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HIGHER ORDER RIESZ TRANSFORMS
FOR THE DUNKL HARMONIC OSCILLATOR

Walid Nefzi

Abstract. The aim of this paper is to extend the study of Riesz transforms asso-
ciated to the Dunkl harmonic oscillator considered by A.Nowak and K. Stempak
to higher order. The methods used to establish the LP-boundedness of these
transforms call the Calderdn-Zygmund theory.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

LetTy, j=1,....d, a € [—%, o0)?, be the Dunkl differential-difference operators
defined by

1 f((E)—f(Uj(E)j fGCl<Rd>,

Tf‘:ajf(x)—i-(aj—i-Q) z

here 0; is the jth partial derivative and o; denotes the reflection in the hyperplane
orthogonal to e;, the jth coordinate vector in R,
In Dunkl’s theory the operator :

d

Aa:§:ayﬁ

Jj=1

plays the role of the Euclidean Laplacian.
We recall the definition of the Dunkl-Hermite oscillator, given in [8] by

Lo = —Aa + ||z

The corresponding weight w,, has the form

d

Woc<x> - H ‘xj‘2aj+1'

j=1

Received April 29, 2014, accepted July 31, 2014.

Communicated by Chin-Cheng Lin.

2010 Mathematics Subject Classification: 33C45, 42B20.

Key words and phrases: Generalized Hermite functions, Dunkl operators, Higher Dunkl-Riesz transforms,
Calderdn-Zygmund operators.

567



568 Walid Nefzi

Given a € [—%, o0)?, the associated generalized Hermite functions are tensor products

W (z) = RS x o x W9, x = (21, ..., 2q) €RY n= (nq,...,ng) € N,

ng’

where hy¢ are the one-dimensional generalized Hermite functions

. " I'(n; +1 1 _ 2 -
i, ) = (1) (e bt e,

ni—i—ai—i—l)

1
)Ze Lt (),

() = (1" (s

here L denotes the Laguerre polynomial of degree n; and order «;.
The system {h2 : n € N} is an orthonormal basis in L?(R%, w,,) consisting of
eigenfunctions of L, (see [8])

Lohy = (2|n| + 2|al + 2d)h,

where we denote |a| = a1 + ... + ag.
We define the jth partial "derivative” 67, for 1 < j < d, related to L, by

5}3‘ = T]‘?‘ + ).
The formal adjoint of 65 in L*(R%, w,) is
0%, = =T + z;.
This precisely means that
(051, 9)a = (f:0%;9)a: f, g € C:(RY),
where (., .),, is the canonical inner product in L?(R%, w,).

As a direct computation shows, we have

d
1 « (e} o SO

j=1
We recall that for 1 < j < d (see [6])

0% hy = m(nj, aj)h

@
+7'"n n—e;

0% hyy =m(n; + 1, o )y,

—Jj''n n+e;

where
{ 2n; if njis even,

\/2nj+405+2  if njis odd.

m(ng, aj) =
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The self-adjoint extension of L, initially considered on C2°(R¢) is given by the operator
Lof =Y Clvl+2lal +2d)(f, h5)ah,
veNd

and defined on the domain

Dom(Ly) = {f € LR, wa): > 1(2v] +2lal + 2d) (£, hS)al? < oo}.
veNd

The semigroup e %=, t > 0, (in the one dimensional one can see [1]) generated by
L, is a strongly continuous semigroup of contractions on L?(R%, w,). By the spectral
theorem,

e—tﬁaf _ Z e—t(2m+2|a|+2d)7)%f’ fe L2<Rd, wa>’

m=0

where the spectral projections are

Pof =Y (f he)ahs

[n|=m

The integral representation of e *“= on L%(R?, w,) is

e o f(x) / G (x,y) f(y)dwa(y), =€ RY

where the heat kernel is given by
Ga 33 y _ Z e t(2m+2|a|+2d) Z ha a<y>.
m=0 In|=m

It is shown in [6] that
G{(z,y) Z G} (2, y),

e€{0,1}¢
where
d iYi
Gy (@, y) = 75— €XP (— L coth(2t)(HxHZ+HyH?)) H(xiyi>5iM’
' ’ (2 sinh 2t>d 2 ey (wiy; )>ite

with I being the modified Bessel function of the first kind and order (3,

"
H:OF/@—i—l (k+B8+1)
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The Schlafli’s integral representation of Poisson’s type for the modified Bessel function
is (see [9])

L 1
I,(z) =2 exp(—zs)Il,(ds), z>0, u>—=,
M 1 1] 92

where II,, is the measure given by

IT,(ds) = (1 S2>M_% d (—1,1)
=———>2>—ds, se(-1,1),
plas \/_2M< %> S S

1

when g > —1, and in the limiting case of = —3,

II

— \/% -1 m),
where n_1 and 7; denote point masses at —1 and 1, respectively.

In [6], Nowak and Stempak deduced the following expression for the kernel G}
(z,y), for a € [—%, o0)?

=

G (z,y)

(zy) /[ exp(~ 5 coth(2) (o] 2+ ly]?)~3 VL, (ds),

~ 2d(sinh 26) THaHEL [ 4 - sinh(2)

=
where II, denotes the product measure ®§:1 I1,,. And by the change of variable

1+¢
1-¢&

they obtained the following symmetric formula

) 1(6) = 5lo £€(0.1),
G (2, y)

1 /1—-&2\dtlal+lel 1 3
= ﬁ( 2§ > ([Ey) /[_171]d exp (_ Eq-f—(xa Y, 8>_ZQ— ([E, Y, 8>>Ha+8<d8>7

with

d
g=(,y,8) = |l2l* + [lyl* £2D_ zigisi-
i=1
In [6] Nowak and Stempak introduced the Riesz transforms of order one related to
the Dunkl harmonic oscillator L, and they proved that these transforms are L bounded
with 1 < p < co. The aim of this paper is to present an extension of this result to the
Riesz transforms of order k with 1 < k < d.
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According to a general principle we now define higher Dunkl-Riesz transforms in
the following way: given k, 1 < k < d and 7, = (i1, ...,ix) € {1,...,d}* such that
Tl

ij # im if j % m, the family of the Dunkl-Riesz transforms {R"*} of order k is
given by

_k
Riﬁk — 5;7:’7}6506 2
T

where 6" = 6%, .....0%, and 0%, = £T7 + ;.

We note that for technical reasons, we have considered the vector 7, = (i1, ..., i) €
{1,...,d}* such that i; # i, if j # m.

In section 2 we define the kernel Ri’;’“ (z,y) and we give a Calderén-Zygmund
type estimations for this kernel which will be used to study the operators RS ™.

The aim of the next section is to prove that the operators R ™ have associated ker-
nels satisfying the Calderén-Zygmund standard conditions and, in consequence, bound-
edness properties of these higher Dunkl-Riesz transforms are analogous to those of the
Dunkl-Riesz transforms of order one studied in [6].

We point out that the methods used to establish our results, are borrowed from
[5] and [6]. Consequently, these results extend naturally those established in [6] by
A.Nowak and K.Stempak.

2. KERNEL ESTIMATES

Tk

In this section we define and study the kernel RZ"C*(x, y) and we give a Calderdn-
Zygmund type estimations for this kernel.

Notation 1. We denoted by :

o 05 ,(€) for a € [-3,00)%, 1 < k < d, the function on ¢ given by

2l=d=5 1 _¢2 4 1 146 &

k +|a| 1

= 1 27

Bi.a(é) G T ) 1_§2( Ogl—f)

We point out that the definition of ﬂfja agrees for £ = 1 with 3, introduced in

(6], p.550.
e Yg(z,y,s) for e € {0, 1}4, the function on z, y, s given by

1

1/]2(‘%’ Y, 8) = (my>6 exp ( - 4_§Q+<x7 Y, 8) - EQ— ((E, Y, 8))

Definition 1. Let o € [-1,00)%, 1 <k < d, e € {0,1}? and 7, = (i1, ..., ) €
{1,...,d}* such that i; # iy, if j # m. We define the kernel RE™*(x, y) by

R (z,y) = /

1
[~1,1]d Ha+a(d3>/0 Bl e ()85 VE (2, y, 5)dE
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where
QT _ S« «
0L =08, e 5:|:iku
o o .
5ij = :I:Tj + ;.

The following lemmas are just Lemma 5.2 and Lemma 5.3 in [6], p. 551, corre-
spondingly for k& > 1.

Lemma 1. Assume that o € [—1,00)%. Let b> 0 and ¢ >0 and k > 1 be fixed.
Then, for any j =1, ..., d, we have

1
@) (Jaj + 5]+ lyj + 2585]) exp (— Cg%(% y,s)) S &2,
(3) (Jzj —yjs5] + |y; — fBij\)beXp (—ctq_(z,y,5)) S Y2,
(4) (zj)"exp (- C%q+(x, y, 8) — c€q_(z,y,5)) SV,

1 k
© /0 Pial&)6" 2 exp (- %%(IB, Y, 8))dé < (g4 (x5, 8)) "1,
uniformly in 2,y € R%, s € [—1, 1]% and except of (5), in & € (0, 1).

Lemma 2. Assume that @ € [—3,00)? and let v,k € [0,00)¢ be fixed. If a

complex-valued kernel K (z,y) defined on R x R%\{(z,y) : = y} satisfies

(@)

(K (2, 9)| S (z + y>27/[ . Mo syr (d8) (g (z, 7, 8))~4 11—,
then also
1

wa (B* (@, |ly — =)’
with wZ being the restriction of w, to R% and B*(z, |y — =|)) the intersection of the

The Euclidean balls B(z, ||y — z||) with RZ.
(b) Similarly, the estimate

|K(z,y)] S z,yeRE and x £y

VoK@ S @+ [ Tar ) gy, poo)) o101

implies
1 1
= — ,
Iz =yl wa (B* (=, ly — =)))

Ve K (z,y) T,y € Ri and x # 1.
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Remark 1. Notice that for A € [~1/2,00)¢ and y; >0, i € {1, ...,d},
d )
(6) B yist e (6) SETRHBEL(E), €€ (0,1).

This property follows directly from the exact formula for ﬁfj’a.

Theorem 1. Let o € [-1,00)%, 1 <k < d, e € {0,1}¥ and 7, = (i1, ..., i) €
{1,...,d}* such that i; # iy, if j # m.

Then the kernel RY*(w, y), satisfy

i)

1
IR (z,y)| < , v, y€RY andx £y

wa (BT (. [ly — =)

i)
1 1

Vo R (2, y)| < ,
Ve lo— ol o B+ (@ ly —2])

x,yeRi and x # y.

Proof.
To compute 6 T’“z/Jg(a: y, s), observe that the derivative 65 may be replaced either

by 65 = 52+ or by 67 = 52+ x +20‘7+1
ej = 1, respectively. Then we prove that

0L E(,y, 8) = 0, .05, g (, v, 5)

dependlng on whether €; = 0 or

k
= {(e T] o = ggla, +5) = 5 = 95:,)

J=1

+ Z X{Sn =Eip=-- 7&} *1} H 20%," + 2>ylr ([L‘y) Zr 1 €ip

j=1 r=1
: ;
X H (xip 2 (xlp + yzpszp> - §(xip - yipsip>)}
p=j+1

41§Q+(x Y,s ) EQ—(IBayaS))

i) The growth estimate
1
RS [ M) [ SOy
[~1,1]d 0

k

1
[H (i, + E\a}” + i si| + Elai; — yif'sij‘)}

j=1
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1
X exXp ( - Eq-f-(xa Y, S) - iq— ([B, Y, S))d§
k
+ X{sil =giy=...=¢;; =1} Ha—l—s(dS)
jzl ! [_171]d

1 j '
/O ﬂs,a—ks (3] H Yi, (a}y)g_zrzl €iy
r=1

k
1
x H (i, + E\ﬂfip + iy Siy | + ElTi, — Yi, 54, )
p=j+1
1 §
exp ( - Eq-f-(xa Y, S) - Zq— ([B, Y, S))d§

k

=L+) I

J=1

we treat the integrals I; and 1 < j < k separately. we treat the integrals I; and I
1 < j < k separately.
Applying Lemma (1), inequalities (2) — (3) — (4), we get

1 1 13
(331‘]- + E\%- +Yi; Sinf\xz‘]— —Yi; Si; \) exXp (— %q+ (z,y,8)— @% (z,y, 3)) NES

N[=

So

1
k 1
BS@of [ Maselds) [ a6 exp (~ goaelop, o)~ Sa- (00,9
[~1,1]¢ 0 8¢ 8
Next, using Lemma (1), inequality (5) and observing that (zy)® < (z + y)?° gives

DS Gy [ Tara(ds)(ap) e
[_171]d

Now Lemma (2) — (a), taken with v = ¢ and x = (0, ..., 0) provides the required

growth bound for I;.

To estimate 17 we assume that ¢;, = ¢, = ... = ¢;; = 1 and use inequality (6) for
A=a+e—37_ % and pu; = %, with Lemma (1), inequalities (2) — (3) — (4), we
obtain that

Ig - X{6i1:6i2:...:6i].:1}

1 7 '
Moye (ds) /O B35 e (©) [ [ wir (wy)=2r=1 o0r
r=1

[_171]d
b 1
x H (i, + E\%‘p + Ui, Siy | + €20, — Yi,50,)
p=j+1
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—4- ((IZ, Y, 3>)d§

1
exp ( - Eq-l-(xaya‘g) - 4

< /[ . l]d Oé+6 dS / /Bd ate— 1 Cip (f) ([L‘ + y) 2‘17":1 eirf—g

1
X exXp ( - gq-f-(xa Y, S) - gq— ([B, Y, S))df

Then Lemma (1), inequality (5) shows that

< (ot )2 ,;1—2t)/ s (ds) g )l i e
(-1,1]

Combining the above with Lemma (2) — (a), applied with v = ¢ — 7{:1 % and
K= 3, e“" , produces the relevant bound for Ig , 1< <k
Th|s f|n|shes proving the growth estimate for RZ 7 (x, y).

ii) The smoothness estimate

Passing with V., under the integral signs is legitimate, the justification being
implicitely contained in the estimates that follow.

To simplify the writing we note

exp(a) = exp (= 1o (r.9.5) - S0 (@9.5)

and
j 1 3
(Pg(xaya3> =Tj — 2§(x]+yjsj> §(xj_yj3j>~

To proceed, we need to compute the relevant derivatives. Denoting @?fk = 0f -
o VE(z,y, s), we get:

For1<IlI<k
o
(I)OC,S
8xil gv’rk
1 & £
{X{sllfl}yzz zy) H(Pg z,y,8) + (wy)*(1 - %~ 5) [T #é@y.)
=15l
-1 koo
+ Z{X{sllf =ei;=e;; =1} H 2a;, +2>yzrylz (xy> Zr 1T H (Plgp(xaya3>
Jj=1 A = p=j+1
Z €i 1 §
# Xty L] (20, + 2 o) Sheree (1 - %3
1
k ) -
11 w?(fﬂ,y,S)}}exp(qi)
p =j+1,p#l

a,e

§ :
(2§ (s, + yisi,) + 5(3711 - yizsiz»@{,m'
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50
8yll Tk
LM s _ &s
= {X(e ez (@) [T 0 (@ 55) = (am)°( 23 H ol (9,
J=1 J=Lj#l
-1
+Z{X{5z1* *5”75”*1}1_[ 2al’"+2>yl’"x”(xy> Zr Lo H g0£ LY, s )
J=1 p= ]+1
Z 1 €i S’Ll é.S'L[
+X{5l17 =ty =1} H 2au~+2>yz (xy> "= r(_ H (P (xay73>}
r=1 p=j+1,p#l
+Z{X{ellf =e;=1) H (2005, 4 2y, (wy)= 2r=1 % H ¢ (,y, s }exp(qi>
j=l r=1,r#l p=j+1
£
(2§ (yll + xllsll> + §(yll - xilsil>)¢)?f}€

Fork+1<1<d

k
0 Qe e—e; i
83:71 P = {X{silzl}yil (xy)= rllcpg (x,y, s)
]:

k
T Z {X{5i1 =..=e;;=¢; =1}
=1

J

[T, + 2)yi,yi, ()= >=r=1 e 4 H (e y.s }eXP(gi)
r=1 p=j+1
§
(2§ (s, + yisi,) + 5(3711 - yizsiz»@?%

k
0 Qa,e e—e; i
8?}1‘1 (I)g,fk = {X{Silil}xiz (xy> “i U 905] (xa Y, 3)

k
+ Z {X{gllf 75z 7511 71} H 2al1~ + 2>yzrle ([IZy) ZT‘ 1 Gir —64

Jj=1 =

H od (2,y, 8)}eXP(qi)
p=j+1

yll + xllsll> + é

5 Wi — @i si)) @y, -

We have
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1
IV y REZ (2, )] = || o Ha+s(d8)/ Bl () Vay (08T 0E (2, y, 5))dE |

S/[ e Terrelds) / Biare(ONVay 0L V(. v, ))|1de,

we will estimate separately the four case of integrals resulting from replacing V., by
one of the above derivatives. Denote these integrals by J,, and J,, for 1 <1 <k or
k+1<l<dandassumethate; =..=¢; =1.

For 1 <1 <k, applying (2) — (3) — (4) of Lemma (1) we get

1 k
T < (o4 )% / Moy2(ds) / B ()65 op(gD)de
1,1} o
Fa o) [ Haselds) [ 8 (©6F VerplaDig
[-1,1]4 0
+Z{x+y2e I e — Eil/ | P ds/ﬂda+a(§§ \/equj:df

[_171]d

F ()P /[ | (@ / B e ©6 " VemplgDde

1
+ ase(ds) / i (€73 S —;
/[—1,1]d ! Bl O€ 21O exp(g=+) .

=Jp, +J5 + ZJSJJFJ;%”

Ill

To estimate Jj:i we use (6) and inequality (5) of Lemma (1), obtaining

k+1
TRVl BN / 5 o (6 Voo

o +y)2(5_ 2 )/[ 1,1)¢ Moz (ds)(qq) "0l 20 =3,

The expression of Jf:il give that

1
o, S (@ y)%/[ . Mo (ds)(qy) 4101 le=3

For 1 < j <1— 1 we give this inequality for .J/,

Jgilj S ([B + y)ZS_Z{"ZI Cir —€i /[ ) l]d Ha-l—é‘(dS)
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1
/0 3" eiy e_lL \/exp (g£)dg

d,a+e— 1"1 -

+<113+y>26 Zr le“"/[ 1 a—l—g dS / Bda-f—e =1 e (é.)f_k%l eXP(qi)df

2

Sy 1_;t__})/[ 1,1]d Moo (ds) (qs) 010Nl 200 S -3

€,

ML

2 |_1

+ (z +y) 2= 1_;[)/[ ll]dHa+e(ds)(Q+> el

Finally, estimating J; ; is completely analogous to estimating the growth of | R 7* (2, )|
performed earlier. The result is

Ty S (@ + y)%/[ . Moo (ds)(gs ) 4101 lel=3

k
+Z(x+y>2(6 - 1_;1"_)/[ ]dHa—i—s(dS)(q-f—) —d—|a|—|e=>7_ 1—;’"——%’
o 1,1

combining the above estimates of J; , JZ , Jz7 and Ji with Lemma (2) — (b),
specified to either v = ¢ and x = (0, ... 0) or vy =¢— —2L and k = —2L or v =
e—Y) andr=Y)_ Gorqy=c-YJ)_ % _Dandr=Y7_ % 4%
provides the required smoothness bound for .J,, .

Considering Jy, , items (2) — (3) — (4) of Lemma (1) lead to

< 71 2 3,7 4
Ty ST +Jml+ZJx +J,

Yip ~ T

k , .

+ D (@) e Cir 2 / Move(ds) / B s (6T Vexp(g ) de.
o [—1,1]4

Thus it suffices to bound suitably the last term of the sum, witch we denote by J5il,
making use of (6) and then applying item (5) of Lemma (1) gives

k
Z (z+y) 2(5 P eiz)/ Il (ds)
_ [

_171]d

1 k+1
/O B (O explaT)e

1" 17"721 2 _ell
k
< 2(e— Zr 17«;&1 2 eiz) 11 d —d—|a|—le— Zr 17«;&1 2 —€iq _%
< () wre(ds) (4) -

j=l [_171]d



Higher Order Riesz Transforms for the Dunkl Harmonic Oscillator 579

Now Lemma (2)—(b) employed withy = e—~3"7_, S —ejand s =37 5+
e;, implies the desired bound of J;j’il.
For k+1 <1 <d, passing to J,, , items (2) — (3) — (4) of Lemma (1) reveal that

1 k
Jr S (04 g% / Howc(ds) [ 0fasnO6EVorpla)as
[—1,1]d 0
2e— ; Yok —koi
+Zx+y Sl /[_M]dna+g<ds> | Bhatos 5 Vomlaias

1
+/ o (ds) / gk Rl B ——/ o
[1,1]d +6 d, +5 ‘ £, k‘ exp(q:l:)
1 2.5
=J. +ZJ$ + 3

Treatment of J1 and J3 is the same as in case of 1 < [ < k. Thus it remains to
deal with Ja;;] for E+1 < [ <d.

€i

Let v = ¢ — 7{:1 = - ;l, in view of (6) and Lemma (1), inequality (5), we
have

1 1
Sy [ Taes) [ @6 Vel
S+ [ Map(ds)(gh) b,
[~1,1]4

This, together with Lemma (2) — (b) taken with x = f;l %+ %l provides the
relevant estimates of Jmil fork+1<1<d.

Eventually, the analysis related to inl for K+ 1 <1 < d is analogous to that for
inl fork+1<1<d.

We now come back to explaining the possibility of exchanging d,, with the integral
over [—1,1]% x (0,1). To apply Fubini’s theorem and then use the argument invoked
earlier, it is sufficient to show that

/MV (/[ " o4 (ds) / \(%;” (0% Tkr(/}g(fl? Y, S ))Wﬁaﬁ(f)df)d@l < 00

forany 0 < u < v < ocosuchthaty;, isnotin [u, vJwhenz;, =y;., 1 <j <d, j#I
This estimate, however, may be easily obtained with the aid of the bound for Ju;,
established above.

This completes the proof of Theorem (1). ]
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3. HicHER ORDER RIESZ TRANSFORMS FOR THE DUNKL HARMONIC OSCILLATOR

In order to study the Dunkl-Riesz transform R™ of order k&, 1 < k < d, we begin
by observing that :
SO = mE(n, a, T)h®

:FZ] 1 ez
where
k k
m*(n,a, 1) = H m(ng;, o), mo(n, o, 1) = Hm(nzj + 1, ;).
j=1 j=1

It is readily seen that there exists a constant Cj, ., such that

L
2

(7 mi(n a,7;) < Cra(2|n] + 2|a| + 2d)2,

the higher Dunkl-Riesz transform of ¢, is defined by

mi(y, o, Tk)

k o
©2lv| + 2|a| + 2d)2 VFi=1%

a

®) REThg =

therefore the higher Dunkl-Riesz transform of f = Z (f, h2YR%, on L2(RY, w,), is
veNd

given by

QLT V C\f Tk‘)
: u%\;d (2|v] + 2|a| + 2d)2 vEYE e

We know that the negative power of L., is defined by

_k +oo k
o f(x) = % /O et f(a)ti N,

SO

et = [ (s [ Gt ) s

and .
RE™f(2) = 08™ La? f(2).
Note that the proof of Theorem (1) above contains the proof of

Lo 1
™ wa(B(z, [ly — =)’

+oo
(10) /O 527G (z, )|t vty

because
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Gi(zy)= Y G (xy),
e€{0,1}4
and for each ¢ € {0, 1}9, G{"*(z, y) verify the last inequality.

To proceed to a deeper analysis of these definitions, in particular to consider R
on a wider class of functions, we define the kernels RS ™ (z, y) by

LTl

o,Ty _ 1 too LTl YO —1
(1) RI™(2,y) = )/O 52T G (o, )15

r(s
The following result shows that the kernel RS ™ (x, y) is associated, in the Calderdn-
Zygmund theory sense, with the operator R’ T’“ Its proof is an immediate modification
of the corresponding Proposition 4.1 in [6].

Proposition 1. Let a € [-3,00)%, 1 < k < d and 7, = (i1, ..., i) € {1,...,d}*
such that i; # i, if j # m. Then for f, g € C°(R?) with disjoint supports.

@ Rl [ R e ) ).

The next theorem says that the kernel of the higher Dunkl-Riesz tranform satisfy
standard estimates in the sense of the homogeneous space (R%, w,, ||.||). It corresponds
to Theorem 4.2 in [6].

Theorem 2. Let a € [-3,00)%, 1 < k < d and 73, = (i1,...,3) € {1,...,d}"

such that i; # i, if j # m. Then the kernel RS ™ (x, y), satisfy

i)
1

wa(B(z, ||y — =)’

IRE™(@,9)| S TFy

i)
1 1
HS _ B _ Y
[ = yll wa(B(z, [ly = z[]))

Ve RE™ (2, y) T#y

Proof. We have
Ra ’Tk Z Ra ’Tk
e€{0,1}4

We can see that
IRET (2, y)| = [RET (nx, &y)|, n, &€ {-1,1}%
Similarly, we have

IVay REZ (@, )|l = I Vay REZ (2, €9, 0,6 € {~1, 1}
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This, together with the symmetry of w,,

wa(@) = wa(éz), €€ {~1,1}%,

proves that it is enough to show the relevant bounds only for x, y € R:{.
The proof of the first estimate in Theorem (1) justify the application of Fubini’s
theorem that was nacessary to get

RLT(x,y) = RYF(w,y), foreache € {0, 114,
So we deduce the result from Theorem (1).

We denote by Aj = Ag‘(Rd, wq) the Muckenhoupt class of A, weights related to the
space (R%, wq, ||.]|). As a consequence of the Theorem 2, Proposition 1 and the general
theory (see [3]) we can deduce the main result which corresponds to Theorem 4.3 in
[6].

Theorem 3. Assume that o € [~3,00)%, 1 < k < d and 7, = (i1,...,ix) €
{1,...,d}* such that i; # i, if j # m.

Then the higher Dunkl-Riesz transform R$™ defined on L?(R?, w,) by (9), are
Calderdn-Zygmund operators associated with the higher kernels defined by (11). In
consequence, RS ™ extend uniquely to bounded linear operatorson LP(R?, Wdw,,), 1
< p < oo, W € A7, and to bounded linear operators from LYR?, Wdw,) to

LY®(RY, Wdw,), W € A,

The analogue of Proposition 4.4 in [6] is given in the following proposition which
we omit its proof.

Proposition 2. Let o € [—1,00)%, 1 <k <d, 1 < p <00, and iy, ..., ik, j1, -, jk
€ {1,...,d}, with 4,, # i,,, and j,, # jm if n # m.
Then

100%s,-vvrr023,) " (02, 0% fll Lo (Rt ) S NEES | Lot o)y | € CE(RY).
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