, 10, 22]. To show the uniqueness part, let y� ∈ U(x0, r)
be such F (y�) = 0, where r satisfies (2.53) and (2.54). We have that

(2.61)
‖ F ′(x0)−1 ([y�, x�;F ] − F ′(x0)) ‖ ≤ M1 (‖ y� − x0 ‖ + ‖ x� − x0 ‖)

≤ M1 (t� + r) < 1.
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It follows by (2.61) and the Banach lemma on invertible operators that linear operator
[y�, x�;F ]−1 exists. Then, using the identity 0 = F (y�) − F (x�) = [y�, x�;F ] (y� −
x�), we deduce that x� = y�. The proof of Theorem 2.6 is complete.

In order for us to present the semilocal result for secant-like method under the
(C��) conditions, we first need a result on a majorizing sequence. The proof in given
in Lemma 2.1.

Remark 2.7. Clearly, (2.22) (or (2.47)), {rn} can replace (2.5) (or (2.42)), {tn},
respectively in Theorem 2.6.

Lemma 2.8. Let c ≥ 0, η > 0, L > 0, M0 > 0 with M0 c < 1 and λ ∈ [0, 1]. Set

s−1 = 0, s0 = c, s1 = c+ η, K̃ =
L

1 −M0 c
and M̃1 =

M0

1 −M0 c
.

Define scalar sequences {q̃n}, {sn}, {α̃n} for each n = 0, 1, · · · by

q̃n = (1 − λ) (sn − s0) + (1 + λ) (sn+1 − s0),

sn+2 = sn+1 +
K̃ (sn+1 − sn + (1− λ) (sn − sn−1))

1 − M̃1 q̃n
(sn+1 − sn),

α̃n =
K̃ (sn+1 − sn + (1 − λ) (sn − sn−1))

1 − M̃1 q̃n
,

function {f̃n} for each n = 1, 2, · · · by

f̃n(t) = K̃ η tn + K̃ (1 − λ) η tn−1 + M̃1 η ((1 − λ) (1 + t+ · · ·+ tn)+

(1 + λ) (1 + t+ · · ·+ tn+1)) − 1

and polynomial p̃ by

p̃(t) = M̃1 (1 + λ) t3 + (M̃1 (1 − λ) + K̃) t2 − K̃ λ t− K̃ (1− λ).

Denote by α̃ the smallest root of polynomial p̃ in (0, 1). Suppose that

(2.62) 0 ≤ α̃0 ≤ α̃ ≤ 1 − 2 M̃1 η.

Then, sequence {sn} is non-decreasing, bounded from above by s�� defined by

s�� =
η

1 − α̃
+ c

and converges to its unique least upper bound s� which satisfies c + η ≤ s� ≤ s��.
Moreover, the following estimates are satisfied for each n = 0, 1, · · ·

0 ≤ sn+1 − sn ≤ α̃n η and s� − sn ≤ α̃n η

1 − α̃
.
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Next, we present the semilocal convergence result for secant-like method under the
(C��) conditions.

Theorem 2.9. Suppose that the (C��) conditions, (2.62) (or Lemma 2.2 conditions
with α̃n, α̃, M̃1 replacing, respectively, αn, α, M1) and U(x0, s

�) ⊆ D hold. Then, se-
quence {xn} generated by the secant-like method is well defined, remains in U(x0, s

�)
for each n = −1, 0, 1, · · · and converges to a solution x� ∈ U(x0, s

�) of equation
F (x) = 0. Moreover, the following estimates are satisfied for each n = 0, 1, · · ·

‖ xn+1 − xn ‖≤ sn+1 − sn and ‖ xn − x� ‖≤ s� − sn.

Furthemore, if there exists r ≥ s� such that U(x0, r) ⊆ D and r + s� + c < 1/M0,
then, the solution x� is unique in U(x0, r).

Proof. The proof is analogous to Theorem 2.6. Simply notice that in view of (C5),
we obtain instead of (2.57) that

‖ A−1
0 (Bk+1 −A0) ‖≤M0 (‖ yk+1 − x−1 ‖ + ‖ xk+1 − x0 ‖)

≤M0 ((1− λ) ‖ xk − x0 ‖ +λ ‖ xk+1 − x0 ‖ + ‖ x0 − x−1 ‖ + ‖ xk+1 − x0 ‖)
≤M0 ((1− λ) (sk − s0) + (1 + λ) (sk+1 − s0) + c) < 1,

leading to B−1
k+1 exists and

‖ B−1
k+1 A0 ‖≤ 1

1 − Ξk
,

where Ξk = M0 ((1 − λ) (sk − s0) + (1 + λ) (sk+1 − s0) + c). Moreover, using (C�
3)

instead of (C��
3 ), we get that

‖ A−1
0 F (xk+1) ‖≤ L (sk+1 − sk + (1 − λ) (sk − sk−1)) (sk+1 − sk).

Hence, we have that

‖ xk+2 − xk+1 ‖ ≤‖ B−1
k+1 A0 ‖ ‖ A−1

0 F (xk+1) ‖

≤ L (sk+1 − sk + (1 − λ) (sk − sk−1)) (sk+1 − sk)
1 −M0 ((1 + λ) (sk+1 − s0) + (1− λ) (sk − s0) + c)

≤ K̃ (sk+1 − sk + (1− λ) (sk − sk−1)) (sk+1−sk)
1 − M̃1 ((1 + λ) (sk+1−s0)+(1− λ) (sk − s0))

= sk+2 − sk+1.

The uniqueness part is given in Theorem 2.6 with r, s� replacing R2 and R0, respec-
tively. The proof of Theorem 2.9 is complete.
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Remark 2.10. (a) Condition (2.50) can be replaced by

(2.63) U(x0, t
��) ⊆ D,

where t�� is given in the closed form by (2.55).

(b) The majorizing sequence {un} essentially used in [18] is defined by
(2.64)

u−1 = 0, u0 = c, u1 = c+ η

un+2 = un+1 +
M (un+1 − un + (1 − λ) (un − un−1))

1 −M q�
n

(un+1 − un),

where
q�
n = (1 − λ) (un − u0) + (1 + λ) (un+1 − u0).

Then, if K < M or M1 < M , a simple inductive argument shows that for each
n = 2, 3, · · ·

(2.65) tn < un, tn+1 − tn < un+1 − un and t� ≤ u� = lim
n→∞un.

Clearly {tn} converges under the (C) conditions and conditions of Lemma 2.1.
Moreover, as we already showed in Remark 2.3, the sufficient convergence cri-
teria of Theorem 2.6 can be weaker than those of Theorem 2.9. Similarly if
L ≤ M , {sn} is a tighter sequence than {un}. In general, we shall test the
convergence criteria and use the tightest sequence to estimate the error bounds.

(c) Clearly the conclusions of Theorem 2.9 hold if {sn}, (2.62) are replaced by {r̃n},
(2.22), where {r̃n} is defined as {rn} with M0 replacing M1 in the definition
of β1 (only at the numerator) and the tilda letters replacing the non-tilda letters
in (2.22).

3. NUMERICAL EXAMPLES

Now, we check numerically with two examples that the new semilocal convergence
results obtained in Theorems 2.6 and 2.9 improve the domain of starting points obtained
by the following classical result given in [20].

Theorem 3.1. Let X and Y be two Banach spaces and F : Ω ⊆ X → Y be a
nonlinear operator defined on a non-empty open convex domain Ω. Let x−1, x0 ∈ Ω
and λ ∈ [0, 1]. Suppose that there exists [u, v;F ] ∈ L(X, Y ), for all u, v ∈ Ω (u �= v),
and the following four conditions

· ‖x0 − x−1‖ = c �= 0 with x−1, x0 ∈ Ω,
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· Fixed λ ∈ [0, 1], the operator B0 = [y0, x0;F ] is invertible and such that
‖B−1

0 ‖ ≤ β,

· ‖B−1
0 F (x0)‖ ≤ η,

· ‖[x, y;F ]− [u, v;F ]‖ ≤ Q(‖x−u‖+‖y−v‖);Q≥ 0; x, y, u, v ∈ Ω; x �= y; u �=
v,

are satisfied. If B(x0, ρ) ⊆ Ω, where ρ =
1− a

1 − 2a
η,

(3.1) a =
η

c+ η
<

3 −√
5

2
and b =

Qβc2

c+ η
<

a(1− a)2

1 + λ(2a− 1)
,

then the secant-like methods defined by (1.2)converge to a solution x∗ of equation
F (x) = 0 with R-order of convergence at least 1+

√
5

2 . Moreover, xn, x
∗ ∈ B(x0, ρ),

the solution x∗ is unique in B(x0, τ) ∩ Ω, where τ = 1
Qβ − ρ− (1 − λ)α.

3.1. Example 1

We illustrate the above-mentioned with an application, where a system of nonlin-
ear equations is involved. We see that Theorem 3.1 cannot guarantee the semilocal
convergence of secant-like methods (1.2) , but Theorem 2.6 can do it.

It is well known that energy is dissipated in the action of any real dynamical system,
usually through some form of friction. However, in certain situations this dissipation is
so slow that it can be neglected over relatively short periods of time. In such cases we
assume the law of conservation of energy, namely, that the sum of the kinetic energy
and the potential energy is constant. A system of this kind is said to be conservative.

If ϕ and ψ are arbitrary functions with the property that ϕ(0) = 0 and ψ(0) = 0,
the general equation

(3.2) μ
d2x(t)
dt2

+ ψ

(
dx(t)
dt

)
+ ϕ(x(t)) = 0,

can be interpreted as the equation of motion of a mass μ under the action of a restoring
force −ϕ(x) and a damping force −ψ(dx/dt). In general these forces are nonlinear,
and equation (3.2) can be regarded as the basic equation of nonlinear mechanics. In this
paper we shall consider the special case of a nonlinear conservative system described
by the equation

μ
d2x(t)
dt2

+ ϕ(x(t)) = 0,

in which the damping force is zero and there is consequently no dissipation of energy.
Extensive discussions of (3.2), with applications to a variety of physical problems, can
be found in classical references [4] and [30].
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Now, we consider the special case of a nonlinear conservative system described by
the equation

(3.3)
d2x(t)
dt2

+ φ(x(t)) = 0

with the boundary conditions

(3.4) x(0) = x(1) = 0.

After that, we use a process of discretization to transform problem (3.3)-(3.4) into a
finite-dimensional problem and look for an approximated solution of it when a partic-
ular function φ is considered. So, we transform problem (3.3)-(3.4) into a system of
nonlinear equations by approximating the second derivative by a standard numerical
formula.

Firstly, we introduce the points tj = jh, j = 0, 1, . . . , m + 1, where h = 1
m+1

and m is an appropriate integer. A scheme is then designed for the determination of
numbers xj , it is hoped, approximate the values x(tj) of the true solution at the points
tj . A standard approximation for the second derivative at these points is

x′′j ≈ xj−1 − 2xj + xj+1

h2
, j = 1, 2, . . . , m.

A natural way to obtain such a scheme is to demand that the xj satisfy at each interior
mesh point tj the difference equation

(3.5) xj−1 − 2xj + xj+1 + h2φ(xj) = 0.

Since x0 and xm+1 are determined by the boundary conditions, the unknowns are
x1, x2, . . . , xm.

A further discussion is simplified by the use of matrix and vector notation. Intro-
ducing the vectors

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

...

xm

⎞⎟⎟⎟⎟⎟⎠ , vx =

⎛⎜⎜⎜⎜⎜⎝
φ(x1)

φ(x2)

...

φ(xm)

⎞⎟⎟⎟⎟⎟⎠
and the matrix

A =

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
... . . . ...

0 0 0 · · · −2

⎞⎟⎟⎟⎟⎟⎠ ,
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the system of equations, arising from demanding that (3.5) holds for j = 1, 2, . . . , m,
can be written compactly in the form

(3.6) F (x) ≡ Ax + h2vx = 0,

where F is a function from R
m into R

m.
From now on, the focus of our attention is to solve a particular system of form

(3.6). We choose m = 8 and the infinity norm.
The steady temperature distribution is known in a homogeneous rod of length 1 in

which, as a consequence of a chemical reaction or some such heat-producing process,
heat is generated at a rate φ(x(t)) per unit time per unit length, φ(x(t)) being a
given function of the excess temperature x of the rod over the temperature of the
surroundings. If the ends of the rod, t = 0 and t = 1, are kept at given temperatures,
we are to solve the boundary value problem given by (3.3)-(3.4), measured along the
axis of the rod. For an example we choose an exponential law φ(x(t)) = exp(x(t))
for the heat generation.

Taking into account that the solution of (3.3)-(3.4) with φ(x(t)) = exp(x(t)) is of
the form

x(s) =
∫ 1

0
G(s, t) exp(x(t)) dt,

where G(s, t) is the Green function in [0, 1]× [0, 1], we can locate the solution x∗(s)
in some domain. So, we have

‖x∗(s)‖ − 1
8

exp(‖x∗(s)‖) ≤ 0,

so that ‖x∗(s)‖ ∈ [0, �1]∪ [�2,+∞], where �1 = 0.1444 and �2 = 3.2616 are the two
positive real roots of the scalar equation 8t− exp(t) = 0.

Observing the semilocal convergence results presented in this work, we can only
guarantee the semilocal convergence to a solution x∗(s) such that ‖x∗(s)‖ ∈ [0, �1].
For this, we can consider the domain

Ω = {x(s) ∈ C2[0, 1] ; ‖x(s)‖ < log(7/4), s ∈ [0, 1]},
since �1 < log

(
7
4

)
< �2.

In view of what the domain Ω is for equation (3.3), we then consider (3.6) with
F : Ω̃ ⊂ R

8 → R
8 and

Ω̃ = {x ∈ R
8; ‖x‖ < log(7/4)}.

According to the above-mentioned, vx =(exp(x1), exp(x2), . . . , exp(x8))t if φ(x(t))
= exp(x(t)). Consequently, the first derivative of the function F defined in (3.6) is
given by

F ′(x) = A+ h2diag(vx).
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Moreover,
F ′(x)− F ′(y) = h2diag(z),

where y = (y1, y2, . . . , y8)t and z = (exp(x1) − exp(y1), exp(x2) − exp(y2), . . . ,
exp(x8) − exp(y8)). In addition,

‖F ′(x)− F ′(y)‖ ≤ h2 max
1≤i≤8

|exp(�i)| ‖x − y‖,

where � = (�1, �2, . . . , �8)t ∈ Ω̃ and h = 1
9 , so that

(3.7) ‖F ′(x)− F ′(y)‖ ≤ 7
4
h2‖x− y‖.

Considering (see [26])

[x, y;F ] =
∫ 1

0

F ′ (τx + (1− τ)y)dτ,

taking into account∫ 1

0
‖τ(x− u) + (1 − τ)(y − v)‖dτ ≤ 1

2
(‖x − u‖ + ‖y − v‖) ,

and (3.7), we have

‖[x, y;F ]− [u, v;F ]‖ ≤
∫ 1

0
‖F ′ (τx + (1 − τ)y)− F ′ (τu + (1 − τ)v) ‖ dτ

≤ 7
4
h2

∫ 1

0
(τ‖x− u‖+ (1− τ)‖y − v‖)dτ

=
7
8
h2 (‖x− u‖ + ‖y − v‖) .

From the last, we have L = 7
648 and M1 = 7

648‖[F ′(x0)]−1‖.
If we choose λ = 1

2 and the starting points x−1 = ( 1
10 ,

1
10 , . . . ,

1
10 )t and x0 =

(0, 0, . . . , 0)t, we obtain c = 1
10 , β = 11.202658 . . . and η = 0.138304 . . ., so that

(3.1) of Theorem 3.1 is not satisfied, since

a =
η

c+ η
= 0.580368 . . . >

3 −√
5

2
= 0.381966 . . .

Thus, according to Theorem 3.1, we cannot guarantee the convergence of secant-like
method (1.2) with λ = 1

2 for approximating a solution of (3.6) with φ(s) = exp(s).
However, we can do it by Theorem 2.6, since all the inequalities which appear in

(2.5) are satisfied:

0 < α0 = 0.023303 . . .≤ α = 0.577350 . . .≤ 1 − 2M1η = 0.966625 . . . ,
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where ‖[F ′(x0)]−1‖ = 11.169433 . . ., M1 = 0.120657 . . . and

p(t) = (0.180986 . . .)t3 + (0.180986 . . .)t2 − (0.060328 . . .)t− (0.060328 . . .).

Then, we can use secant-like method (1.2) with λ = 1
2 to approximate a solution of (3.6)

with φ(u) = exp(u), the approximation given by the vector x∗ = (x∗1, x
∗
2, . . . , x

∗
8)

t

shown in Table 1 and reached after four iterations with a tolerance 10−16. In Table 2
we show the errors ‖xn − x∗‖ using the stopping criterion ‖xn − xn−1‖ < 10−16.
Notice that the vector shown in Table 1 is a good approximation of the solution of (3.6)
with φ(u) = exp(u), since ‖F (x∗)‖ ≤ C × 10−16. See the sequence {‖F (xn)‖} in
Table 2.

Table 1. Approximation of the solution x∗ of (3.6) with φ(u) = exp(u)

n x∗i n x∗i n x∗i n x∗i
1 0.05481058 . . . 3 0.12475178 . . . 5 0.13893761 . . . 7 0.09657993 . . .
2 0.09657993 . . . 4 0.13893761 . . . 6 0.12475178 . . . 8 0.05481058 . . .

Table 2. Absolute errors obtained by secant-like method (1.2) with λ = 1
2 and

{‖F (xn)‖}
n ‖xn − x∗‖ ‖F (xn)‖

−1 1.3893 . . .× 10−1 8.6355 . . .× 10−2

0 4.5189 . . .× 10−2 1.2345 . . .× 10−2

1 1.43051 . . .× 10−4 2.3416 . . .× 10−5

2 1.14121 . . .× 10−7 1.9681 . . .× 10−8

3 4.30239 . . .× 10−13 5.7941 . . .× 10−14

3.2. Example 2
Consider the following nonlinear boundary value problem{

x′′(s) = −x(s)3 − 1
4x(s)

2

x(0) = 0, x(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.8) x(s) = s+
∫ 1

0

G(s, t)
(
x3(t) +

1
4
x2(t)

)
dt

whereG is the Green function in [0, 1]×[0, 1]. Observe that equation (3.8) is equivalent
to equation (1.1) if we consider a suitable domain D in C2[0, 1] and

[F (x)] (s) = x(s) − s−
∫ 1

0
G(s, t)

(
x3(t) +

1
4
x2(t)

)
dt.
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For this, taking into account the infinity norm, we see that a solution x∗(s) of (3.8)
satisfies

‖x∗(s)‖ − 1 − 1
8

(
‖x∗(s)‖3 +

1
4
‖x∗(s)‖2

)
≤ 0.

So, we consider the domain

D = {x(s) ∈ C2[0, 1] ; ‖x(s)‖ < 2, s ∈ [0, 1]}.
The first Fréchet derivative of the operator F is

[F ′(x)y] (s) = y(s) − 3
∫ 1

0
G(s, t)x2(t)y(t)dt− 1

2

∫ 1

0
G(s, t)x(t)y(t)dt.

If we choose x0(s) = s, then ‖F (x0)‖ ≤ 5
32 . Define the divided difference by

[x, y;F ] =
∫ 1

0
F ′(τx+ (1− τ)y)dτ

and, consequently,

‖[x, y;F ]− [v, y;F ]‖ ≤
∫ 1

0

‖F ′ (τx+ (1− τ)y)− F ′ (τv + (1 − τ)y) ‖ dτ

≤ 1
8

∫ 1

0

(
3τ2‖x2−v2‖+2τ(1−τ)‖y‖‖x−v‖+

τ

2
‖x−v‖

)
dτ

≤ 1
8

(
‖x2 − v2‖+

(
‖y‖ +

1
4

))
‖x− v‖

≤ 1
8

(
‖x+ v‖ + ‖y‖ +

1
4

)
‖x− v‖

≤ 25
32

‖x− v‖.

Next, if x−1(s) = 9
10s, we obtain

‖I − A0‖ ≤
∫ 1

0
‖F ′ (τx0 + (1− τ)x−1) ‖ dτ ≤ 0.409375 . . . ,

so that, by the Banach Lemma on invertible operators, it follows ‖A−1
0 ‖ ≤ 1.69312 . . .

In addition, L ≥ 25
32

‖A−1
0 ‖ = 1.32275 . . . and take then L = 1.32275 . . .

On the one hand, if we now choose λ = 0.8, we obtain, in an analogous way, the
following:

M0 = 0.89947 . . . , ‖B−1
0 ‖ = 1.75262 . . . , η = 0.27384 . . .

Observe that we cannot guarantee the convergence of the secant method from The-
orem 3.1, since the first condition of (3.1) is not satisfied:
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a =
η

c+ η
= 0.732511 . . . >

3 −√
5

2
= 0.381966 . . .

On the other hand, observe that

M̃1 = 0.09883 . . . , K̃ = 1.45349 . . . , α0 = 0.43407 . . . , α = 0.90732 . . .

and 1 − 2M̃1η = 0.945868 . . ., so that condition (2.62), 0 < α0 ≤ α ≤ 1 − 2M̃1η, is
satisfied and, as a consequence, we can guarantee the convergence of the secant method
by Theorem 2.9.

4. CONCLUSION

We presented a new semilocal convergence analysis of the secant-like method for
approximating a locally unique solution of an equation in a Banach space. Using a
combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz
conditions invested in [18], we provided a finer analysis with larger convergence do-
main and weaker sufficient convergence conditions than in [15, 18, 19, 21, 25, 26].
Numerical examples validate our theoretical results.
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