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LIMITING BEHAVIOR OF THE KOBAYASHI DISTANCE

Monika Budzyńska, Tadeusz Kuczumow and Simeon Reich

Abstract. Given a sequence {Dm} of bounded and convex domains in a complex
Banach space, we describe the limiting behavior of the corresponding sequence
{kDm} of Kobayashi distances when the given sequence {Dm} is either monotonic
or convergent in the Hausdorff metric.

1. INTRODUCTION

It is well known that the Kobayashi distance (and more generally, invariant func-
tions and pseudodistances), its properties and especially its limiting behavior play an
important role in holomorphic function theory. They are also used in the theory of
semigroups of holomorphic mappings, which is closely connected with the study of
differential equations (see, for example, [1, 3, 5, 7, 9, 11, 12, 13, 16, 17, 19, 20] and
[21]).

The main results of the present paper are concerned with the limiting behavior of
the Kobayashi distance on bounded and convex domains in a complex Banach space.
We show that under appropriate conditions, kD = limm kDm in the compact-open
topology. Our results extend those previously established in [2, 10, 13] and [14] (see
also [8]).

Our paper is organized as follows. In Section 2 we recall basic properties of the
Kobayashi distance kD on a bounded and convex domain D in a complex Banach space.
We also recall connections between the Kobayashi distance and holomorphic mappings.
In Section 3 we assume that a sequence of bounded and convex domains converges to
a bounded and convex domain in the Hausdorff metric and study the convergence of
the corresponding sequence of Kobayashi distances (see Theorem 3.1 below). The next
section is devoted to the case of monotonic (either increasing or decreasing) sequences
of bounded and convex domains (see Theorems 4.1 and 4.2, respectively). Finally, in
Section 5 we state and prove several auxiliary results which are used in the proofs of
our main theorems. We also observe that the convexity assumption imposed on the
domains in question is crucial in our considerations.
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2. THE CARATHÉODORY DISTANCE, THE LEMPERT FUNCTION, THE KOBAYASHI DISTANCE

AND HOLOMORPHIC MAPPINGS

Unless explicitly stated otherwise, throughout this paper all Banach spaces (X, ‖·‖)
are complex, all domains D ⊂ X are bounded and convex, and H(D1, D2) denotes the
set of all holomorphic mappings from D1 into D2, where D1 and D2 are bounded and
convex domains in the complex Banach spaces (X1, ‖·‖1) and (X2, ‖·‖2), respectively.

Let Δ be the open unit disc in the complex plane C. Recall that the Poincaré
distance kΔ = ω on Δ is given by

kΔ (z, w) = ω (z, w) := arg tanh
∣∣∣∣ z − w

1 − zw

∣∣∣∣ = arg tanh (1− σ (z, w))
1
2 ,

where

σ (z, w) :=

(
1 − |z|2

) (
1 − |w|2

)
|1− zw|2 , z, w ∈ Δ;

see, for example, [7] and [17].
Now let D be a bounded and convex domain in a complex Banach space (X, ‖·‖) .

We first recall the definitions of the Carathéodory distance, the Lempert function and
the Kobayashi distance on D.

The function cD, defined on D × D by the formula

cD(x, y) := sup{kΔ(f(x), f(y)) : f ∈ H(D, Δ)},
is called the Carathéodory distance ([13]).

The Lempert function δD is defined as follows:

δD (x, y) :=

inf {kΔ (0, λ) : λ ∈ [0, 1) and there exists f ∈ H(Δ, D) so that f (0) = x, f (λ) = y} ,

where x, y ∈ D [18] (see also [4] and [13]).
Finally, the Kobayashi distance ([15]; see also [16]) between x, y ∈ D is defined

by

kD(x, y) := inf{
m∑

j=1

δD(xj, xj+1) : m ∈ N, {x = x1, ..., xm+1 = y} ⊂ D}.

We proceed with a few more definitions. Let D1 and D2 be two bounded and
convex domains in two complex Banach spaces (X1, ‖·‖1) and (X2, ‖·‖2), respectively.
A mapping f : D1 → D2 is said to be nonexpansive with respect to the Kobayashi
distance (the Carathéodory distance or the Lempert function, respectively) if

kD2 (f(x), f(y)) ≤ kD1 (x, y)
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(cD2 (f(x), f(y)) ≤ cD1 (x, y) , δD2 (f(x), f(y)) ≤ δD1 (x, y))

for all x, y ∈ D1. If D1 = D2 = D, then we say that f is kD-nonexpansive (cD-
nonexpansive or δD-nonexpansive, respectively). It is not difficult to observe that every
f ∈ H(D1, D2), that is, every holomorphic mapping f : D1 → D2 is simultaneously
nonexpansive with respect to the Kobayashi distance, the Carathéodory distance and
the Lempert function [7].

Directly from the definitions of the Carathéodory distance, the Kobayashi distance
and the Lempert function we get

cD ≤ kD ≤ δD,

but it turns out that much stronger results are true. The first result of this type is due
to L. Lempert [18].

Theorem 2.1. ([18]; see also [13]). If D is a bounded and convex domain in Cn,
then

cD = kD = δD.

In [4] S. Dineen, R. M. Timoney and J.-P. Vigué proved the following result, which
we present here in a version that is weaker than the original one.

Theorem 2.2. ([4]). For a bounded and convex domain D in a complex Banach
space (X, ‖ · ‖), the following equality is valid:

cD(x, y) = inf
Y ∈Yx,y

cD∩Y (x, y),

where x, y ∈ D and Yx,y denotes the family of all linear subspaces Y ⊂ X, which
are finite-dimensional and contain both x and y.

Observe that for the Lempert function we have, in general,

δD(x, y) ≤ inf
Y ∈Yx,y

δD∩Y (x, y),

where x, y ∈ D and Yx,y denotes the family of all linear subspaces Y ⊂ X , which are
finite-dimensional and contain both x and y.

Therefore, directly from Theorems 2.1 and 2.2, and the inequalities

cD ≤ kD ≤ δD,

we get the following generalization of Lempert’s theorem.

Theorem 2.3. ([4]). For a bounded and convex domain D in a complex Banach
space (X, ‖ · ‖), we have

cD = kD = δD.
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From the above observations we also get the following corollary.

Corollary 2.4. For a bounded and convex domain D in a complex Banach space
(X, ‖ · ‖), we have

kD(x, y) = inf
Y ∈Yx,y

kD∩Y (x, y),

where x, y ∈ D and Yx,y denotes the family of all linear subspaces Y ⊂ X , which
are finite-dimensional and contain both x and y.

Here and subsequently we consider bounded and convex domains and use the
Kobayashi distance.

It is known that the Kobayashi distance kD is locally equivalent to the norm ‖·‖ in
X [9]. Indeed, if for ∅ �= A ⊂ D we denote by

dist (x, A) := inf{‖x− y‖ : y ∈ A}
the distance in (X, ‖·‖) between a point x and the set A, and if

diamD := sup{‖x − y‖ : x, y ∈ D}
denotes the diameter of D in (X, ‖·‖), then the following theorem holds.

Theorem 2.5. ([9]). If D is a bounded and convex domain in a complex Banach
space (X, ‖·‖), then

arg tanh
(‖x − y‖

diamD

)
≤ kD(x, y)

for all x, y ∈ D and

kD(x, y) ≤ arg tanh
( ‖x − y‖

dist(x, ∂D)

)

whenever ‖x − y‖ < dist (x, ∂D).

We also use the following notation. If C1 and C2 are nonempty and bounded subsets
of a Banach space (X, ‖ · ‖), then dist(C1, C2) := inf{‖x−y‖ : x ∈ C1 and y ∈ C2}.
The open ball of center x and radius r is denoted by B(x, r).

Finally, we recall the definition of the Hausdorff metric.

Definition 2.1. ([6]). Let (X, ‖ ·‖) be a Banach space and let M denote the family
of all nonempty, bounded and convex domains in X . For D1, D2 ∈ M, set

d(D1, D2) := sup{dist(y, D1); y ∈ D2},
d(D2, D1) := sup{dist(x, D2); x ∈ D1}.

With these notations, the function dH : M×M → [0,∞), defined by

dH(D1, D2) := max{d(D1, D2), d(D2, D1)}
for D1, D2 ∈ M, is called the Hausdorff metric.



Limiting Behavior of the Kobayashi Distance 539

3. CONVERGENCE OF THE KOBAYASHI DISTANCES IN THE CASE WHERE A SEQUENCE OF

BOUNDED AND CONVEX DOMAINS IS CONVERGENT IN THE HAUSDORFF METRIC

This section is devoted to the behavior of the corresponding sequence of Kobayashi
distances when a given sequence {Dm} of bounded and convex domains tends to a
bounded and convex domain D in the Hausdorff metric. We first state and prove the
main result of this section and then derive two corollaries.

Theorem 3.1. Let (X, ‖ · ‖) be a complex Banach space. Let D be a bounded and
convex domain in X , and let {Dm} be a sequence of bounded and convex domains
in X . If limn→∞ dH(D, Dm) = 0, then for each x, y ∈ D, there exists m̃ ∈ N such
that for all m̃ ≤ m ∈ N, we have x, y ∈ Dm and kD(x, y) = limm̃≤m→∞ kDm(x, y),
uniformly on compact sets.

Proof. Without any loss of generality we may assume that 0 ∈ D. Take
two points x, y ∈ D. By Lemma 5.7, there exist r > 0 and m̃ ∈ N such that
B(0, r) ⊂ D ∩ Dm, B(x, r) ⊂ D ∩ Dm and B(y, r) ⊂ D ∩ Dm for each m ≥ m̃.
Hence by Lemma 5.8, there exist numerical sequences {sm}m≥m̃ and {tm}m≥m̃ such
that limm̃≤m→∞ sm = 1, limm̃≤m→∞ tm = 1, 0 ≤ sm ≤ 1, 0 ≤ tm ≤ 1, smD ⊂ Dm

and tmDm ⊂ D for m ≥ m̃. Therefore, applying Theorem 2.5, we obtain

lim
m̃≤m→∞

|kDm(smx, smy) − kDm(x, y)| = 0

and
lim

m̃≤m→∞
kD(tmx, tmy) = kD(x, y).

Finally, we also have

kD(x, y) = ksmD(smx, smy) ≥ kDm(smx, smy)

for each m ≥ m̃, which implies that

kD(x, y) ≥ lim sup
m̃≤m→∞

kDm(x, y).

Similarly, the inequalities

kDm(x, y) = ktmDm(tmx, tmy) ≥ kD(tmx, tmy),

which are valid for each m ≥ m̃, yield

lim inf
m̃≤m→∞

kDm(x, y) ≥ kD(x, y).

Thus
lim

m̃≤m→∞
kDm(x, y) = kD(x, y),
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as asserted.
Now let C ⊂ D be a compact set. By Lemma 5.5, for each x ∈ D, there exist

rx > 0 and Mx ∈ N such that B(x, rx) ⊂ D and B(x, rx) ⊂ Dm for each m ≥ Mx.
Since C is compact, the open cover {B(x, 1

2rx)}x∈C of C contains a finite subcover
{B(xj,

1
2rxj)}N

j=1 of C. Let r̃ := min{rx1, ..., rxN
} and M := max{Mx1, ..., MxN

}.
It is clear that for each x ∈ C, we have dist(x, ∂D) > r̃

2 and dist(x, ∂Dm) > r̃
2 for

all m ≥ M. Next, take two arbitrary sequences {x′
m} and {x′′

m} in C which converge
in (X, ‖ · ‖) to x′ and x′′, respectively. It follows from Theorem 2.5 that

|kDm(x′
m, x′′

m) − kD(x′, x′′)|
≤ |kDm(x′

m, x′)|+ |kDm(x′′, x′′
m)| + |kDm(x′, x′′)− kD(x′, x′′)|

≤ arg tanh
(

2 ‖x′
m − x′‖
r

)
+ arg tanh

(
2 ‖x′′ − x′′

m‖
r

)

+|kDm(x′, x′′) − kD(x′, x′′)| −→m 0

and this completes the proof.

Combining Theorem 3.1 and Corollary 5.4, we get the following results regarding
the behavior of the sequences of Kobayashi distances corresponding to given monotonic
sequences of bounded and convex domains in Cn.

Theorem 3.2. ([13, 16]). Let D be a bounded and convex domain in C
n, and

let D =
⋃∞

m=1 Dm, where {Dm}∞m=1 is an increasing sequence of bounded and
convex domains. Then the corresponding sequence {kDm}∞m=1 of Kobayashi distances
converges, as m tends to infinity, to kD, uniformly on compact sets.

Theorem 3.3. ([10, 13, 16, 2]). Let D be a bounded and convex domain in C
n,

and let {Dm}∞m=1 be a sequence of bounded and convex domains in Cn such that
Dm+1 ⊂ Dm for all m ∈ N and

⋂∞
m=1Dm = D. Then the corresponding sequence

{kDm}∞m=1 of Kobayashi distances converges, as m tends to infinity, to kD, uniformly
on compact sets.

4. THE CASE OF MONOTONIC SEQUENCES OF BOUNDED AND CONVEX DOMAINS IN INFINITE

DIMENSIONAL BANACH SPACES

We begin this section with two examples which show that in infinite dimensional
complex Banach spaces we are not able to apply Theorem 3.1 in order to prove results
which are analogous to those established in Theorems 3.2 and 3.3.

Example 4.1. Consider the complex Banach space �2. Let D = B(0, 1), m ∈ N

and

Dm :=

⎧⎨
⎩x = {xj}j ∈ l2 : ‖x‖ <

3
2
,

m∑
j=1

|xj|2 < 1 and |xj| <
3
2

for j ≥ m + 1

⎫⎬
⎭ .
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Then we have D ⊂ Dm+1 ⊂ Dm for each m ∈ N, D =
⋂∞

m=1 Dm and dH(D, Dm) =
1
2 for each m ∈ N.

Example 4.2. Take the complex Banach space �2. Let D = B(0, 1), m ∈ N and

Dm :=
{

x = {xj}j ∈ l2 : ‖x‖ < 1 and |xj| <
1
2

for j ≥ m + 1
}

.

Then we have Dm ⊂ Dm+1 ⊂ D for each m ∈ N, D =
⋃∞

m=1 Dm and dH(D, Dm) =
1
2 for each m ∈ N.

Thus we see that we need a new approach in order to establish theorems analogous
to Theorems 3.2 and 3.3.

Theorem 4.1. Let D be a bounded and convex domain in an infinite dimensional
complex Banach space (X, ‖ · ‖) and let D =

⋃∞
m=1 Dm, where {Dm}∞m=1 is an

increasing sequence of bounded and convex domains in X . Then the corresponding
sequence {kDm}∞m=1 of Kobayashi distances converges, as m tends to infinity, to kD,
uniformly on compact sets.

Proof. Fix x, y ∈ D. Since Dm ⊂ Dm+1 ⊂ D for all m ∈ N, there exists m̃ ∈ N

such that x, y ∈ Dm for each m ≥ m̃. Therefore we have

kD(x, y) ≤ kDm+1(x, y) ≤ kDm(x, y)

for all m ≥ m̃. It follows that the sequence {kDm(x, y)}m≥m̃ converges.
Next, by Corollary 2.4 we have

kD(x, y) = inf
Y ∈Yx,y

kD∩Y (x, y),

where Yx,y denotes the family of all linear subspaces Y ⊂ X , which are finite-
dimensional and contain both x and y. Hence there exists an increasing sequence
{Yj} in Yx,y such that

kD(x, y) ≤ kD∩Yj(x, y) < kD(x, y) +
1
j

for j = 1, 2, .... Since
Dm ∩ Yj ⊂ D ∩ Yj ⊂ D,

we have
kD(x, y) ≤ kD∩Yj(x, y) ≤ kDm∩Yj(x, y)

for each j ∈ N and each m ≥ m̃. Next, by Theorem 3.2,

lim
m̃≤m→∞

kDm∩Yj(x, y) = kD∩Yj(x, y)
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for each j ∈ N. Therefore there exists a strictly increasing sequence {mj} such that

|kDmj∩Yj(x, y)− kD∩Yj(x, y)| < 1
j

for j = 1, 2, .... This implies that

kD(x, y) ≤ kDmj
(x, y) ≤ kDmj∩Yj(x, y) < kD∩Yj(x, y) +

1
j

< kD(x, y) +
2
j

and finally we obtain

lim
m̃≤m→∞

kDm(x, y) = lim
j→∞

kDmj
(x, y) = kD(x, y),

as asserted.
Now let C ⊂ D be a compact set. Since D =

⋃∞
m=1 Dm and the sequence

{Dm} is increasing, there exists m′ ∈ N such that C is a subset of Dm for each
m ≥ m′. Let r̃ = dist(C, ∂Dm′). Then for each x ∈ C, we have dist(x, ∂D) ≥ r̃
and dist(x, ∂Dm) ≥ r̃ for all m ≥ m′. Now take two arbitrary sequences {x′

m}
and {x′′

m} in C which converge to x′ and x′′ in (X, ‖, ‖), respectively. We have
x′, x′′ ∈ C ⊂ Dm for each m ≥ m′. Next, there exists r > 0 such that B(x′, r) ⊂ Dm

and B(x′′, r) ⊂ Dm for each m ≥ m′. Therefore there exists m′′ > m′ such that
x′

m ∈ B(x′, r
2 ) ⊂ Dm and x′′

m ∈ B(x′′, r
2 ) ⊂ Dm for each m ≥ m′′. From Theorem

2.5, we now get

|kDm(x′
m, x′′

m) − kD(x′, x′′)|
≤ |kDm(x′

m, x′)|+ |kDm(x′′, x′′
m)| + |kDm(x′, x′′)− kD(x′, x′′)|

≤ arg tanh
(

2 ‖x′
m − x′‖
r

)
+ arg tanh

(
2 ‖x′′ − x′′

m‖
r

)

+|kDm(x′, x′′) − kD(x′, x′′)| −→m 0

and this completes the proof.

Theorem 4.2. Let (X, ‖ · ‖) be an infinite dimensional complex Banach space, D
be a bounded and convex domain in X , and let {Dm}∞m=1 be a sequence of bounded
and convex domains in X such that Dm+1 ⊂ Dm for all m ∈ N and

⋂∞
m=1Dm = D.

Then the corresponding sequence {kDm}∞m=1 of Kobayashi distances converges, as m

tends to infinity, to kD, uniformly on compact sets.

Proof. Fix x, y ∈ D. We know that D ⊂ Dm+1 ⊂ Dm (see Lemma 5.1 below)
and

kDm(x, y) ≤ kDm+1(x, y) ≤ kD(x, y)
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for each m. It follows that the sequence {kDm(x, y)} is convergent. Next, again
by Lemma 5.1, we have D ∩ Y =

⋂∞
m=1Dm ∩ Y =

⋂∞
m=1Dm ∩ Y for each Y ∈

Yx,y, where Yx,y denotes the family of all linear subspaces Y ⊂ X , which are finite-
dimensional and contain both x and y. Therefore for an arbitrary Y ∈ Yx,y, we can
apply Theorem 3.3 to the sequence {Dm ∩ Y }. Next, by Corollary 2.4 we have

kD(x, y) = inf
Y ∈Yx,y

kD∩Y (x, y)

for each Y ∈ Yx,y. Hence there exists an increasing sequence {Yj} in Yx,y such that

kD(x, y) ≤ kD∩Yj(x, y) < kD(x, y) +
1
j

for j = 1, 2, .... Since D ∩ Yj ⊂ Dm ∩ Yj ⊂ Dm, we also have

kDm(x, y) ≤ kDm∩Yj ≤ kD∩Yj

for each j and each m. As we have mentioned earlier, for each j = 1, 2, ..., we can
apply Theorem 3.3 to the sequence {Dm ∩ Yj}m. Hence we get

lim
m→∞ kDm∩Yj(x, y) = kD∩Yj(x, y)

for each j ∈ N. This implies that there exists a strictly increasing sequence {mj} such
that

|kDmj∩Yj(x, y)− kD∩Yj(x, y)| < 1
j

for j = 1, 2, .... It follows that

kD(x, y) +
2
j

> kD∩Yj(x, y) +
1
j
≥ kDmj∩Yj (x, y) +

1
j

> kD∩Yj(x, y) ≥ kD(x, y)

and finally we obtain

lim
m→∞ kDm(x, y) = lim

j→∞
kDmj

(x, y) = kD(x, y),

as asserted.
Now, let C ⊂ D be a compact set. Then we have dist(C, ∂D) ≥ r̃ > 0. Since

D ⊂ Dm for each m, we get dist(C, ∂Dm) ≥ r̃ > 0 for each m. Now take two
arbitrary sequences {x′

m} and {x′′
m} in C which converge to x′ and x′′ in (X, ‖ · ‖),

respectively. It follows from Theorem 2.5 that

|kDm(x′
m, x′′

m) − kD(x′, x′′)|
≤ |kDm(x′

m, x′)|+ |kDm(x′′, x′′
m)| + |kDm(x′, x′′)− kD(x′, x′′)|

≤ arg tanh
(‖x′

m − x′‖
r

)
+ arg tanh

(‖x′′ − x′′
m‖

r

)

+|kDm(x′, x′′) − kD(x′, x′′)| −→m 0
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and this completes the proof.

5. AUXILIARY RESULTS

In this section we prove a few auxiliary lemmata, which were used in the proofs of
the theorems we established in Sections 3 and 4. In these lemmata it does not matter
if the Banach spaces are real or complex.

We begin with the following observations. It is generally known that if D is a
bounded and convex domain in a Banach space (X, ‖ · ‖), 0 ∈ D and x ∈ D, then
tx ∈ D for each 0 < t < 1. Hence we get

D =
⋃

0<t<1

tD =
⋃

0<t<1

tD.

Also, if C = C is a bounded, closed and convex set in a Banach space (X, ‖ · ‖), and
intC �= ∅, then C = intC. Note that these observations no longer hold in the case of
star-shaped sets (see also Remark 5.1 below).

Now we are ready to state and prove the first result of this section.

Lemma 5.1. Let (X, ‖·‖) be a Banach space, D be a bounded and convex domain
in X, x̃ ∈ D, and let {Dm}∞m=1 be a sequence of bounded and convex domains in X

such that Dm+1 ⊂ Dm for all m ∈ N and D =
⋂∞

m=1Dm. Then D ⊂ Dm for each
m, D =

⋂∞
m=1Dm =

⋂∞
m=1Dm and D ∩ Y =

⋂∞
m=1(Dm ∩ Y ) =

⋂∞
m=1Dm ∩ Y for

each finite-dimensional linear subspace Y ⊂ X with D ∩ Y �= ∅.

Proof. Without loss of generality we may assume that 0 ∈ D. Since D =⋂∞
m=1Dm ⊂ Dm for each m, both D and Dm are bounded and convex domains, and

since for each x ∈ D, there is r > 0 such that B(x, r) ⊂ D ⊂ D ⊂ Dm, it is obvious
that for each m, we have B(x, r) ⊂ Dm and this implies that D ⊂ Dm for each m.
Next, we have D ⊂ int

⋂∞
m=1Dm ⊂ int

⋂∞
m=1Dm. Moreover, it follows from the

observations made just before Lemma 5.1, applied to the bounded, closed and convex
set

⋂∞
m=1Dm, that int

⋂∞
m=1Dm =

⋂∞
m=1Dm. On the other hand, for each 0 ≤ t < 1

and each m, we have tDm ⊂ Dm, which implies

D =
⋂∞

m=1
Dm ⊂

⋂∞
m=1

Dm = int
⋂∞

m=1
Dm

=
⋃

0≤t<1

t
⋂∞

m=1
Dm =

⋃
0≤t<1

⋂∞
m=1

tDm ⊂
⋂∞

m=1
Dm = D.

Hence we obtain D =
⋂∞

m=1Dm =
⋂∞

m=1Dm.
To prove the second part of our lemma, it is sufficient to observe that we can apply

the equalities we have just proved to Y , D∩Y and to the sequence {Dm ∩Y }, which
replace X , D and the sequence {Dm}, respectively.

We now recall (a slightly modified version of) [2, Lemma 4.3].
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Lemma 5.2. ([2]). Let D be a bounded and convex domain in a finite-dimensional
Banach space (X, ‖ · ‖), x̃ ∈ D, and let {Dm}∞m=1 be a sequence of bounded and
convex domains in X such that Dm+1 ⊂ Dm for all m ∈ N and

⋂∞
m=1Dm = D.

Then
lim

m→∞ inf
x∈Dm

sup{0 ≤ t ≤ 1 : x̃ + t(x − x̃) ∈ D} = 1.

An analogous result is true for an increasing sequence of bounded and convex
domains. For the convenience of the reader we now state and prove it.

Lemma 5.3. Let D be a bounded and convex domain in a finite-dimensional
Banach space (X, ‖ · ‖), and let {Dm}∞m=1 be a sequence of bounded and convex
domains in X such that Dm ⊂ Dm+1 for all m ∈ N and

⋃∞
m=1Dm = D. If x̃ ∈ D1,

then
lim

m→∞ inf
x∈D

sup{0 ≤ s ≤ 1 : x̃ + s(x − x̃) ∈ Dm} = 1.

Proof. Without any loss of generality we may assume that x̃ = 0 ∈ D1 and that
B‖·‖(0, r) ⊂ D ⊂ D1 ⊂ B‖·‖(0, R) for some 0 < r < R. Assume that

lim
m→∞ inf

x∈D
sup{0 ≤ s ≤ 1 : sx ∈ Dm} = s̃ < 1.

We obviously have s̃ ≥ r
R > 0. Also, there exist sequences {sm}∞m=1 and {xm}∞m=1

such that xm ∈ D, smxm ∈ Dm \ B‖·‖(0, r) and

inf
x∈D

sup{0 ≤ s ≤ 1 : sx ∈ Dm} − 1
m

≤ sm

≤ sup{0 ≤ s ≤ 1 : sxm ∈ Dm} ≤ inf
x∈D

sup{0 ≤ s ≤ 1 : sx ∈ Dm} +
1
m

for each m = 1, 2, .... Hence limm sm = s̃. Using the compactness of D and passing,
if need be, to a subsequence, we may assume that there exists a point x ∈ D such that
limm ‖xm−x‖ = 0. Next, since ‖x‖ ≥ r > 0 and D is a convex domain containing the
closed ball B‖·‖(0, r), we have B‖·‖(s̃x, (1− s̃)r) ⊂ D. Therefore s̃x + (1− s̃) r

2‖x‖x
is an element of D and hence s̃x + (1− s̃) r

2‖x‖x ∈ Dm̃ for some m̃ ∈ N. This implies
that

smxm + (1 − s̃)
r

2‖x‖xm = [sm + (1− s̃)
r

2‖x‖ ]xm ∈ Dm

and

inf
x∈D

sup{0 ≤ s ≤ 1 : sx ∈ Dm} − 1
m

≤ sm < sm + (1 − s̃)
r

2‖x‖
≤ sup{0 ≤ s ≤ 1 : sxm ∈ Dm} ≤ inf

x∈D
sup{0 ≤ s ≤ 1 : sx ∈ Dm} +

1
m
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for all sufficiently large m. Taking m to infinity, we arrive at the following contradic-
tion:

s̃ = lim
m→∞ sm < s̃ + (1 − s̃)

r

2‖x‖ = lim
m→∞[sm + (1 − s̃)

r

2‖x‖ ]

≤ lim
m→∞[ inf

x∈D
sup{0 ≤ s ≤ 1 : sx ∈ Dm} +

1
m

] = s̃.

This completes our proof.

The following corollary is a direct consequence of the last two lemmata.

Corollary 5.4. Let D be a bounded and convex domain in a finite-dimensional Ba-
nach space (X, ‖·}), and let {Dm}∞m=1 be a sequence of bounded and convex domains
in X . If either {Dm}∞m=1 is an increasing sequence of domains and

⋃∞
m=1Dm =

D, or {Dm}∞m=1 is a decreasing sequence of domains and
⋂∞

m=1Dm = D, then
limm→∞ dH(D, Dm) = 0.

We now consider the connections between the Hausdorff metric and bounded and
convex domains in Banach spaces.

Lemma 5.5. Let (X, ‖ · ‖) be a Banach space and let r > 0. Assume that D
is a bounded and convex domain in X, x̃ ∈ D and B(x̃, r) ⊂ D. Let D0 ⊂ X

be a bounded and convex domain satisfying dH(D, D0) < r
4 and let x̃ ∈ D0. Then

r0 := sup{r1 > 0 : B(x̃, r1) ⊂ D0} > r
4 . Hence D0 contains the closed ball B(x̃, r

4 ).

Proof. Without loss of generality we may assume that x̃ = 0. To obtain a
contradiction, suppose that there exists a bounded and convex domain D0 ⊂ X with
dH(D, D0) < r

4 , 0 ∈ D0, and r0 = sup{r1 > 0 : B(0, r1) ⊂ D0} ≤ r
4 . Then

there exists x ∈ D such that ‖x‖ = r and 5r0
4r x /∈ D0. From our assumption that

dH(D, D0) < r
4 it follows that there is a point x0 ∈ D0 with ‖x−x0‖ < r/4. Observe

now that the point 4r0
r (x− x0) lies in B(0, r0) ⊂ D0 and therefore

y = α
4r0

r
(x− x0) + (1− α)x0 =

4r0

4r0 + r
x ∈ D0,

where 0 < α = r
4r0+r < 1. This, however, contradicts the assumption that 5r0

4r x /∈ D0

because
4r0

4r0 + r
≥ 4r0

4 r
4 + r

= 2
r0

r
>

5r0

4r
.

The contradiction we have reached finishes the proof.

Lemma 5.6. Let (X, ‖·‖) be a Banach space and let r > 0. If D is a bounded and
convex domain in X, x̃ ∈ D and B(x̃, r) ⊂ D, then for each 0 < ε < r, there exists
η̃ > 0 such that each bounded and convex domain D0 ⊂ X with dH(D, D0) < η̃ and
x̃ ∈ D0 contains the closed ball B(x̃, r − ε).
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Proof. Let x̃ = 0 for simplicity. Assume, without loss of generality, that
0 < ε < r

4 . Take 0 < η̃ = εr
4(r−ε) < ε and let D0 ⊂ X be a bounded and convex

domain with dH(D, D0) < η̃ and 0 ∈ D0. Observe that 0 < η̃ = εr
4(r−ε) < 1

4r.

Therefore Lemma 5.5 implies that the domain D0 contains the closed ball B(0, r
4 ).

Choose an arbitrary x ∈ X with ‖x‖ = r. Then x is an element of D and since
dH(D, D0) < η̃, there exists a point x0 ∈ D0 such that ‖x− x0‖ < η̃. In addition, the
point r−ε

ε (x − x0) lies in B(0, r
4 ) ⊂ D0 and therefore

y = α
r − ε

ε
(x − x0) + (1 − α)x0 =

r − ε

r
x ∈ D0,

where 0 < α = ε
r < 1. Since ‖x‖ = r was chosen in an arbitrary way, this means that

B(0, r − ε) ⊂ D0. The proof is complete.

Lemma 5.7. Let (X, ‖ · ‖) be a Banach space and let r > 0. If D is a bounded
and convex domain in X, x̃ ∈ D and B(x̃, r) ⊂ D, then for each 0 < ε < r, there
exists a number η̃ such that for each bounded and convex domain D0 ⊂ X with
dH(D, D0) < η̃, we have B(x̃, r − ε) ⊂ D0.

Proof. Without any loss of generality, we may assume that x̃ = 0. Let 0 <
ε1 < ε < r and ε2 = ε − ε1. By the previous lemma, for 0 < ε2 < r, there exists
a number 0 < η̃ < ε1 such that for each bounded and convex domain D1 ⊂ X with
dH(D, D1) < 2η̃ and 0 ∈ D1, we have B(0, r − ε2) ⊂ D1. Now let D0 ⊂ X be a
bounded and convex domain with dH(D, D0) < η̃. Since 0 ∈ D, there exists x0 ∈ D0

such that ‖x0‖ < η̃ < ε1. Hence for the bounded and convex domain D̃1 = −x0 +D0,
we have dH(D, D̃1) < 2η̃ and 0 ∈ D̃1. Hence B(0, r − ε2) ⊂ D̃1. This implies that
B(x0, r − ε2) ⊂ D0 and finally, we obtain B(0, r − ε) ⊂ D0.

Lemma 5.8. Let (X, ‖ · ‖) be a Banach space. Let D be a bounded and convex
domain in X , and let {Dm} be a sequence of bounded and convex domains in X . If
limm→∞ dH(D, Dm) = 0, then for each x̃ ∈ D, there exist m̃ ∈ N, and sequences
{sm}m≥m̃ and {tm}m≥m̃ such that limm̃≤m→∞ sm = 1, limm̃≤m→∞ tm = 1, 0 <
sm < 1, 0 < tm < 1, (1 − sm)x̃ + smD ⊂ Dm and (1 − tm)x̃ + tmDm ⊂ D for
m ≥ m̃.

Proof. Without any loss of generality, we may assume that m̃ = 1, x̃ = 0
and that there exists a number r > 0 such that B(0, r) ⊂ D and B(0, r) ⊂ Dm for
m = 1, 2, ... (see Lemma 5.7). By our assumption, the domain D and all the domains
Dm are uniformly bounded in X , that is, for some R > r > 0, we have D ⊂ B(0, R)
and Dm ⊂ B(0, R) for m = 1, 2, ....

Assume that

lim inf
m→∞ inf

x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D} = t̃ < 1.
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We obviously have t̃ ≥ r
R > 0. Also, there exist sequences {t′mj

}∞j=1, {xmj}∞j=1 and
{yj}∞j=1 such that xmj ∈ Dmj , t′mj

xmj ∈ D \B(0, r), 0 < t′mj
< 1, limj→∞ t′mj

= t̃,
yj ∈ D, ‖yj − xmj‖ < r

j , and

t̃ − 2
j

< inf
x∈Dmj

sup{0 ≤ t ≤ 1 : tx ∈ D} − 1
j
≤ t′mj

≤ sup{0 ≤ t ≤ 1 : txmj ∈ D} ≤ inf
x∈Dmj

sup{0 ≤ t ≤ 1 : tx ∈ D} +
1
j

< t̃ +
2
j

for each j = 1, 2, .... Next, we have ‖xmj‖ ≤ R and therefore

t′mj
xmj + (1 − t′mj

)
r

2R
xmj = [t′mj

+ (1− t′mj
)

r

2R
]xmj ∈ Dmj .

Since yj ∈ D and D is a convex domain containing the closed ball B(0, r), we have
B(t′mj

ymj , (1 − t′mj
)r) ⊂ D. Now observe that there exists a natural number j̃ such

that

‖t′mj
yj − [t′mj

xmj + (1 − t′mj
)

r

2R
xmj ]‖ ≤ t′mj

r

j
+ (1− t′mj

)
r

2
< (1− t′mj

)r

for each j ≥ j̃ and this means that

t′mj
xmj + (1− t′mj

)
r

2R
xmj ∈ D.

Hence we get

t̃ − 2
j

< inf
x∈Dmj

sup{0 ≤ t ≤ 1 : tx ∈ D} − 1
j
≤ t′mj

≤ t′mj
+ (1− t′mj

)
r

2R

≤ sup{0 ≤ t ≤ 1 : txmj ∈ D} ≤ inf
x∈Dmj

sup{0 ≤ t ≤ 1 : tx ∈ D}+
1
j

< t̃ +
2
j
.

Taking j to infinity, we get the following contradiction:

t̃ ≤ t̃ + (1− t̃)
r

2R
≤ t̃.

Thus we have
lim

m→∞ inf
x∈Dm

sup{0 ≤ t ≤ 1 : tx ∈ D} = 1

and therefore there exists a sequence {tm} such that limm→∞ tm = 1, 0 < tm < 1
and tmDm ⊂ D for m = 1, 2, ....

The proof of the second part of our lemma is analogous. Indeed, assume that

lim inf
m→∞ inf

y∈D
sup{0 ≤ s ≤ 1 : sy ∈ Dm} = s̃ < 1.
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We have s̃ ≥ r
R > 0 and there exist sequences {s′mj

}∞j=1, {ymj}∞j=1 and {xj}∞j=1 such
that ymj ∈ D, s′mj

ymj ∈ Dmj \ B(0, r), 0 < s′mj
< 1, limj→∞ s′mj

= s̃, xj ∈ Dmj ,
‖xj − ymj‖ < r

j , and

s̃ − 2
j

< inf
y∈D

sup{0 ≤ s ≤ 1 : sy ∈ Dmj} −
1
j
≤ s′mj

≤ sup{0 ≤ s ≤ 1 : symj ∈ Dmj} ≤ inf
y∈D

sup{0 ≤ s ≤ 1 : sy ∈ Dmj} +
1
j

< s̃ +
2
j

for each j = 1, 2, .... Next, ‖ymj‖ ≤ R and therefore

s′mj
ymj + (1 − s′mj

)
r

2R
ymj = [s′mj

+ (1− s′mj
)

r

2R
]ymj ∈ D.

Since xj ∈ Dmj and Dmj is a convex domain containing the closed ball B(0, r), we
have B(s′mj

xmj , (1− s′mj
)r) ⊂ Dmj . Now observe that there exists a natural number

j̃ such that

‖s′mj
xj − [s′mj

ymj + (1− s′mj
)

r

2R
ymj ]‖ ≤ s′mj

r

j
+ (1− s′mj

)
r

2
< (1− s′mj

)r

for each j ≥ j̃. This means that

s′mj
ymj + (1 − s′mj

)
r

2R
ymj ∈ Dmj .

Hence we get

s̃ − 2
j

< inf
y∈D

sup{0 ≤ s ≤ 1 : sy ∈ Dmj} −
1
j
≤ s′mj

≤ s′mj
+ (1− s′mj

)
r

2R

≤ sup{0 ≤ s ≤ 1 : symj ∈ D} ≤ inf
y∈D

sup{0 ≤ s ≤ 1 : sy ∈ Dmj} +
1
j

< s̃ +
2
j
.

Taking j to infinity, we get the following contradiction:

s̃ ≤ s̃ + (1− s̃)
r

2R
≤ s̃.

So, we have
lim

m→∞ inf
y∈D

sup{0 ≤ s ≤ 1 : sy ∈ Dmj} = 1

and therefore there exists a sequence {sm} such that limm→∞ sm = 1, 0 < sm < 1
and smD ⊂ Dm for m = 1, 2, .... This completes the proof.

Next, we note the following consequence of Lemma 5.8.
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Lemma 5.9. Let (X, ‖ · ‖) be a Banach space. Let D be a bounded and convex
domain in X and let {Dm} be a sequence of bounded and convex domains in X . The
following statements are equivalent:

(1) limm→∞ dH(D, Dm) = 0;
(2) there exist a point x̃ ∈ X , m̃ ∈ N, and numerical sequences {sm}m≥m̃ and

{tm}m≥m̃ such that limm̃≤m→∞ sm = 1, limm̃≤m→∞ tm = 1, 0 < sm < 1,
0 < tm < 1, (1−sm)x̃+smD ⊂ Dm, and (1−tm)x̃+tmDm ⊂ D for m ≥ m̃.

Proof. It is obvious that 2) ⇒ 1). On the other hand, the previous lemma shows
that 1) ⇒ 2).

In conclusion, we make the following remark.

Remark 5.1. If the domains in question are not convex, then the results in this
section no longer hold (even if the domains are star-shaped with a common center)
whenever X is a real Banach space with dim X ≥ 2. Indeed, let X be, for example,
the plane R

2 with the standard �2-norm and let

Ωk =int conv{(cos
1

4k−1
, sin

1
4k−1

), (2 cos
1
4k

, 2 sin
1
4k

), (cos
1

4k+1
, sin

1
4k+1

)},

where k = 1, 2, .... Taking, respectively, either Dn := B(0, 1) ∪ ⋃∞
k=n Ωk, where

n = 1, 2, ..., and D := B(0, 1), or Dn := B(0, 1)∪⋃n
k=1 Ωk , where again n = 1, 2, ...,

and D := B(0, 1) ∪ ⋃∞
k=1 Ωk, we see that Lemmata 5.1–5.3 and Corollary 5.4 are no

longer true (note that the domains Dn are star-shaped, but not convex). Similarly,
without the assumption that the domain D is convex, Lemmata 5.5–5.9 are no longer
valid. Indeed, it is not difficult to construct counterexamples using the following
sets in the real plane R

2 : B(0, 1) and (B(0, 1) \ A) ∪ B(0, r̃), where A := {x =
(r cosα, r sinα) ∈ R2 : 0 < r < 1, Θ1 ≤ α ≤ Θ2} with 0 ≤ Θ1 < Θ2 < 2π, and
0 < r̃ < 1. Finally, we observe that If dim X = 1, then all the results in the present
section are valid for arbitrary bounded domains in X because in this case all bounded
domains are simply bounded and open segments.
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