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ON THE CONVERGENCE OF A MODIFIED CHEBYSHEV-LIKE’S
METHOD FOR SOLVING NONLINEAR EQUATIONS

Lin Zheng*, Ke Zhang and Liang Chen

Abstract. In this paper, we introduce a modified Chebyshev-like’s method with
order four and study the semilocal convergence of the method by using majoriz-
ing functions for solving nonlinear equations in Banach spaces. We prove an
existence-uniqueness theorem and give a priori error bounds which demonstrates
the R-order of the method. Moveover, the local convergence of this method is
also analyzed. Finally, numerical application on nonlinear integral equations is
given to show our approach.

1. INTRODUCTION

Many scientific and engineering problems can be brought in the form of a nonlinear
equation

(1) F (x) = 0,

where F is a third order Fréchet-differentiable operator defined on a convex subset Ω
of a Banach space X with values in a Banach space Y .
There are kinds of methods to find a solution of Equation (1). Generally, iterative

methods are often used to solve this problem ([1]). The most well-known iterative
method is Newton’s method

(2) xn+1 = xn − F ′(xn)−1F (xn),
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which has quadratic convergence. Recently a lot of research has been carried out to
provide improvements. Third-order iterative methods such as Halley’s method, Cheby-
shev’s method, super-Halley’s method, etc [2-10] are used to solve Equation (1). To
improve the convergence order, fourth-order iterative methods are also discussed in [11-
15]. The convergence of these iterative methods in Banach spaces is established by
using recurrence relations. An alternative approach is developed to establish this con-
vergence by using majorizing functions. The approach is also a very popular technique
to establish the convergence of iterative methods. For example, it has been successfully
applied to the convergence analysis of Newton’s method and some high-order methods
[16-27].
Ezquerro, etc studied a Chebyshev-like’s method in [28], which is given by the

following algorihtm

(3) xn+1 = xn −
[
I +

1
2
LF (xn) +

1
2
L2

F (xn)
]
ΓnF (xn),

where Γn = [F ′(xn)]−1 and LF (xn) = ΓnF ′′(xn)ΓnF (xn). Method (3) has R-order
of convergence at least three, but if F is a quadratic operator, its R-order of convergence
is at least four ([29]).
Kou, etc [30] presented a variant of the super-Halley method which improves the

order of the super-Halley method from three to four by using the values of the second
derivative at

(
xn − 1

3f(xn)/f ′(xn)
)
instead of xn. Wang, etc [12] established the

semilocal convergence of the fourth-order super-Halley method in Banach spaces by
using recurrence relations. This method in Banach spaces can be given by

(4) xn+1 = xn −
[
I +

1
2
KF (xn)[I − KF (xn)]−1

]
ΓnF (xn),

where Γn = [F ′(xn)]−1, KF (xn) = ΓnF ′′(un)ΓnF (xn) and un = xn − 1
3ΓnF (xn).

In [27], we establish the Newton-Kantorovich-type convergence theorem for the
method (4) by using majorizing functions. Motivated by the super-Halley method (4),
we introduce a modified Chebyshev-like’s method with fourth-order in this paper and
consider the convergence of the method which can be written as

(5) xn+1 = xn −
[
I +

1
2
KF (xn) +

1
2
K2

F (xn)
]
ΓnF (xn),

where Γn = [F ′(xn)]−1, KF (xn) = ΓnF ′′(un)ΓnF (xn), yn = xn − ΓnF (xn) and
un = xn + 1

3(yn − xn).
Compared with the Chebyshev-like’s method in [28], this method requires nearly

the same costs, but the convergence order is increased to at least four. Therefore the
modified Chebyshev-like’s method can be more efficient and of practical interest.
The basic advantage of this method is that, as the matrix that appears at each

iteration is the same, the number of associated linear systems that we need to solve
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is smaller. This happens because, at each iteration, only one LR decomposition is
computed. In most cases, the computational cost of solving a linear system is more
expensive than that of the evaluations of the operator.
The modified Chebyshev-like’s iterative method (5) requires in the finite dimen-

sional case the computations which appear in Table 1. We also compare it with the
super-Halley method (4) and the Chebyshev-like’s method (3). We observe that the
modified Chebyshev-like’s method (5) can be superior.

Table 1: Computational cost and R-order of convergence

Method R-order Ev. of F Ev. of F ′ Ev. of F ′′ LR-dec.
Method (3) 3 1 1 1 1
Method (4) 4 1 1 1 2
Method (5) 4 1 1 1 1

We shall use majorizing functions to prove the semilocal convergence for modi-
fied Chebyshev-like’s method with order four. Based on it, an existence-uniqueness
theorem is given to establish the R-order of the method to be four and a priori error
bounds. Furthermore, we also analyse the local convergence of this method. In the
end, numerical example is presented to demonstrate our approach.

2. SEMILOCAL CONVERGENCE

Definition[1] Let Π be an iterative process for the nonlinear operator F with limit
point x∗. The R-order of Π is defined by the quantity

OR(Π, x∗) =

{ ∞, if Rq(Π, x∗) = 0, ∀ q ∈ [1,∞),

inf {q ∈ [1,∞)|Rq(Π, x∗) = 1} , otherwise,

where

Rq(Π, x∗) =

{
lim supn→∞‖xn − x∗‖1/n, if q = 1,

lim supn→∞‖xn − x∗‖1/n, if q > 1.

If 0 < Rq(Π, x∗) < 1 holds for some q ∈ [1,∞), then the R-order of convergence
of Π is q.

We firstly give an approximation of the operator F in the following lemma, which
will be used in the next derivation.

Lemma 1. Assume that the nonlinear operator F : Ω ⊂ X → Y is continuously
third-order Fréchet differentiable where Ω is an open set and X and Y are Banach
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spaces, and the sequence {xn} generated by (5) is well defined. Then we have

(6)

F (xn+1) = −1
2
[
F ′′(un) − F ′′(xn)

]
(yn − xn)KF (xn)(yn − xn)

+
1
2
F ′′(xn)(yn − xn)K2

F (xn)(yn − xn)

+
∫ 1

0
F ′′(yn + t(xn+1 − yn)

)
(1 − t)dt(xn+1 − yn)2

−1
6

∫ 1

0

[
F ′′′

(
xn +

1
3
t(yn − xn)

)
− F ′′′(xn)

]
dt(yn − xn)3

+
1
2

∫ 1

0

[
F ′′′(xn + t(yn − xn)

) − F ′′′(xn)
]
(1− t)2dt(yn − xn)3

+
∫ 1

0
F ′′′(xn + t(yn − xn)

)
(1− t)dt(yn − xn)2(xn+1 − yn),

where yn = xn − F ′(xn)−1F (xn) and un = xn + 1
3 (yn − xn).

Proof. By Taylor expansion, we have

(7)
F (xn+1) = F (yn) + F ′(yn)(xn+1 − yn)

+
∫ 1

0
F ′′(yn + t(xn+1 − yn)

)
(1− t)dt(xn+1 − yn)2,

(8)
F (yn) =

1
2
F ′′(xn)(yn − xn)2 +

1
6
F ′′′(xn)(yn − xn)3

+
1
2

∫ 1

0

[
F ′′′(xn + t(yn − xn)

) − F ′′′(xn)
]
(1 − t)2dt(yn − xn)3,

and

(9)
F ′(yn) = F ′(xn) + F ′′(xn)(yn − xn)

+
∫ 1

0
F ′′′(xn + t(yn − xn)

)
(1− t)dt(yn − xn)2.

We also noticed that

(10)
F ′′(xn) = F ′′(un) − 1

3
F ′′′(xn)(yn − xn)

−1
3

∫ 1

0

[
F ′′′

(
xn +

1
3
t(yn − xn)

)
− F ′′′(xn)

]
dt(yn − xn).

Substituting (8)–(10) into (7), we can obtain (6).
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Let x0 ∈ Ω and the nonlinear operator F : Ω ⊂ X → Y be continuously third
order Fréchet differentiable where Ω is an open set and X and Y are Banach spaces.
Assume that
(C1) ‖Γ0F (x0)‖ ≤ η,
(C2) ‖Γ0‖ ≤ β,
(C3) ‖F ′′

(x)‖ ≤ M, x ∈ Ω,
(C4) ‖F ′′′(x)‖ ≤ N, x ∈ Ω,
(C5) there exists a positive real number L such that

‖F ′′′
(x)− F

′′′
(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ Ω.

Denote

(11) g(t) =
1
2
Kt2 − t

β
+

η

β
,

where K are the positive real numbers, and

(12) K ≥
[
M3 +

13MN

12β
+

5L

36β2

]1/3
.

Let h = Kβη. If h ≤ 1
2 , then polynomial equation g(t) has two positive real roots

t∗ =
1−√

1 − 2h

h
η, t∗∗ =

1 +
√

1 − 2h

h
η.

Now we consider the majorizing sequences {tn}, {sn} (n ≥ 0),

(13)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sn = tn − g(tn)
g′(tn)

, t0 = 0

hn = −g′(tn)−1g′′(rn)(sn − tn)

tn+1 = tn −
[
1 +

1
2
hn +

1
2
h2

n

] g(tn)
g′(tn)

where rn = tn + 1
3(sn − tn).

Lemma 2. Suppose the sequences tn, sn are generated by (13), if h < 1
2 −

1
2

( 3√5−1
3√5+1

)2, then the sequences tn and sn increase and converge to t∗, and

(14) 0 ≤ tn ≤ sn ≤ tn+1 < t∗.

Furthermore, we have

(15) t∗ − tn ≤ (1 − θ2)η
1 − 1

3√5
[ 3
√

5θ]4n
[ 3
√

5θ]4
n−1, n = 0, 1, · · · ,
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where θ = t∗/t∗∗ = (1 −√
1 − 2h)/(1 +

√
1 − 2h).

Proof. Let an = t∗ − tn, bn = t∗∗ − tn, we have

g(tn) =
K

2
(t∗ − tn)(t∗∗ − tn) =

K

2
anbn,

g′(tn) = −K

2
[(t∗ − tn) + (t∗∗ − tn)] = −K

2
(an + bn).

We can obtain

(16) sn − tn = − g(tn)
g′(tn)

=
anbn

an + bn
,

(17)
tn+1 − tn = −

[
1 +

1
2
hn +

1
2
h2

n

] g(tn)
g′(tn)

=
(an + bn)4 + anbn(an + bn)2 + 2a2

nb2
n

(an + bn)4
· anbn

an + bn
,

and

(18)
tn+1 − sn = tn+1 − tn − (sn − tn)

=
anbn(an + bn)2 + 2a2

nb2
n

(an + bn)4
· anbn

an + bn
.

Therefore, we have

(19)
an+1 = t∗ − tn+1 = t∗ − tn − (tn+1 − tn)

=
a4

n(a2
n + 4anbn + 5b2

n)
(an + bn)5

,

and

(20)

bn+1 = t∗∗ − tn+1 = t∗∗ − tn − (tn+1 − tn)

=
b4
n(b2

n + 4anbn + 5a2
n)

(an + bn)5
.

By (16)-(20), t0 = 0 < t∗, and by induction, we know (14) holds.
From (19) and (20), we get

(21)
t∗ − tn+1

t∗∗ − tn+1
≤ 5

[ t∗ − tn
t∗∗ − tn

]4
.

Because t∗∗ − tn = t∗ − tn + t∗∗ − t∗ = t∗ − tn + (1 − θ2)η/θ, we easily see that
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t∗ − tn ≤ (1 − θ2)η
1 − 1

3√5
[ 3
√

5θ]4n
[ 3
√

5θ]4
n−1, n = 0, 1, · · · .

And since 3
√

5 θ < 1, we get tn and sn increase and converge to t∗. That completes
the proof of the lemma 2.

Lemma 3. Under the above assumptions and the sequences tn, sn are generated
by (13). Then the following items are true for all n ≥ 0:

(I) ‖xn − x0‖ ≤ tn,

(II) ‖F ′(xn)−1‖ ≤ −g′(tn)−1,

(III) ‖yn − xn‖ ≤ sn − tn,

(IV ) ‖xn+1 − yn‖ ≤ tn+1 − sn,

(V ) ‖xn+1 − xn‖ ≤ tn+1 − tn.

Proof. Estimate (I)-(V) are true for n = 0 by initial conditions. Now assume that
(I)-(V) are true for all integer k ≤ n.
(I) From the above assumptions, we have

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖ + ‖xn − x0‖ ≤ tn+1 − tn + tn = tn+1.

(II) By condition (C3) and (12), we can obtain

‖F ′(xn+1) − F ′(x0)‖ ≤ M‖xn+1 − x0‖ ≤ Mtn+1 < Kt∗

= Kη
1−√

1− 2h

h
≤ 1

β
≤ 1

‖F ′(x0)−1‖ .

By Neumann Lemma, we get F ′(xn+1)−1 exists, and

(22)

‖F ′(xn+1)−1‖
≤ ‖F ′(x0)−1‖

1 − ‖F ′(x0)−1‖‖F ′(xn+1) − F ′(x0)‖ ≤ β

1 − βM‖xn+1 − x0‖
≤ β

1 − βKtn+1
≤ 1

1
β − Ktn+1

= −g′(tn+1)−1.

(III) By lemma 1 and using induction hypothesis, one has
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(23)

F (xn+1)

≤ N

6
‖yn − xn‖3‖KF (xn)‖ +

M

2
‖yn − xn‖2‖KF (xn)‖2

+
M

2
‖xn+1 − yn‖2 +

5L

72
‖yn − xn‖4 +

N

2
‖yn − xn‖2‖xn+1 − yn‖

≤ M

2

[
‖KF (xn)‖2‖yn−xn‖2 + ‖xn+1−yn‖2

]
+

N

6
‖yn−xn‖3‖KF (xn)‖

+
5L

72
‖yn − xn‖4 +

N

2
‖yn − xn‖2‖xn+1 − yn‖

≤ M

2

{
‖xn+1−yn‖2+

M2‖yn−xn‖4[
1
β −M‖xn − x0‖

]2 }
+

NM

6
‖yn−xn‖4

1
β − M‖xn−x0‖

+
5L

72
‖yn−xn‖4+

N

2
‖yn−xn‖2‖xn+1−yn‖

≤ M

2
‖xn+1−yn‖2+

[
M3+

13MN

12β
+

5L

36β2

]
· 1
2
· ‖yn−xn‖4{

1
β −M‖xn − x0‖

}2

≤ K

2
(tn+1 − sn)2 +

1
2
· K3(sn − tn)4{

1
β − Ktn

}2
= g(tn+1).

Hence, we get

(24)
‖yn+1 − xn+1‖ = ‖ − F ′(xn+1)−1F (xn+1)‖

≤ − g(tn+1)
g′(tn+1)

= sn+1 − tn+1.

(IV) Since

‖I − KF (xn+1)‖ ≥ 1 − ‖KF (xn+1)‖ ≥ 1 − 1
2
(−g′(tn+1))−1g′′(rn+1)(sn+1 − tn+1)

= 1 +
1
2
g′(tn+1)−1g′′(rn+1)(sn+1 − tn+1) = 1− hn+1,

then

(25)

‖xn+2 − yn+1‖
=

1
2

∥∥∥KF (xn+1)
[
I − KF (xn+1)

]−1
∥∥∥∥∥F ′(xn+1)−1F (xn+1)

∥∥
≤ 1

2
hn+1

1 − hn+1
· g(tn+1)
−g′(tn+1)

= tn+2 − sn+1.

(V) From (24) and (25), we can obtain

(26)
‖xn+2 − xn+1‖ ≤ ‖xn+2 − yn+1‖ + ‖yn+1 − xn+1‖

≤ tn+2 − tn+1.
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Theorem 1. Let X and Y be two Banach spaces and F : Ω ⊆ X → Y be a third
order Fréchet differentiable on a non-empty open convex subset Ω. Assume that all
conditions (C1)-(C5) hold and x0 ∈ Ω. If h = Kβη < 1

2 − 1
2

( 3√5−1
3√5+1

)2, B(x0, t∗) ∈
Ω, then the sequence {xn} generated by (5) is well defined, {xn} ∈ B(x0, t∗) and
converges to the unique solution x∗ ∈ B(x0, t

∗∗) of F (x), and ‖xn − x∗‖ ≤ t∗ − tn.
Furthermore, we have

(27) ‖x∗ − xn‖ ≤ (1− θ2)η
1 − 1

3√5
[ 3
√

5θ]4n
[ 3
√

5θ]4
n−1, n = 0, 1, · · · ,

where θ = t∗/t∗∗ = (1 −√
1 − 2h)/(1 +

√
1 − 2h).

Proof. From the lemma 3, we can obtain that the sequence {xn}n≥0 generated
by (5) is well defined, xn ∈ B(x0, t∗) and converges to the solution x∗ ∈ B(x0, t∗) of
F (x).

Now we prove the uniqueness. Suppose y∗ also is the solution of F (x) on
B(x0, t

∗∗). Then, we have

∥∥∥F ′(x0)−1

∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt − I

∥∥∥
≤ ‖F ′(x0)−1‖

∥∥∥∫ 1

0

[
F ′(x∗ + t(y∗ − x∗)

) − F ′(x0)
]
dt

∥∥∥
≤ Mβ

∫ 1

0

∥∥x∗ + t(y∗ − x∗)− x0

∥∥dt

≤ Mβ

∫ 1

0

[
(1− t)‖x∗ − x0‖ + t‖y∗ − x0‖

]
dt

<
Mβ

2
(t∗ + t∗∗) ≤ 1.

By Neumann Lemma, we get the inverse of
∫ 1
0 F ′[x∗ + t(y∗ − x∗)]dt exists. Because

0 = F (y∗)− F (x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗)

)
dt(y∗ − x∗),

so, y∗ = x∗. That completes the proof of the unique solution. Moreover, when m > n,

(28) ‖xm −xn‖ ≤ ‖xm−xm−1‖+‖xm−1−xm−2‖+ · · ·+‖xn+1 −xn‖ ≤ tm − tn,

and let m → ∞, we get
(29) ‖xn − x∗‖ ≤ t∗ − tn.

From the lemma 2, we obtain
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‖x∗ − xn‖ ≤ (1− θ2)η
1 − 1

3√5
[ 3
√

5θ]4n
[ 3
√

5θ]4
n−1, n = 0, 1, · · · .

This completes the proof of the theorem.

3. LOCAL CONVERGENCE

Assume that F : D ⊂ X → Y has the following property: there is an x∗ ∈ D

such that
F (x∗) = 0,

and F ′(x∗) is nonsingular.

Theorem 2. Assume that the operate F satisfies (C3)-(C5) and there exist δ and
β∗ such that

‖xn − x∗‖ ≤ δ and ‖F ′(x∗)−1‖ ≤ β∗,

then xn+1 is well defined and converges to x∗ with order of convergence four. We also
have the following error estimate:

(30) ‖xn+1 − x∗‖ ≤ C∗‖xn − x∗‖4,

where

(31) C∗ =

[
M3e∗2

2 + M3

2 + 13MN
24β∗ + 5L

72β∗2

]
[

1
β∗ − 2Mδ

]2

1 + Mβ∗δ
α

,

and e∗ = 1 + 2Mβ∗δ + 2(Mβ∗δ)2, α > 0.

Proof. Since

‖F ′(xn)− F ′(x∗)‖ ≤ M‖xn − x∗‖ ≤ Mδ,

we can choose δ > 0 such that δ ≤ 1
2Mβ∗ . Thus F ′(xn)−1 exists and

(32)
‖F ′(xn)−1‖ ≤ ‖F ′(x∗)−1‖

1 − ‖F ′(x∗)−1‖‖F ′(xn) − F ′(x∗)‖
≤ β∗

1 − β∗Mδ
=

1
1
β∗ − Mδ

≤ 2β∗,

then
‖KF (xn)‖ ≤ ‖F ′(xn)−1‖‖F ′′(un)‖‖yn − xn‖ ≤ 2Mβ∗‖yn − xn‖.

We also have
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(33)

‖xn+1 − yn‖ ≤ 1
2
‖KF (xn)‖[1 + ‖KF (xn)‖]‖yn − xn‖

≤ Mβ∗ ‖yn − xn‖2

1 − 2Mβ∗ ‖xn − x∗‖
[
1 + 2Mβ∗ ‖yn − xn‖

]

≤ M ‖yn − xn‖2

1
β∗ − 2M ‖xn − x∗‖

[
1 + 2Mβ∗δ + 2(Mβ∗δ)2

]
.

From the lemma 1, we have

(34)

‖F (xn+1)‖
≤ M

2
‖xn+1−yn‖2+

[
M3+

13MN

12β∗ +
5L

36β∗2

]
· 1
2
· ‖yn−xn‖4[

1
β∗ −M‖xn − x∗‖]2

≤ M3e∗2

2
‖yn − xn‖4[

1
β∗ − 2M ‖xn − x∗‖

]2 +

[
M3

2 + 13MN
24β∗ + 5L

72β∗2

]
‖yn − xn‖4

[
1
β∗ − M ‖xn − x∗‖

]2

≤
[

M3e∗2

2 + M3

2 + 13MN
24β∗ + 5L

72β∗2

]
[

1
β∗ − 2Mδ

]2 ‖yn − xn‖4

= C‖yn − xn‖4,

where

C =
M3e∗2

2 + M3

2 + 13MN
24β∗ + 5L

72β∗2[
1
β∗ − 2Mδ

]2
.

On the other hand, by the continuity of F ′(x∗)−1, there is an α such that

‖F (xn+1) − F (x∗)‖ ≥ α‖xn+1 − x∗‖,
and so

‖F (xn+1)‖
‖yn − xn‖4

=
‖F (xn+1)− F (x∗)‖

‖yn − xn‖4
≥ α‖xn+1 − x∗‖

‖yn − xn‖4

≥ α‖xn+1 − x∗‖
[‖yn − x∗‖ + ‖xn − x∗‖]4 = α

‖xn+1−x∗‖
‖xn−x∗‖4[

1 + ‖yn−x∗‖
‖xn−x∗‖

]4 .

It follows that

(35)

‖xn+1−x∗‖
‖xn−x∗‖4 ≤ 1

α

[
1 +

‖yn − x∗‖
‖xn − x∗‖

]4 ‖F (xn+1)‖
‖yn − xn‖4

= C · 1
α
·
[
1 +

‖yn − x∗‖
‖xn − x∗‖

]4

.
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In view of the identity

x∗ − xn = −F ′(xn)−1

∫ 1

0

F ′′[x∗ + t(xn − x∗)]tdt(x∗ − xn)2,

we get
‖yn − x∗‖ ≤ Mβ∗‖xn − x∗‖2.

Hence, we deduce

‖xn+1 − x∗‖
‖xn − x∗‖ ≤ C

α

[
1 + Mβ∗‖xn − x∗‖]

≤ C

α

(
1 + Mβ∗δ

)
= C∗.

This completes the proof of the theorem.

4. APPLICATIONS

In this section, we illustrate the previous study with an application to the following
nonlinear integral equations.
We now consider the nonlinear integral equation F (x) = 0, where

(36) F (x)(s) = x(s) − 4/3 +
1
2

∫ 1

0
s cos(x(t))dt,

where s ∈ [0, 1] and x ∈ Ω = B(0, 2) ⊂ X . Here, X = C[0, 1] is the space of
continuous functions on [0, 1] with the max-norm,

‖x‖ = max
s∈[0,1]

|x(s)|

We can obtain the derivatives of F given by

F ′(x)y(s) = y(s)− 1
2

∫ 1

0

s sin(x(t))y(t)dt, y ∈ Ω,

F ′′(x)yz(s) = −1
2

∫ 1

0

s cos(x(t))y(t)z(t)dt, y, z ∈ Ω,

F ′′′(x)yzu(s) =
1
2

∫ 1

0
s sin(x(t))y(t)z(t)u(t)dt, y, z, u ∈ Ω.

Furthermore, we have
‖F ′′(x)‖ ≤ 1

2
≡ M, x ∈ Ω,

‖F ′′′(x)‖ ≤ 1
2
≡ N, x ∈ Ω,
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and the Lipschitz condition with L = 1
2

‖F ′′′(x) − F ′′′(y)‖ ≤ 1
2
‖x − y‖, x, y ∈ Ω.

A constant function, i.e. x0(t) = 4/3, is chosen as the initial approximate solution.
It follows that

‖F (x0)‖ ≤ 1
2
cos(4/3).

In this case, we have
‖I − F ′(x0)‖ ≤ 1

2
sin(4/3),

and then by the Banach lemma, we include that Γ0 exists and obtain

‖Γ0‖ ≤ 2
2− sin(4/3)

≡ β, ‖Γ0F (x0)‖ ≤ cos(4/3)
2 − sin(4/3)

≡ η and K = 0.6562.

Note that h = Kβη = 0.2921 < 1
2 − 1

2

( 3√5−1
3√5+1

)2, therefore t∗ = 0.2782, t∗∗ =
1.2884. This means that the hypotheses of Theorem 1 is satisfied. Hence the solution x∗

belongs to B(x0, Rη) = B(4/3, 0.2782)⊆ Ω and it is unique in B(4/3, 1.2884)∩ Ω.
Using the trapezoidal rule of integration with step h = 1/m to discretize (36), we

obtain the following system of nonlinear equations

(37) 0 = xi − 4/3 +
si

2m

(1
2
cos(x0) +

m−1∑
j=1

cos(xj) +
1
2
cos(xm)

)
, i = 0, 1, · · · , m,

where si = ti = i/m and xi = x(ti).
Now we apply the modified Chebyshev-like’s method given by (5) to compute

(37) and compare it with the Chebyshev-like’s method. We give the initial guess
xi = 4/3, i = 0, 1, ...,m. All computations are carried out with double arithmetic
precision. In the tests, we take m = 10, 15, 20 in (37) respectively. Displayed in
Tables 2, 3 and 4 is the max-norm of vector functions at each iterative step. The
stopping criterion that we consider is ‖F (xm)‖∞ ≤ 10−15.
On the other hand, we analyze computational cost for thesemethods with Chebyshev-

like’s method in [28], super-Halley’s method in [12] and the modified Chebyshev-like’s
method (5), when they are applied to solve (37). Table 5 shows the comparison results
for computational cost. We observe that the cost of the super-Halley’s method in [12]
is expensive. Compared with the Chebyshev-like’s method in [28], the method (5)
requires nearly the same costs, but the convergence speed of method (5) is fast.
From the numerical results, we can see that the performance of our method is better.

This means that our method can be of practical interest.
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Table 2: Results of system (37) with m = 10

n Chebyshev-like’s method Modified Chebyshev-like’s method
1 7.519390e-005 5.170680e-007
2 1.860149e-014 1.266747e-016
3 1.040409e-016

Table 3: Results of system (37) with m = 15

n Chebyshev-like’s method Modified Chebyshev-like’s method
1 7.478519e-005 5.124295e-007
2 1.838788e-014 1.247163e-016
3 1.077939e-016

Table 4: Results of system (37) with m = 20

n Chebyshev-like’s method Modified Chebyshev-like’s method
1 7.464214e-005 5.108072e-007
2 1.830851e-014 1.901605e-016
3 1.065761e-016

Table 5: Computational cost per iteration when these methods are applied to solve a
nonlinear system of m equations

Method m Number of computations of functions LR-dec.
10 660 1

Chebyshev-like’s method 15 2040 1
20 4620 1
10 660 2

Super-Halley’s method 15 2040 2
20 4620 2
10 660 1

Method (5) 15 2040 1
20 4620 1
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5. CONCLUSION

In this paper, a modified Chebyshev-like’s method with fourth-order is introduced
and the semilocal convergence of the method for solving nonlinear equations in Banach
spaces is established by usingmajorizing functions. An existence-uniqueness theorem is
given to show the R-order convergence of the method. Moreover, the local convergence
of the method is also analyzed. From the numerical results, we can observe that the
performance of our method is better.
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