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NULL 2-TYPE HYPERSURFACES WITH AT MOST THREE DISTINCT
PRINCIPAL CURVATURES IN EUCLIDEAN SPACE

Yu Fu

Abstract. The goal of this paper is to prove null 2-type hypersurfaces with at
most three distinct principal curvatures in a Euclidean space have constant mean
curvature.

1. INTRODUCTION

Let x : Mn → E
m be an isometric immersion of an n-dimensional connected

submanifold Mn into a Euclidean space E
m. Denote by Δ the Laplace operator with

respect to the induced Riemannian metric. A submanifold of E
m is said to be of finite

type [1, 2, 7, 9] if the position vector x of Mn in E
m can be decomposed in the

following form:

x = x0 + x1 + · · ·+ xk,(1.1)

where x0 is a constant vector and x1, . . . , xk are non-constant maps satisfying Δxi =
λixi, i = 1, . . . , k. In particular, if all eigenvalues λ1, . . . , λk are mutually different,
then the submanifold Mn is said to be of k-type and if one of λ1, . . . , λk is zero, Mn

is said to be of null k-type.
We now focus on null 2-type submanifolds Mn in E

m. By choosing a coordinate
system on E

m with x0 as its origin, we have the following simple spectral decomposition
of x for a null 2-type submanifold Mn:

x = x1 + x2, Δx1 = 0, Δx2 = ax2,(1.2)

where a is non-zero constant. After applying Beltrami’s formula Δx = −n
−→
H , where−→

H is the mean curvature vector, (1.2) implies the following equation

Δ
−→
H = a

−→
H.(1.3)

Chen proposed in 1991 the following interesting problem [2, Problem 12]:
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”Determine all submanifolds of Euclidean spaces which are of null 2-type. In
particular, classify null 2-type hypersurfaces in Euclidean spaces.”

In 1988, Chen [3] firstly proved that a null 2-type surface in E
3 is an open portion

of a circular cylinder S1 × R. Later on, Ferrândez and Lucas [14] generalized Chen’s
results by showing that a null 2-type Euclidean hypersurface in E

n+1 with at most two
distinct principal curvatures is a spherical cylinder Sp × R

n−p. In 1995, Hasanis and
Vlachos [15] proved that null 2-type hypersurfaces in E

4 have constant mean curvature
(see also Defever’s proof in [11]). Recently, Chen and Garray in [8] characterized
δ(2)-ideal null 2-type hypersurfaces in Euclidean space as spherical cylinders, where
δ(2)-ideal hypersurfaces are a class of hypersurfaces whose principal curvatures take
three special values: η, μ and η + μ. There are also some study on null 2-type
submanifolds with codimension greater one due to U. Dursun ([12, 13]). For more
work in this field, see Chen’s recent excellent survey [10].

A remarkable property obtained by Chen [4] says that a submanifold Mn of Eu-
clidean space satisfies (1.3) if and only if Mn is 1) Biharmonic (in this case, a = 0);
2) 1-type; 3) null 2-type.

As pointed out by Chen et al., for example, in [8], a 1-type submanifold of a
Euclidean space E

m is either a minimal submanifold of E
m or a minimal submanifold

of a hypersphere in E
m. Biharmonic submanifolds in E

m are defined by the equation
Δ
−→
H = 0, which is equivalent to Δ2x = 0. Chen [2] in 1991 stated a well-known

conjecture: The only biharmonic submanifolds of Euclidean spaces are the minimal
ones. This conjecture is still open so far and the study of biharmonic submanifolds is
a very active field [10].

In this paper, we investigate null 2-type hypersurfaces with at most three distinct
principal curvatures in Euclidean space. Precisely, we will prove that

Theorem 1.1. Every null 2-type hypersurface with at most three distinct principal
curvatures in a Euclidean space must have constant mean curvature.

Remark that our result generalizes the results given in [3, 8, 14, 15].

2. PRELIMINARIES

Let x : Mn → E
n+1 be an isometric immersion of a hypersurface Mn into E

n+1.
Denote the Levi-Civita connections of Mn and E

n+1 by ∇ and ∇̃, respectively. Let
X and Y denote vector fields tangent to Mn and let ξ be a unite normal vector field.
Then the Gauss and Weingarten formulas are given, respectively, by (cf. [5, 6])

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃Xξ = −AX,(2.2)
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where h is the second fundamental form, and A is the shape operator (or Weingarten
operator). It is well known that the second fundamental form h and the shape operator
A are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉.(2.3)

The mean curvature vector
−→
H is given by

−→
H =

1
n

trace h.(2.4)

The Gauss and Codazzi equations are given respectively by

R(X, Y )Z = 〈AY, Z〉AX − 〈AX, Z〉AY,

(∇XA)Y = (∇Y A)X,

where R is the curvature tensor and (∇XA)Y is defined by

(∇XA)Y = ∇X(AY ) − A(∇XY )(2.5)

for all X, Y, Z tangent to M .
Assume that

−→
H = Hξ. Note that H denotes the mean curvature. By identifying the

tangent and the normal parts of the condition Δ
−→
H = a

−→
H (a �= 0), we obtain necessary

and sufficient conditions for Mn to be of null 2-type in E
n+1.

Proposition 2.1. Assume Mn is not 1-type. A hypersurface Mn in an n + 1-
dimensional Euclidean space E

n+1 is null 2-type if and only if

(2.6)

{
ΔH + HtraceA2 = aH,

2A gradH + n HgradH = 0,

where the Laplace operator Δ acting on scalar-valued function f is given by (e.g.,
[8])

Δf = −
n∑

i=1

(eieif −∇eieif).(2.7)

Here, {e1, . . . , en} is an orthonormal local tangent frame on Mn.

3. PROOF OF THEOREM 1.1

In what follows, we work on null 2-type hypersurfaces Mn with three distinct
principal curvatures in Euclidean space E

n+1 with n ≥ 4.
Suppose that the mean curvature H is not constant. We will derive a contradiction.
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By the second equation of (2.6), it is easy to see that gradH is an eigenvector of
the Weingarten operator A with the corresponding principal curvature −n

2H . Without
loss of generality, we choose e1 such that e1 is parallel to gradH , and therefore the
Weingarten operator A of Mn takes the following form with respect to a suitable
orthonormal frame {e1, . . . , en}.

A =

⎛
⎜⎜⎜⎝

λ1

λ2

. . .
λn

⎞
⎟⎟⎟⎠ ,(3.1)

where λi are the principal curvatures and λ1 = −n
2 H . Since e1 is parallel to gradH ,

we compute

gradH =
n∑

i=1

ei(H)ei

and hence

e1(H) �= 0, ei(H) = 0, i = 2, 3, . . . , n.(3.2)

We write

∇eiej =
n∑

k=1

ωk
ijek, i, j = 1, 2, . . . , n.(3.3)

We compute ∇ek
〈ei, ei〉 = 0 and ∇ek

〈ei, ej〉 = 0, which imply respectively that

ωi
ki = 0, ωj

ki + ωi
kj = 0,(3.4)

for i �= j and i, j, k = 1, 2, . . . , n. Furthermore, we deduce from (3.1) and (3.3) and
the Codazzi equation that

ei(λj) = (λi − λj)ω
j
ji,(3.5)

(λi − λj)ω
j
ki = (λk − λj)ω

j
ik(3.6)

for distinct i, j, k = 1, 2, . . . , n.
It follows from (3.2) and (3.3) that

[ei, ej](H) = 0, i, j = 2, 3, . . . , n, i �= j,

which yields

ω1
ij = ω1

ji,(3.7)
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for distinct i, j = 2, 3, . . . , n.
We claim that λj �= λ1 for j = 2, 3, . . . , n. In fact, if λj = λ1 for j �= 1, by

putting i = 1 in (3.5) we have that

0 = (λ1 − λj)ω
j
j1 = e1(λj) = e1(λ1),(3.8)

which contradicts to the first expression of (3.2).
By the assumption, Mn is a nondegenerate hypersurface with three distinct principal

curvatures. Without loss of generality, we assume that

λ2 = λ3 = · · · = λp = α,

λp+1 = λp+2 = · · · = λn = β

for n+1
2 ≤ p < n. The multiplicities of principal curvatures α and β are p − 1 and

n − p, respectively.
By the definition (2.4) of

−→
H , we have nH =

∑n
i=1 λi. Hence

β =
3
2nH − (p− 1)α

n − p
.(3.9)

Hence, by λ1 = −n
2 H and (3.9), α �= λ1, β and β �= λ1 yield directly that

α �= −n

2
H,

3n

2(n − 1)
H,

n2 − (p − 3)n
2(p − 1)

H.(3.10)

Since n ≥ 4, it follows from (3.9) that p − 1 ≥ 2. For i, j = 2, 3, . . . , p and i �= j

in (3.5), one has

ei(α) = 0, i = 2, 3, . . . , p.(3.11)

Depending on the multiplicity n − p of the principal curvature β, we consider two
cases:

Case A. n−p ≥ 2. In this case, for i, j = p+1, . . . , n and i �= j in (3.5) we have

ei(β) = 0, i = p + 1, . . . , n.(3.12)

Hence, it follows directly from (3.2), (3.9), (3.11) and (3.12) that

ei(α) = 0, i = 2, . . . , n.(3.13)

Case B. n − p = 1. Then (3.11) reduces to

ei(α) = 0, i = 2, . . . , n − 1.(3.14)
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In this case, we will show that en(α) = 0 in the following.
Let us compute [e1, ei](H) =

(∇e1ei−∇eie1

)
(H) for i = 2, . . . , n. From the first

expression of (3.4), we have ω1
i1 = 0. For j = 1 and i �= 1 in (3.5), by (3.2) we have

ω1
1i = 0 (i �= 1). Hence we have

eie1(H) = 0, i = 2, . . . , n.(3.15)

By (3.14), with a similar way we can show that

eie1(α) = 0, i = 2, . . . , n − 1.(3.16)

For j = 1, k, i �= 1 in (3.6) we have

(λi − λ1)ω1
ki = (λk − λ1)ω1

ik,

which together with (3.7) yields

ω1
ij = 0, i �= j, i, j = 2, . . .n.(3.17)

Combining (3.17) with the second equation of (3.4) gives

ωj
i1 = 0, i �= j, i, j = 2, . . .n.(3.18)

It follows from (3.5) that

ωi
i1 =

e1(λi)
λ1 − λi

, i = 2, . . .n.(3.19)

For k = 2 and i = n in (3.6), we have

(λn − λj)ω
j
2n = (λ2 − λj)ω

j
n2,

which yields

ωj
2n = 0, j = 3, . . .n − 1.

Hence, from the first expression of (3.4) and (3.17) we get

ωj
2n = 0, j = 1, 3, . . .n.(3.20)

Also, (3.5) yields

ω2
2n =

en(α)
λn − α

.(3.21)

In the following we will derive a useful equation.
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From the Gauss equation and (3.1) we have R(e2, en)e1 = 0. Recall the definition
of Gauss curvature tensor

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

It follows from (3.16), (3.18-21) and (3.4) that

∇e2∇ene1 =
e1(λn)en(α)

(λ1 − λn)(λn − α)
e2,

∇en∇e2e1 = en(
e1(α)
λ1 − α

)e2 +
e1(α)
λ1 − α

n∑
k=3

ωk
n2ek,

∇[e2,en]e1 =
en(α)e1(α)

(λn − α)(λ1 − α)
e2 − e1(α)

λ1 − α

n∑
k=3

ωk
n2ek.

Hence

en(
e1(α)
λ1 − α

) =
( e1(λn)

λ1 − λn
− e1(α)

λ1 − α

) en(α)
λn − α

.(3.22)

Note that λ1 = −n
2 H and λn = β = 3

2nH − (n − 2)α.
Equation (3.22) can be rewritten as

ene1(α) =
{
− e1(α)

λ1 − α
+

( e1(λn)
λ1 − λn

− e1(α)
λ1 − α

)λ1 − α

λn − α

}
en(α),

and hence

en(
e1(λn)
λ1 − λn

) = −(n − 2)
(ene1(α)

λ1 − λn
+

e1(λn)en(α)
(λ1 − λn)2

)
(3.23)

= −(n − 2)
en(α)
λ1−λn

( e1(λn)
λ1−λn

− e1(α)
λ1−α

)λ1 +λn−2α

λn−α
.

Consider the first equation of (2.6). It follows from (3.1) and (3.19) that

(3.24)
e1e1(H) +

((n − 2)e1(α)
λ1 − α

+
e1(λn)
λ1 − λn

)
e1(H)

−H
(
λ1

2 + (n − 2)α2 + λn
2
)

= −aH.

From (3.15) and ω1
1n = ω1

n1 = 0, by computing
[
e1, en

]
(e1(H)) =

(∇e1en −
∇ene1

)
(e1(H)) = 0, we could deduce that en(e1e1(H)) = 0.

Now differentiating (3.24) along en, by (3.2), (3.15), (3.22) and (3.23) we get

2
λ1 − λn

( e1(λn)
λ1 − λn

− α

λ1 − α

)
e1(H)en(α) + H

( − 3nH + 2(n − 1)α
)
en(α) = 0.
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If en(α) �= 0, then the above equation becomes

(3.25)
2

λ1 − λn

( e1(λn)
λ1 − λn

− α

λ1 − α

)
e1(H) + H

( − 3nH + 2(n − 1)α
)

= 0.

Differentiating (3.25) along en, using (3.22) and (3.23) one has

2n(4 − n)H + 2(n − 2)(n− 1)α
(λ1 − λn)(λn − α)

( e1(λn)
λ1 − λn

− α

λ1 − α

)
e1(H)(3.26)

+H
(
(−7n + 10)nH + 4(n − 1)(n − 2)α

)
= 0.

Therefore, combining (3.26) with (3.25) gives

3(n − 2)H
(
3nH − 2(n − 1)α

)2 = 0,

which implies that

α =
3n

2(n− 1)
H.

This contradicts to (3.10). Hence, we have that en(α) = 0.
Now we are ready to express the connection coefficients of hypersurfaces.

Lemma 3.1. Under the assumptions above, we have

∇e1e1 = 0; ∇eie1 =
e1(λi)
λ1 − λi

ei, i = 2, . . . , n;

∇eiej =
p∑

k=2,k �=j

ωk
ijek, i = 1, . . . , n, j = 2, . . . , p, i �= j;

∇eiei = − e1(λi)
λ1 − λi

e1 +
p∑

k=2,k �=i

ωk
iiek, i = 2, . . . , p;

∇eiej =
n∑

k=p+1,k �=j

ωk
ijek, i = 1, . . . , n, j = p + 1, . . . , n, i �= j;

∇eiei = − e1(λi)
λ1 − λi

e1 +
n∑

k=p+1,k �=i

ωk
iiek, i = p + 1, . . . , n.

Proof. For j = 1 and i = 2, . . . , n in (3.5), by (3.2) we get ω1
1i = 0. Moreover,

by the first and second expressions of (3.4) we have

ω1
1i = ωi

11 = 0, i = 1, . . . , n.(3.27)
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For i = 1, j = 2, . . . , n in (3.5), we obtain

ω
j
j1 = −ω1

jj =
e1(λj)
λ1 − λj

, j = 2, . . . , n.(3.28)

For i = p + 1, . . . , n, j = 2, . . . , p in (3.5), by (3.2) we have

ωj
ji = −ωi

jj = 0.(3.29)

Similarly, for i = 2, . . . , p, j = p + 1, . . . , n in (3.5), we also have

ω
j
ji = −ωi

jj = 0.(3.30)

For i = 1, by choosing j, k = 2, . . . , p or k, j = p+1, . . . , n (j �= k) in (3.6), we have

ωj
k1 = ω1

kj = 0.(3.31)

For i = 2, . . . , p and j, k = p + 1, . . . , n (j �= k) in (3.6), we get

ωj
ki = ωi

kj = 0.(3.32)

For i = 2, . . . , p, j = 1 and k = p + 1, . . . , n in (3.6), one has

(α − λ1)ω1
ki = (β − λ1)ω1

ik,

which together with (3.7) and the second expression of (3.4) gives

ω1
ki = ω1

ik = ωi
k1 = ωk

i1 = 0.(3.33)

For i = 2, . . . , p, k = 1 and j = p + 1, . . . , n in (3.6), we obtain

(β − α)ωj
1i = (λ1 − α)ωj

i1,

which together with (3.33) yields

ω
j
1i = ωi

1j = 0.(3.34)

Combining (3.27-3.34) with (3.4) completes the proof of the lemma.

Define two smooth functions A and B as follows:

A =
e1(α)
λ1 − α

, B =
e1(β)
λ1 − β

.(3.35)

One can compute the curvature tensor R by Lemma 3.1, and apply the Gauss equation
for different values of X , Y and Z. After comparing the coefficients with respect to
the orthonormal basis {e1, . . . , en} we get the following:
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• X = e1, Y = e2, Z = e1,

e1(A) + A2 = −λ1α;(3.36)

• X = e1, Y = en, Z = e1,

e1(B) + B2 = −λ1β;(3.37)

• X = en, Y = e2, Z = en,

AB = −αβ.(3.38)

Note that equation (3.38) can be obtained by calculating 〈R(en, e2)en, e2〉.
Compute the first equation of (2.6) again. It follows from (3.1) and Lemma 3.1

that

(3.39)
−e1e1(H)− {

(p− 1)A + (n − p)B
}
e1(H)

+H
(
λ2

1 + (p − 1)α2 + (n − p)β2
)

= aH.

Lemma 3.2. The functions A and B are related by

{
(4− p)A + (3 + p − n)B

}
e1(H) +

3n2(n + 6 − p)
4(n− p)

H3(3.40)

−3n(n − 2 + 4p)
2(n − p)

H2α +
3n(p − 1)

n − p
Hα2 − 3

2
aH = 0.

Proof. From (3.35), (3.36) and (3.37) respectively reduce to

e1e1(α) + 2Ae1(α) − Ae1(λ1) + λ1α(λ1 − α) = 0,(3.41)

e1e1(β) + 2Be1(β)− Be1(λ1) + λ1β(λ1 − β) = 0.(3.42)

By (3.9), it follows from the second expression of (3.35) that

e1(α) =
3n

2(p− 1)
e1(H)− n − p

p − 1
B(λ1 − β).(3.43)

Similarly,

e1(β) =
3n

2(n − p)
e1(H)− p − 1

n − p
A(λ1 − α).(3.44)

Substitute (3.9) into (3.42). Eliminating e1e1(H) and e1e1(α), from (3.38), (3.39) and
(3.41-44) we obtain the desired equation (3.40).
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Now we are in a position to prove Theorem 1.1.

Proof. By the second expression of (3.35) and (3.9), equation (3.44) reduces to

(3.45) e1(H) = −{p − 1
3

H +
2(p− 1)

3n
α
}
A +

{ − n + 3 − p

3
H +

2(p− 1)
3n

α
}
B.

Substituting (3.45) into (3.40), by (3.38) we have

(3.46)
(4− p)(p− 1)(nH + 2α)A2

+(3 + p − n)
{
n(n + 3− p)H − 2(p − 1)α

}
B2 = f(H, α),

where

(3.47)

f(H, α) =
9n3(n + 6 − p)

4(n − p)
H3 +

3n2(p− 1)(2p− 2n − 15)
2(n − p)

H2α

+
n(p − 1)(−2p2 + 2pn + 11p + n − 12)

n − p
Hα2

−2(p − 1)2(2p− n − 1)
n − p

α3 − 9
2
naH.

Multiplying A and B successively on the equation (3.40), using (3.38) one gets respec-
tively

(3.48)
(4 − p)A2e1(H) − (3 + p − n)αβe1(H)

+
{3n2(n+6−p)

4(n−p)
H3− 3n(n − 2 + 4p)

2(n − p)
H2α +

3n(p− 1)
n − p

Hα2 − 3
2
aH

}
A = 0,

(3.49)
(3 + p − n)B2e1(H) − (4 − p)αβe1(H)

+
{3n2(n+6−p)

4(n−p)
H3 − 3n(n − 2 + 4p)

2(n − p)
H2α +

3n(p − 1)
n − p

Hα2 − 3
2
aH

}
B = 0.

Differentiating (3.40) along e1, and using (3.36-37) and (3.39) we get

(3.50)

{
(4 − p)(

n

2
Hα − A2) + (3 + p − n)(

n

2
Hβ − B2)

}
e1(H)

−
{

(4 − p)A + (3 + p − n)B
}{

(p − 1)A + (n − p)B
}

e1(H)

+
{

(4 − p)A + (3 + p − n)B
}{n2

4
H3 + (p − 1)Hα2 + (n − p)Hβ2 − aH

}

+
{9n2(n + 6 − p)

4(n − p)
H2 − 3n(n − 2 + 4p)

n − p
Hα +

3n(p − 1)
n − p

α2 − 3
2
a
}

e1(H)

−3n(n − 2 + 4p)
2(n − p)

H2e1(α) +
6n(p − 1)

n − p
Hαe1(α) = 0.
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Substituting (3.40), (3.47), (3.48) into (3.49), and using the first expression of (3.35)
we obtain{3n2(2n − 2p + 21)

4(n − p)
H2 − 3n(5p + 1)

n − p
Hα +

(p − 1)(2n + 7)
n − p

α2 − 3
2
a
}

e1(H)

+
{n2(2pn− 2p2 + 7n + 17p + 30)

4(n − p)
H3 − 3n(3np + 2p2 + 4p − 3n − 6)

2(n − p)
H2α

+
(p − 1)(2np − 2n + p − 4)

n − p
Hα2 +

1
2
(5p − 8)aH

}
A

+
{n2

(
2(n − p)2 + 15(n − p) + 45

)
4(n − p)

H3 − 3n(n2 + np − 2p2 + 10p + n − 8)
2(n − p)

H2α

+
(p − 1)(2n2 − 2np + 7n − p − 3)

n − p
Hα2 +

1
2
(5n − 5p− 3)aH

}
B = 0.

Moreover, it follows from (3.45) that the above equation further reduces to

L(H, α)A + M(H, α)B = 0,(3.51)

where

(3.52)

L(H, α)= 9
4
n3(3n−2p+17)H3− 3

2
n2(−6p2+11np+43p−11n−37)H2α

+n(p − 1)(4np − 4n + 26p + 1)Hα2 − 2(p − 1)2(2n + 7)α3

+9
2n(n − p)(2p − 3)aH + 3(n − p)(p − 1)aα,

(3.53)

M(H, α)=−9
2 (2n−2p+3)H3− 9

2n2(2p2 + n2−3np−7p+n − 3)H2α

+2n(p − 1)(2n2 − 2np + 4n − 13p − 18)Hα2 + 2(p − 1)2(2n + 7)α3

−9n(n − p)2aH + 3(n − p)(p − 1)aα.

Multiplying LM on the equation (3.46), using (3.51-3.53) and (3.38) we can eliminate
both A and B. Hence, we have

(4 − p)(p − 1)(nH + 2α)M2
3
2nHα− (p − 1)α2

n − p

+(3 + p − n)
{
n(n + 3 − p)H − 2(p − 1)α

}
L2

3
2
nHα − (p − 1)α2

n − p
(3.54)

+LMf = 0.

In view of (3.54), we notice that the equation should take the following form:

c90H
9 + c81H

8α + c72H
7α2 + c63H

6α3 + c54H
5α4 + c45H

4α5

+c36H
3α6 + c27H

2α7 + c18Hα8 + c09α
9 + a(c70H

7 + c61H
6α

+c52H
5α2 + c43H

4α3 + c34H
3α4 + c25H

2α5 + c16Hα6 + c07α
7(3.55)

+c50H
5 + c41H

4α + c32H
3α2 + c23H

2α3 + c14Hα5 + c05α
5

+c30H
3 + c21H

2α + c12Hα2 + c03α
3) = 0,



Null 2-Type Hypersurfaces with Three Distinct Principal Curvaturese 531

where the coefficients cij (i, j = 0, . . . , 9) are constants concerning n and p.
From (3.54), (3.52), (3.53) and (3.47), we compute a90 as follows

c90 =
729n6(n − p + 6)(3n− 2p + 17)(2n− 2p + 3)

32(n− p)
.

Since n > p, it is easy to see that c90 �= 0.
Note that α is not constant in general. In fact, if α is a constant, then (3.55)

becomes an algebraic equation of H with constant coefficients. Thus, the real function
H satisfies a polynomial equation q(H) = 0 with constant coefficients, therefore it
must be a constant. We obtain the conclusion immediately.

Now consider an integral curve of e1 passing through p = γ(t0) as γ(t), t ∈ I .
Since ei(H) = ei(α) = 0 for i = 2, . . . , n and e1(H), e1(α) �= 0, we can assume
t = t(α) and H = H(α) in some neighborhood of α0 = α(t0).

From the first expression of (3.35), (3.45) and (3.51), we have

dH

dα
=

dH

dt

dt

dα
=

e1(H)
e1(α)

=
−(p−1

3 H + 2(p−1)
3n α)A + (−n+3−p

3 H + 2(p−1)
3n α)B

(−n
2H − α)A

(3.56)

=
2(p− 1)

3n
+

(−n+3−p
3 H + 2(p−1)

3n α)B
(−n

2H − α)A

=
2(p− 1)

3n
+

2
(
(n + 3− p)H − 2(p − 1)α

)
L

3n(nH + 2α)M
.

Differentiating (3.55) with respect to α and substituting dH
dα from (3.56), combining

these with (3.51) we get another algebraic equation of twelfth degree concerning H
and α

b12,0H
12+b11,1H

11α+b10,2H
10α2+b93H

9α3+b84H
8α4+b75H

7α5

+ b66H
6α6+b57H

5α7+b48H
4α8+b39H

3α9+b2,10H
2α10+b1,11Hα11

+ b0,12α
12+c(b10,0H

10+b91H
9α+b82H

8α2+b73H
7α3+b64H

6α4

+ b55H
5α5+b46H

4α6+b37H
3α7+b28H

2α8+b19Hα9+b0,10α
10+b80H

8(3.57)
+ b71H

7α+b62H
6α2+b53H

5α3+b44H
4α4+b35H

3α5+b26H
2α6+b17Hα7

+ b08α
8+b60H

6+b51H
5α+b42H

4α2+b33H
3α3+b24H

2α4+b15Hα5

+ b06α
6+b40H

4+b31H
3α+b22H

2α2+b13Hα3+b04α
4) = 0,

where the coefficients bij (i, j = 0, . . . , 12) are constants concerning n and p.
Note that equation (3.57) is non-trivial and different from (3.55).
We rewrite (3.55) and (3.57) respectively in the following forms
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9∑
i=0

qi(H)αi = 0,

12∑
j=0

q̄j(H)αj = 0,(3.58)

where qi(H) and q̄j(H) are polynomials concerning function H .
We may eliminate α between the two equations of (3.58). Multiplying q̄12(H)α3

and q8(H) respectively on the first and second equations of (3.58), we obtain a new
polynomial equation of α with eleventh degree. Combining this equation with the
first equation of (3.58), we successively obtain a polynomial equation of α with tenth
degree. In a similar way, by using the first equation of (3.58) and its consequences we
are able to gradually eliminate α.

At last, we obtain a non-trivial algebraic polynomial equation of H with constant
coefficients. Therefore, we conclude that the real function H must be a constant, which
contradicts our original assumption.

In conclusion, we complete the proof of Theorem 1.1.
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