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BURES DISTANCE FOR α-COMPLETELY POSITIVE MAPS AND
TRANSITION PROBABILITY BETWEEN P -FUNCTIONALS

Jaeseong Heo

Abstract. In this paper we discuss the Bures distance between α-CP maps on a
C∗-algebra and the transition probability between P -functionals on a *-algebra.
We first review the notion of α-CP maps and the representation theorem associated
to α-CP maps. Using the Krein space representation and the set of intertwiners
between Krein space representations, we study the Bures distance between α-CP
maps. We prove that the transition probability between P -functionals can be
estimated by some functionals using J-representations on Krein spaces.

1. INTRODUCTION

For two normal states μ, ν on a von Neumann algebra M, the Bures distance
between μ and ν is defined as β(μ, ν) = inf ‖xμ − yν‖ where the infimum is taken
over all vectors xμ and yν representing μ and ν, respectively, in some common normal
representation Hilbert space. In [6], Bures showed that β : (μ, ν) �→ β(μ, ν) is a
metric on the set of normal states ofM. This metric is a quantum generalization of the
Fisher information metric in the quantum information and is identical to the Fubini-
Study metric. Kretschmann, Schlingemann and Werner [16] extended the notion to
completely positive linear maps from a C∗-algebra into B(H) using the Stinespring’s
dilation. Recently, Bhat and Sumesh [5] generalized this notion to completely positive
linear maps between arbitrary C∗-algebras via Hilbert C∗-module language. They
proved that the Bures distance may not be a metric when the range algebra is a general
C∗-algebra and gave some examples with explicit computations of the Bures distance.
In quantum physics, the value |〈x, y〉|2 associated to unit vectors x, y in a Hilbert

space is interpreted as a transition probability between the corresponding states. Uhlmann
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[19] introduced the transition probabilityP (μ, ν) between two states μ, ν of a *-algebra
A, which is defined as the supremum of |〈xμ, yν〉|2 where the supremum is taken over
all vectors xμ, yν representingμ and ν as vector states in some common *-representation
of A. The transition probability for normal states of a von Neumann algebra M is
related to the Bures distance by the formula P (μ, ν) = (1− 1

2β(μ, ν)2)2. In particular,
if μ and ν are states on the matrix algebra Mn with density matrices ρμ and ρν , re-
spectively, then D1/2(ρμ|ρν) ≥ β(μ, ν)2 where Dt (t ∈ (0, 1]) is the quantum Tsallis
relative entropy [1].
The completely positive maps are used as mathematical models for quantum in-

struments and quantum probability and has many applications in quantum information
theory. However, in some local quantum field theories, the locality is in conflict with
positivity, which leads to the modification of the positivity. From the motivation in local
quantum field theory, we introduced the notion of α-completely positive (α-CP) maps
between (locally) C∗-algebras, which generalizes α-positivity [15] and P -functionals
[17]. The α-complete positivity was studied in several papers [8, 9, 10, 11, 12, 13].
The purpose of the present paper is to study the Bures distance and the transition

probability for α-completely positive maps φ1 and φ2 on a C∗-algebra. In Section 2,
we will formally introduce the Bures distance between α-CP maps using the KSGNS
representation theorem [9] for α-CP maps and study the set of intertwiners between
KSGNS representations associated to α-CP maps. In Section 3, we estimate the Bu-
res distance between α-CP maps using the set of intertwiners and prove the triangle
inequality the Bures distance between α-CP maps. In Section 4, we study the tran-
sition probability between P -functionals for a *-algebra A using J-representations on
Krein spaces and prove that the transition probability between P -functionals can be
estimated by functionals which are bounded by given P -functionals and invariant under
α = 2P − idA.

2. PRELIMINARIES

Let H be a Hilbert space with the inner product 〈·, ·〉 and let J be a (fundamental)
symmetry on H, i.e., J = J∗ = J−1 ∈ B(H). We define a sesquilinear form on H by
[ξ, η]J = 〈ξ, Jη〉. A Hilbert spaceH equipped with [·, ·]J for a (fundamental) symmetry
J is called a Krein space or a J-space, denote by (H, J). For each T ∈ B(H) there
exists an T J ∈ B(H) such that

(2.1) [Tξ, η]J = [ξ, T Jη]J, (ξ, η ∈ H).

Indeed, we have that [Tξ, η]J = 〈Tξ, Jη〉 = 〈Jξ, JT ∗Jη〉 = [ξ, JT ∗Jη]J , so that
T J = JT ∗J satisfies the equation (2.1). The operator T J is called a J-adjoint of
T . Let A be a C∗-algebra and π a representation of A on H, where a representation
means an algebra (not necessarily *-) homomorphism. If there exists a symmetry J on
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H such that

[π(a)ξ, η]J = [ξ, π(a∗)η]J for any a ∈ A and ξ, η ∈ H,

then π is said to be a J-representation. It is easy to check that a representation π is
a J-representation if and only if π(a∗) = π(a)J for any a ∈ A. We also see that
‖π(a)‖ = ‖π(a∗)‖ for all a ∈ A. Indeed, we have that

‖π(a)‖2 = ‖Jπ(a∗)Jπ(a)‖ ≤ ‖π(a∗)‖‖π(a)‖,
so that ‖π(a)‖ ≤ ‖π(a∗)‖. By symmetry, the converse inequality holds.
Let B ⊂ A be unital C∗-algebras and P a conditional expectation from A onto B,

that is, P (1A) = 1A, P (b1ab2) = b1P (a)b2 and P (a∗) = P (a)∗ for any a ∈ A and
b1, b2 ∈ B. A Hermitian linear functional ρ on A is called a P -functional on A if the
following conditions are satisfied:
(i) ρ(P (a)) = ρ(a) for any a ∈ A,
(ii) 2ρ

(
P (a)∗P (a)

) ≥ ρ(a∗a) for any a ∈ A.
If α : A → A is defined by α(a) = 2P (a) − a, then it is easy to check that

ρ
(
α(a1)α(a2)

)
= ρ(a1a2) and ρ

(
α(a)∗a

) ≥ 0

for any a1, a2, a ∈ A [4].

2.1. α-CP maps on C∗-algebras and Krein space representations

Motivated by the α-positivity [15] and P -functionals in [4, 14, 17], we introduced
a notion of α-completely positive maps as a generalization of completely positive maps
[9]. Let φ : A → B(H) be a Hermitian map. Then for any n ≥ 1 and aij ∈ A
(1 ≤ i, j ≤ n), we have φn [(aij)∗] = [φ(aji

∗)] = [φ(aij)]
∗, so that φn is Hermitian

for any n ≥ 1.
Throughout this paper, A and H denote a unital C∗-algebra with unit 1A and a

Hilbert space over C, respectively, unless specified otherwise.

Definition 2.1. A Hermitian linear map φ of A into B(H) is called α-completely
positive (briefly, α-CP) if there is a bounded Hermitian linear map α : A → A such
that
(i) α2 = idA where idA is the identity map on A,
(ii) α(1A) = 1A,
(iii) φ(ab) = φ

(
α(a)α(b)

)
for any a, b ∈ A,

(iv) for any n ≥ 1, a1, · · · , an ∈ A and ξ1, · · · , ξn ∈ H,
n∑

i,j=1

〈
φ
(
α(aj)∗ai

)
ξi, ξj

〉 ≥ 0
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(v) for each a, a1, . . . , an ∈ A, there exists a constant C(a) ≥ 0 such that(
φ
(
α(aaj)∗aai

)) ≤ C(a)
(

φ
(
α(aj)∗ai

))
,

where a big parenthesis denotes an n × n matrix.

In case where α = idA in Definition 2.1, the α-complete positivity implies the
complete positivity. Moreover, the equality φ(ab) = φ

(
α(ab)

)
immediately follows

from the condition (ii) in Definition 2.1 since φ(ab) = φ(ab ·1A) = φ
(
α(ab)α(1A)

)
=

φ
(
α(ab)

)
.

See [9] for the example of an α-CP map on the 2 × 2-matrix algebra which is
not completely positive. It is known that in massless quantum field theory the state
space will be a space with indefinite metric. Motivated by this physical fact, many
people extended the GNS construction to Krein spaces. More generally, Heo-Hong-
Ji in [9] provided such KSGNS representations on a Krein module for α-completely
positive maps on a C∗-algebra or a *-algebra. For the reader’s convenience, we begin
by sketching the Stinespring type construction associated with an α-completely positive
map which will be needed in this paper.

Theorem 2.2. [10]. If φ : A → B(H) is an α-CP map, then there exist a
Krein space (K, J), a unital J-representation π of A on K and a bounded operator
V ∈ B(H,K) such that

(i) φ(a) = V ∗π(a)V , so that φ(a∗) = V ∗π(a)JV ,
(ii) V ∗π(a)∗π(b)V = V ∗π(α(a)∗b)V ,
(iii) the set {π(a)V ξ : a ∈ A, ξ ∈ H} is total in K.
We call the quadruple (K, J, π, V ) in Theorem 2.2 the Krein quadruple associated

with an α-CP map φ if it satisfies conditions (i) and (ii). In this case, we say that
(K, J, π, V ) dilates φ.

Remark 2.3. Let (K, J, π, V ) be the quadruple constructed in Theorem 2.2. We
note that the equality JV = V holds. If (K′, J ′, π′, V ′) is another quadruples satisfying
properties (i), (ii) and (iii) in Theorem 2.2 and if the equality J ′V ′ = V ′ holds, then
there is a unitary operator U in B(K,K′) such that

π′(a) = Uπ(a)U∗ (a ∈ A), V ′ = UV and J ′ = UJU∗.

See Theorem 4.6 and Remark 4.7 in [10] for the proof.
If a quadruple (K′, J ′, π′, V ′) satisfies properties (i), (ii) and (iii) in Theorem 2.2

and if the equality J ′V ′ = V ′ holds, then it is called a minimal dilation associated
with φ. This minimal dilation is unique up to unitary equivalence.
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2.2. Bures distance between α-CP maps on C∗-algebras

We denote by α-CP(A,H) the set of all α-CP map φ of A into B(H). For any φi

(i = 1, 2) in α-CP(A,H), let (Ki, Ji, πi, Vi) be a minimal Krein quadruple associated
with φi. Take K = K1⊕K2, J = J1⊕J2, π = π1⊕π2, Ṽ1 = V1⊕0 and Ṽ2 = 0⊕V2.
We easily see that

φi(a) = Ṽ ∗
i π(a)Ṽi,

Ṽ ∗
i π(α(a)∗b)Ṽi = Ṽ ∗

i π(a)∗π(b)Ṽi.

Thus, the quadruple (K, J, π, Ṽi) dilates φi (i = 1, 2). In this case, we call the triple
(K, J, π) the common representation for φ1 and φ2.
Let (K, J) be a Krein space and let π : A → B(K) be a J-representation. We

denote by S(φ, π) the set of all bounded operators V ∈ B(H,K) such that (K, J, π, V )
dilates φ ∈ α-CP(A,H). Here, we don’t demand minimality for Krein quadruples.

Definition 2.4. (cf. [16]) Let φi (i = 1, 2) be any element of α-CP(A,H).
(i) The π-distance between φ1 and φ2 is defined as

βπ(φ1, φ2) = inf
{‖V1 − V2‖ : Vi ∈ S(φi, π)

}
.

(ii) The Bures distance between φ1 and φ2 is the smallest π-distance

(2.2) β(φ1, φ2) = inf
π

βπ(φ1, φ2)

where the infimum is taken over all representations (K, J, π, Vi) which dilates
φi.

2.3. Intertwiners between Krein quadruples associated with α-CP maps

For each i = 1, 2, let (Ki, Ji, πi, Vi) be a Krein quadruple associated with φi in
α-CP(A,H). For two maps φ1, φ2 in α-CP(A,H) (i = 1, 2), we define the set

I(φ1, φ2) =
{
V ∗

1 WV2 : W ∈ B(K2,K1) with ‖W‖ ≤ 1,

WJ2 = J1W and Wπ2(a) = π1(a)W ∀a ∈ A}
.

If (K̂i, Ĵi, π̂i, V̂i) is a minimal Krein quadruple associated with φi, by uniqueness of a
minimal Krein quadruple, there exists an isometry Ui : K̂i → Ki such that

(2.3) UiV̂i = Vi, UiĴi = JiUi, πi(a) = Uiπ̂i(a)U∗
i (a ∈ A).

Since UiU
∗
i is a projection onto the closed linear span of the set {πi(a)Viξ : a ∈ A, ξ ∈

H}, we have that UiU
∗
i Vi = Vi. For any W ∈ I(φ1, φ2), we see that

V ∗
1 WV2 = V ∗

1 U1U
∗
1WU2U

∗
2 V2 = V̂1

∗
U∗

1WU2V̂2 = V̂1
∗
Ŵ V̂2
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where Ŵ := U∗
1 WU2 is a contractive operator from K̂2 into K̂1. It follows from (2.3)

that
Ŵ π̂2(a) = U∗

1Wπ2(a)U2 = π̂1(a)U∗
1 WU2 = π̂1(a)Ŵ,

and that
Ŵ Ĵ2 = U∗

1WJ2U2 = Ĵ1U
∗
1 WU2 = Ĵ1Ŵ .

This implies that

I(φ1, φ2) ⊆ Î(φ1, φ2) :=
{

V̂1
∗
Ŵ V̂2 : Ŵ Ĵ2 = Ĵ1Ŵ , Ŵ π̂2(a) = π̂1(a)Ŵ ∀a ∈ A

}
where

(K̂i, Ĵi, π̂i, V̂i

)
is a minimal Krein quadruple associated to φi (i = 1, 2). By

taking W = U1ŴU∗
2 , we similarly get the reverse inclusion.

For two α-CP maps φi (i = 1, 2) and a J-representation π of A on a Krein space
(K, J), we define the sets

Jπ(φ1, φ2) =
{
V ∗

1 V2 : Vi ∈ S(φi, π)
} ⊂ B(H)

J (φ1, φ2) =
⋃
π

Jπ(φ1, φ2)

where the union is over all representations π of A, admitting a common Krein space
dilation for φ1 and φ2.

Proposition 2.5. If φi : A → B(H) is two α-CP maps (i = 1, 2), then

I(φ1, φ2) = J (φ1, φ2).

Proof. Let (K̂i, Ĵi, π̂i, V̂i) be a minimal Krein quadruple associated with φi and
let Ŵ : K̂2 → K̂1 with ‖Ŵ‖ ≤ 1 be such that

Ŵ Ĵ2 = Ĵ1Ŵ , and Ŵ π̂2(a) = π̂1(a)Ŵ for all a ∈ A.

Define bounded linear operators Vi : H → K̂1 ⊕ K̂2 by

V1 = V̂1 ⊕ 0 and V2 = Ŵ V̂2 ⊕
(
1K̂2

− Ŵ ∗Ŵ
)1/2

V̂2

Let a ∈ A. We easily see that φ1(a) = V ∗
1 (π̂1(a)⊕ π̂2(a))V1 and that

V ∗
1

(
π̂1(a) ⊕ π̂2(a)

)∗(
π̂1(b)⊕ π̂2(b)

)
V1 = V ∗

1

(
π̂1(α(a)∗b)⊕ π̂2(α(a)∗b)

)
V1.

We also have that

V ∗
2

(
π̂1(a) ⊕ π̂2(a)

)
V2 = V̂2

∗
Ŵ ∗π̂1(a)Ŵ V̂2 + V̂2

∗(
1K̂2

− Ŵ ∗Ŵ
)
π̂2(a)V̂2

= V̂2
∗
π̂2(a)V̂2 = φ2(a)
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and that

V ∗
2

(
π̂1(a)⊕ π̂2(a)

)∗(
π̂1(b)⊕ π̂2(b)

)
V2

= V̂2
∗
Ŵ ∗π̂1(a)∗π̂1(b)ŴV̂2 + V̂2

∗(
1K̂2

− Ŵ ∗Ŵ
)
π̂2(a)∗π̂2(b)V̂2

= V ∗
2

(
π̂1(α(a)∗b)⊕ π̂2(α(a)∗b)

)
V2.

Let J = J1 ⊕ J2 and π = π̂1 ⊕ π̂2. For any a ∈ A, we have that
π(a)J = (J1 ⊕ J2)

(
π̂1(a)⊕ π̂2(a)

)∗(J1 ⊕ J2) = π(a∗),

so that π = π̂1 ⊕ π̂2 is a J-representation of A on
(K̂1 ⊕ K̂2, Ĵ1 ⊕ Ĵ2

)
. Hence, the

quadruple
(K̂1 ⊕ K̂2, Ĵ1 ⊕ Ĵ2, π̂1 ⊕ π̂2, Vi

)
dilates each φi (i = 1, 2). Moreover, we

have that

V ∗
1 V2 =

(
V̂1 ⊕ 0

)∗ (
Ŵ V̂2 ⊕

(
1K̂2

− Ŵ ∗Ŵ
)1/2

V̂2

)
= V̂1

∗
Ŵ V̂2,

which implies that J (φ1, φ2) �= ∅ and I(φ1, φ2) ⊆ J (φ1, φ2).
For the reverse inclusion, let π be any common J-representation of A on (K, J)

for φ1 and φ2 and let V ∗
1 V2 ∈ Jπ(φ1, φ2). We denote by K2 the closed linear span of

{π(a)V2ξ : a ∈ A, ξ ∈ H}. Let W = PK2 be the projection of K onto K2. Then we
see that V ∗

1 V2 = V ∗
1 WV2 and Wπ(a) = π(a)W , so that Jπ(φ1, φ2) ⊆ I(φ1, φ2).

Remark 2.6. From the proof of Proposition 2.5, we have that

Jπ(φ1, φ2) ⊆ I(φ1, φ2) ⊆ Jπ̂1⊕π̂2
(φ1, φ2)

where π is a common J-representation and π̂i is a minimal Ĵi-representation. Hence,
we have that

βπ̂1⊕π̂2
(φ1, φ2) ≤ βπ(φ1, φ2),

which implies that the Bures distance between α-CP maps is evaluated in the direct
sum of the minimal representations.

3. ESTIMATING BURES DISTANCE

We recall that the map x �→ Tr(x(·)) defines an isometric isomorphism from B(H)
to normalized trace class operators B(H)∗,1.

Theorem 3.1. If φi : A → B(H) (i = 1, 2) is an α-CP map, then we have

β(φ1, φ2)2

= inf
V ∗

1 V2∈J (φ1,φ2)

{
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 V2ρ
)]}}

.
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Proof. Let (K, J, π, Vi) be a Krein quadruple associated with φi in α-CP(A,H)
(i = 1, 2). We have that

‖V1 − V2‖2 = sup
ρ∈B(H)∗,1

Tr
(
(V1 − V2)∗(V1 − V2)ρ

)
= sup

ρ∈B(H)∗,1

Tr
(
V ∗

1 V1ρ + V ∗
2 V2ρ − V ∗

2 V1ρ − V ∗
1 V2ρ

)
= sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 V2ρ
)]}

.

By definition of the Bures distance, we obtain that

β(φ1, φ2)2

= inf
π

βπ(φ1, φ2)2 = inf
π

{
inf

Vi∈S(φi,π)
‖V1 − V2‖2

}

= inf
π

{
inf

Vi∈S(φi,π)
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 V2ρ
)]}}

= inf
V ∗

1 V2∈J (φ1,φ2)

{
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 V2ρ
)]}}

.

Remark 3.2. Let φi (i = 1, 2) be α-CP maps from A into B(H) and let (K̂i, Ĵi, π̂i,
V̂i) be a minimal Krein quadruple associated with φi. Assume that (K, J, π, Vi) is any
Krein quadruple associated with φi. It follows from the proof of Proposition 2.5 that

Jπ(φ1, φ2) ⊆ I(φ1, φ2) ⊆ Jπ̂1⊕π̂2
(φ1, φ2),

so that βπ̂1⊕π̂2
(φ1, φ2) ≤ βπ(φ1, φ2). Hence, we have that β(φ1, φ2) = βπ̂1⊕π̂2

(φ1, φ2).
This implies that the Bures distance β(φ1, φ2) can be evaluated in the direct sum of
the minimal Ĵi-representations.

Let φi : A → B(H) (i = 1, 2) be α-CP maps with Krein space dilations
(Ki, Ji, πi, Vi). Then we have that

β(φ1, φ2)2

= inf
V ∗

1 V2∈J (φ1,φ2)

{
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 V2ρ
)]}}

= inf
V ∗

1 WV2∈I(φ1,φ2)

{
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+Tr

(
φ2(1A)ρ

)−2Re
[
Tr

(
V ∗

1 WV2ρ
)]}}

= inf
‖W‖≤1

WJ2=J1W
Wπ2(·)=π1(·)W

{
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+Tr

(
φ2(1A)ρ

)−2Re
[
Tr

(
V ∗

1 WV2ρ
)]}}

.
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Since ρ ∈ B(H)∗,1 is of trace-class, the operator V2ρV ∗
1 is also of trace-class. The

functional Tr
(
V2ρV ∗

1 (·)) is weakly continuous in W = {W : ‖W‖ ≤ 1, WJ2 =
J1W, Wπ2(·) = π1(·)W}, so that the infimum is attained by compactness of the set
W .
By convexity of the set W , the order of inf and sup can be interchanged in the

equation. Hence, we obtain that

β(φ1, φ2)2

= inf
‖W‖≤1

WJ2=J1W
Wπ2(·)=π1(·)W

{
sup

ρ∈B(H)∗,1

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 WV2ρ
)]}}

= sup
ρ∈B(H)∗,1

{
inf

‖W‖≤1
WJ2=J1W

Wπ2(·)=π1(·)W

{
Tr

(
φ1(1A)ρ

)
+ Tr

(
φ2(1A)ρ

)− 2Re
[
Tr

(
V ∗

1 WV2ρ
)]}}

= sup
ξ∈H⊗H
‖ξ‖≤1

{
inf

‖W‖≤1
WJ2=J1W

Wπ2(·)=π1(·)W

{〈
ξ, (φ1(1A) ⊗ 1H)ξ

〉
+

〈
ξ, (φ2(1A) ⊗ 1H)ξ

〉

− 2Re
[〈

ξ, (V ∗
1 ⊗ 1H)(W ⊗ 1H)(V2 ⊗ 1H)ξ

〉]}}
.

We denote by ωξ,ξ the vector functional by ξ and take a ∈ A and x ∈ B(H). Then we
have that[

ωξ,ξ ◦ (φi ⊗ 1B(H))
]
(a ⊗ x) =

〈
ξ, (V ∗

i ⊗ 1H)(πi(a) ⊗ x)(Vi ⊗ 1H)ξ
〉
.

Let W̃ = W⊗1B(H) be an operator from K2⊗H intoK1⊗H whereW : K2 → K1

is such that WJ2 = J1W and Wπ2(a) = π1(a)W for all a ∈ A. We immediately see
that

W̃ J̃2 = J̃1W̃ and W̃
(
π2(a)⊗ 1B(H)

)
=

(
π1(a)⊗ 1B(H)

)
W̃ , (a ∈ A)

where J̃i = Ji ⊗ 1H.

Theorem 3.3. Let φi (i = 1, 2, 3) be α-CP maps from A into B(H). The triangle
inequality holds; β(φ1, φ3) ≤ β(φ1, φ2) + β(φ2, φ3).

Proof. Let (K, J, π) be a common representation for φ1 and φ2, i.e., for i = 1, 2

φi(a) = V ∗
i π(a)Vi and V ∗

i π(a)∗π(b)Vi = V ∗
i π

(
α(a)∗b

)
Vi

where a, b ∈ A and let
(K̃, J̃, π̃

)
be a common representation for φ2 and φ3 with

Ṽ1 and Ṽ2, respectively. We denote by
(K̂i, Ĵi, π̂i, V̂i

)
the minimal Krein quadruple
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associated with φi (i = 1, 2, 3). Let Ui : K̂i → K (i = 1, 2) and Ũj : K̂j → K̃
(j = 2, 3) be isometries satisfying equations (2.3).
We define three maps Vi : H → K̂1 ⊕ K̂2 ⊕ K̂3 (i = 1, 2, 3) by

V1 =
(
1K̂1

− U∗
1 U2U

∗
2U1

) 1
2
V̂1 ⊕ U∗

2 V1 ⊕ 0,

V2 = 0⊕ V̂2 ⊕ 0,

V3 = 0⊕ Ũ2
∗
Ṽ3 ⊕

(
1K̂3

− Ũ3
∗
Ũ2Ũ2

∗
Ũ3

) 1
2
V̂3.

By letting J := Ĵ1 ⊕ Ĵ2 ⊕ Ĵ3, we see that π := π̂1 ⊕ π̂2 ⊕ π̂3 is a J -representation
of A on K := K̂1 ⊕ K̂2 ⊕ K̂3, i.e., for all a, b ∈ A,

π(ab) = π(a)π(b), π(a∗) = π(a)J

where π(a)J := π̂1(a)Ĵ1 ⊕ π̂2(a)Ĵ2 ⊕ π̂3(a)Ĵ3 . It immediately follows from definition
that V2 ∈ S(φ2, π), i.e., for all a, b ∈ A,

φ2(a) = V2
∗
π(a)V2 and V2

∗
π(a)∗π(b)V2 = V2

∗
π(α(a)∗b)V2.

For any a, b ∈ A, we have that
V1

∗
π(a)V1

= V̂1
∗ (

1K̂1
− U∗

1 U2U
∗
2 U1

) 1
2
π̂1(a)

(
1K̂1

− U∗
1 U2U

∗
2 U1

) 1
2
V̂1 + V ∗

1 U2π̂2(a)U∗
2V1

= V ∗
1 U1U

∗
1π(a)

(
1K̂1

− U2U
∗
2

)
U1U

∗
1V1 + V ∗

1 π̂1(a)U2U
∗
2 V1

= φ1(a)

and that

V1
∗
π(a)∗π(b)V1 = V ∗

1 U1U
∗
1π(a)∗π(b)

(
1K̂1

−U2U
∗
2

)
U1U

∗
1 V1+V ∗

1 π(a)∗π(b)U2U
∗
2 V1

= φ1(α(a)∗b) = V1
∗
π(α(a)∗b)V1.

Hence, V1 ∈ S(φ1, π). We similarly get V3 ∈ S(φ3, π). Therefore, (K, J, π) is a
common Krein space representation for φ1, φ2 and φ3.
Moreover, we have that

V2
∗
V1 =

(
0 ⊕ V̂2

∗ ⊕ 0
) ((

1K̂1
− U∗

1 U2U
∗
2 U1

) 1
2

V̂1 ⊕ U∗
2 V1 ⊕ 0

)
= V̂2

∗
U∗

2 V1 = V ∗
2 V1,

V2
∗
V3 =

(
0 ⊕ V̂2

∗ ⊕ 0
) (

0 ⊕ Ũ2

∗
Ṽ3 ⊕

(
1K̂3

− Ũ3

∗
Ũ2Ũ2

∗
Ũ3

) 1
2

V̂3

)
= V̂2

∗
Ũ2

∗
Ṽ3 = Ṽ2

∗
Ṽ3.
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Suppose that (K, J, π) and (K̃, J̃ , π̃) are chosen as in Remark 3.2, i.e.,

β(φ1, φ2) = βπ(φ1, φ2) and β(φ2, φ3) = βπ̃(φ2, φ3).

Thus, we have that

‖V1 − V2‖ = βπ(φ1, φ2) = β(φ1, φ2) and ‖Ṽ2 − Ṽ3‖ = βπ̃(φ2, φ3) = β(φ2, φ3).

By the triangle inequality of operator norms, we obtain that

β(φ1, φ3) ≤ ‖V1 − V3‖ ≤ ‖V1 − V2‖ + ‖Ṽ2 − Ṽ3‖ = β(φ1, φ2) + β(φ2, φ3),

which completes the proof.

Proposition 3.4. If φi : A → B(H) (i = 1, 2) are α-CP maps with Krein space
dilations (Ki, Ji, πi, Vi), then we have that for any 0 ≤ t ≤ 1,∣∣β(φ1, φ2) − β(φ1, tφ1 + (1 − t)φ2)

∣∣ ≤ t1/2
(‖V1‖ + ‖V2‖

)
.

Proof. Putting Ṽ1 = V1 ⊕ 0 and π = π1 ⊕ π2, we clearly have that Ṽ1 ∈
S(φ1 ⊕ φ2, π1 ⊕ π2). We also see that Ṽ2 = V1 ⊕ V2 ∈ S(φ1 ⊕ φ2, π1 ⊕ π2). Indeed,
for any a, b ∈ A we have that

(φ1 ⊕ φ2)(a) = (V1 ⊕ V2)∗(π1 ⊕ π2)(a)(V1 ⊕ V2) = Ṽ2
∗
π(a)Ṽ2

and that

Ṽ2
∗
π(a)∗π(b)Ṽ2 = V ∗

1 π1(α(a)∗b)V1 ⊕ V ∗
2 π2(α(a)∗b)V2 = Ṽ2

∗
π(α(a)∗b)Ṽ2.

Moreover, we also see that Ṽ1 ∈ S(φ1 ⊕ φ2, π1 ⊕ π2). Hence, we have that

β(φ1, φ1 + φ2) ≤ ‖Ṽ1 − Ṽ2‖ = ‖V2‖.

Let 0 ≤ t ≤ 1. By the triangle inequality of the Bures distance, we have that∣∣β(φ1, φ2) − β(φ1, tφ1 + (1− t)φ2)
∣∣

≤ β
(
φ2, tφ1 + (1 − t)φ2

)
≤ β

(
φ2, (1− t)φ2

)
+ β

(
(1 − t)φ2, tφ1 + (1 − t)φ2

)
≤ t1/2

(‖V1‖+ ‖V2‖
)
,

which completes the proof.
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4. UNBOUNDED REPRESENTATIONS OF *-ALGEBRAS IN KREIN SPACES

In this section, we assume thatA is a unital *-algebra with unit 1A. A representation
π of A on a Hilbert space H is a linear mapping of A into the algebra of all closable
linear operators defined on a common dense subspace D(π) such that

(i) D(π) is globally invariant under π(a) (a ∈ A),
(ii) π(1A) = 1, the unit operator,
(iii) π(a)π(b)ξ = π(ab)ξ for all a, b ∈ A, ξ ∈ D(π).

Let D(π∗) := ∩a∈AD(π(a)∗) and π∗(a)ξ := π(a∗)∗ξ (a ∈ A, ξ ∈ D(π∗)). Then we
see that π∗ is a representation of A on a Hilbert space D(π∗).
If J is a (fundamental) symmetry on H, i.e., J = J∗ = J−1 ∈ B(H), then we

define a sesquilinear form on H by

[ξ, η]J = 〈Jξ, η〉.
The pair (H, J) is called a Krein space. If a representation π of A on H satisfies

[π(a)ξ, η]J = [ξ, π(a∗)η]J, (a ∈ A, ξ, η ∈ H),

then π is called a J-representation of A on (H, J). Let T be a densely defined linear
operator in (H, J) and let T J be a J-adjoint of T defined by

[Tξ, η]J = [ξ, T Jη]J, (ξ ∈ D(T ), η ∈ D(T J ).

We easily see that T J = JT ∗J . We define a J-adjoint of π by

D(
πJ

)
=

⋂
a∈A

D(
π(a)J

)
, πJ(a) = π(a∗)J

∣∣
D(πJ )

.

Then π is a J-representation of A if and only if D(π) ⊆ D(πJ) and π(a)ξ = πJ(a)ξ
for all a ∈ A and ξ ∈ D(π).
Let B be a unital *-subalgebra of A. Suppose there exists an abstract conditional

expectation P of A onto B and let φ be a P -functional on A (see [17] for definition).
By [17, Theorem 3], there exists a J-representation π of A on a Krein space (K, J)
with a cyclic vector ξ in D(π). If we define α by

α(a) = 2P (a) − a for all a ∈ A,

then φ is an α-completely positive linear functional.
Let J-Rep(A) be the set of J-representations of A and let P -Ftnal(A) be the set

of P -functionals on A. For φ ∈ P -Ftnal(A) and π ∈ J-Rep(A), we denote by S(φ, π)
the set of unit vectors ξ ∈ D(π) such that φ(a) = 〈π(a)ξ, ξ〉. For any P -functionals
φ1 and φ2 in P -Ftnal(A), let F(φ1, φ2) be the set of all linear functionals F on A
such that
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(1) F
(
α(a)α(b)

)
= F

(
α(ab)

)
,

(2)
∣∣F (α(a∗)b)

∣∣2 ≤ φ2

(
α(a∗)a

)
φ1

(
α(b∗)b

)
,

where α is a bounded Hermitianmap onA with α2 = idA. We call any linear functional
in F(φ1, φ2) a transition form from φ1 to φ2.

Definition 4.1. Let φi (i = 1, 2) be any elements of P -Ftnal(A). We define the
transition probability between φ1 and φ2 by

P(φ1, φ2) = sup
π∈J-Rep(A)

sup
ξi∈S(φi,π)

∣∣〈ξ1, ξ2〉
∣∣2.

In the case of von Neumann algebras and normal states, the definition of the
transition probability appears in [6]. In general case of *-algebras and states, the
definition and explicit formulae were given by Uhlmann [19]. The Bures distance
between P -functionals φ1 and φ2 is given by β(φ1, φ2) = inf{‖ξ1 − ξ2‖ : ξi ∈
S(φi, π), π ∈ J-Rep(A)}. As in the case of normal states, the Bures distance between
P -functionals is also related to the transition probability by the formula β(φ1, φ2)2 =
2
(
1 −P(φ1, φ2)1/2

)
.

For any ξ1 ∈ S(φ1, π) and ξ2 ∈ S(φ2, π), we define a functional Fξ1,ξ2 on A
Fξ1,ξ2(a) = 〈π(a)ξ1, ξ2〉.

Let a, b ∈ A. Then we have that
Fξ1,ξ2(α(ab)) = 〈π(α(ab))ξ1, ξ2〉 = 〈π(b∗)π(a∗)ξ2, ξ1〉

= 〈π(α(a))π(α(b))ξ1, ξ2〉 = Fξ1,ξ2(α(a)α(b))

and that

|Fξ1,ξ2(α(a∗)b)|2 ≤ 〈π(α(a∗)a)ξ2, ξ2〉〈π(α(b∗)b)ξ1, ξ1〉 = φ2(α(a∗)a)φ1(α(b∗)b).

Hence, we see that Fξ1,ξ2 ∈ F(φ1, φ2).
The following theorem was proved by Alberti [2] for states on C∗-algebras and by

Uhlmann [20] for states for *-algebras.

Theorem 4.2. If φ1 and φ2 are P-functional on A, then
P(φ1, φ2) = sup

F∈F(φ1,φ2)

|F (1A)|2.

Proof. Assume that π is a J-representation of A on a Krein space (K, J) such
that S(φ1, π) and S(φ2, π) are non-empty. Take ξ1 ∈ S(φ1, π) and ξ2 ∈ S(φ2, π) and
we define two Hilbert spaces

K1 = {π(a)ξ1 : a ∈ A} and K2 = {π(a)ξ2 : a ∈ A}.
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Let P1 : K → K1 and P2 : K → K2 be orthogonal projections. Then we see that P1

and P2 belong to the commutant π(A)′.
Let F ∈ F(φ1, φ2). We have that∣∣F (α(a∗)b)

∣∣2 ≤ φ2

(
α(a∗)a

)
φ1

(
α(b∗)b

)
=

∥∥π(a)ξ2

∥∥2∥∥π(b)ξ1

∥∥2

for all a, b ∈ A, so that the map (π(b)ξ1, π(a)ξ2) �→ F (α(a∗)b) is a densely defined
bounded sesquilinear form onK1×K2. Therefore, there exist a unique bounded operator
T from K1 into K2 such that

F (α(a∗)b) =
〈
Tπ(b)ξ1, π(a)ξ2

〉
.

It is obvious that ‖T‖ ≤ 1. Putting K := P2TP1 ∈ B(K), we have that ‖T‖ ≤ 1 and
that 〈

Kπ(a)π(c)ξ1, π(c)ξ2

〉
=

〈
Tπ(ab)ξ1, π(b)ξ2

〉
= F

(
α(b∗)ac

)
=

〈
Tπ(c)ξ1, π(α(a∗)b)ξ2

〉
=

〈
π(a)Kπ(c)ξ1, π(b)ξ2

〉
,

which implies that K ∈ π(A)′.
It follows from Theorem of Russo and Dye that for any ε > 0, there are nonnegative

real numbers r1, . . . , rn with
∑

i ri = 1 and unitaries U1, . . . , Un ∈ π(A)′ such that∥∥∥∥∥K −
n∑

i=1

riUi

∥∥∥∥∥ < ε.

Hence,
∣∣F (1A) − ∑n

i=1 ri〈Uiξ1, ξ2〉
∣∣ < ε, so that

∣∣F (1A)
∣∣ < ε +

∑n
i=1 ri

∣∣〈Uiξ1, ξ2〉
∣∣.

Since Ui ∈ π(A)′ implies Uiξ1 ∈ S(φ2, π), we have that∣∣F (1A)
∣∣ < ε + P(φ1, φ2)1/2.

Since ε > 0 was arbitrary,
∣∣F (1A)

∣∣ ≤ P(φ1, φ2)1/2.
Let ε > 0 be given. Assume that ξ1 ∈ S(φ1, π) and ξ2 ∈ S(φ2, π) are such that

|〈ξ1, ξ2〉|2 ≥ P(φ1, φ2) − ε.

By defining F (a) = 〈π(a)ξ1, ξ2〉, we have that F ∈ F(φ1, φ2) and
∣∣F (1A)

∣∣2 ≥
P(φ1, φ2) − ε. Since ε > 0 was arbitrary, we obtain that

sup
F∈F(φ1,φ2)

∣∣F (1A)
∣∣2 ≥ P(φ1, φ2),

which completes the proof.
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