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IMPLICITLY RESTARTED GENERALIZED SECOND-ORDER ARNOLDI
TYPE ALGORITHMS FOR THE QUADRATIC EIGENVALUE PROBLEM

Zhongxiao Jia and Yuquan Sun*

Abstract. We investigate the generalized second-order Arnoldi (GSOAR) method,
a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix
Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method
for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR
procedure to generate an orthonormal basis of a given generalized second-order
Krylov subspace, and with such basis they project the QEP onto the subspace and
compute the Ritz pairs and the refined Ritz pairs, respectively. We develop im-
plicitly restarted GSOAR and RGSOAR algorithms, in which we propose certain
exact and refined shifts for respective use within the two algorithms. Numerical
experiments on real-world problems illustrate the efficiency of the restarted al-
gorithms and the superiority of the restarted RGSOAR to the restarted GSOAR.
The experiments also demonstrate that both IGSOAR and IRGSOAR generally
perform much better than the implicitly restarted Arnoldi method applied to the
corresponding linearization problems, in terms of the accuracy and the computa-
tional efficiency.

1. INTRODUCTION

Consider the large QEP

(1) Q(λ)x = (λ2M + λC +K)x = 0

with ‖x‖ = 1, where M, C, K are n × n matrices with M nonsingular and ‖ · ‖ is
the 2-norm of a vector or matrix. Such QEP arises in a wide variety of scientific and
engineering applications [4, 25]. One is often interested in a few largest eigenvalues
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in magnitude or a few eigenvalues nearest to a target σ in the complex plane. One of
the commonly used approaches is to linearize the QEP and then solve the linearized
problem. There are a number of linearizations available [25], of which a commonly
used one is to transform (1) to the generalized eigenvalue problem

(2)
[ −C −K

I 0

][
λx

x

]
= λ

[
M 0
0 I

][
λx

x

]
,

which is equivalent to the standard linear eigenvalue problem

(3)
[
A B
I 0

][
λx
x

]
= λ

[
λx
x

]
,

where A = −M−1C,B = −M−1K. Clearly, (3) corresponds to the monic QEP

(4) (λ2I − λA−B)x = 0.

The mathematical theory on (2) and (3) has been well established and a number
of numerical methods have been available for solving them [1, 6, 22, 24, 26]. One
of the drawbacks via linearizations is that general numerical methods do not take
the structures of (2) and (3) into account, making computations expensive and the
approximate eigenpairs possibly lose their physical structures.

To improve the computational efficiency of the Arnoldi method that is directly
applied to some linearization problem of QEP (1), Meerbergen [19] proposes a quadratic
Arnoldi (Q-Arnoldi) method, which exploits the structure of the linearization problem
to reduce the memory requirements by about a half and can compute a partial Schur
form of the linearization problem with respect to the structure of the Schur vectors. He
shows that the Q-Arnoldi method can be implicitly restarted. Some similar methods
have proposed very recently in [20, 28]. All of them have are special Arnoldi methods
applied to certain linearization problems of QEP (1), that is, each of them projects
the corresponding linearization problem rather than QEP (1) or (4) onto some Krylov
subspace whose orthonormal basis is generated efficiently by a special Arnoldi process.
For these methods, the implicit restarting technique [23] is easily applied.

In this paper, we are interested in projection methods that work on QEP (1) directly
other than its linearizations, and such methods preserve some important structures of
it. The second-order Arnoldi (SOAR) method proposed by Bai and Su [2] falls into
this category and is a Rayleigh–Ritz method. They propose a SOAR procedure that
computes an orthonormal basis of a second-order Krylov subspace generated by the
matrices A and B simultaneously. The SOAR method then projects (1) onto this
subspace and computes the Ritz pairs to approximate the desired eigenpairs of (1). A
unified and general convergence theory has recently been established in [9] for the
Rayleigh–Ritz method and the refined Rayleigh–Ritz method for the QEP, generalizing
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some of the known results on the Rayleigh–Ritz method for the linear eigenvalue
problem [24]. It is proved in [9] that for a sequence of projection subspaces containing
increasingly accurate approximations to a desired eigenvector there is a Ritz value
that converges to the desired eigenvalue unconditionally while the corresponding Ritz
vector converges conditionally and may fail to converge. Alternatively, we can compute
a refined Ritz vector whose unconditional convergence is guaranteed.

In the spirit of the Hessenberg-triangular decomposition of a matrix pencil, which
reduces to the Hessenberg decomposition of a single matrix, Huang et al. [10] propose
a semiorthogonal generalized Arnoldi (SGA) procedure for the matrix pencil resulting
from some linearization of the QEP. The SGA method first generates an SGA decom-
position and then computes the Rayleigh–Ritz approximations of QEP (1) with respect
to the subspace defined by an orthonormal basis generated by the SGA decomposi-
tion. To overcome the possible non-convergence of Ritz vectors obtained by the SGA
method, they apply the refined projection principle [11] to propose a refined SGA
(RSGA) method that computes better refined Ritz vectors. On the basis of implicitly
shifted QZ iterations, they have developed the implicitly restarted SGA and RSGA
algorithms, abbreviated as IRSGA and IRRSGA, with certain exact shifts and refined
shifts suggested, respectively.

One disadvantage of SOAR is that the implicit restarting technique is not directly
applicable. In order to make implicit restarting applicable, Otto [21] proposes a mod-
ified SOAR procedure that replaces the original special starting vector by a general
one. Under the assumption that there is no deflation in the modified SOAR procedure,
implicit restarting is directly adapted to this procedure. However, it is hard to interpret
and understand the modified SOAR method. This is unlike the SOAR method, whose
convergence is related to the Arnoldi method for the linear eigenvalue problem. Wei
et al. [3, 29] make a similar modification and propose a generalized second-order
Arnoldi (GSOAR) method and their refined variants, for solving the QEP and higher
degree polynomial eigenvalue problems. Based on the explicit restarting scheme of the
Arnoldi algorithm for the linear eigenvalue problem, Wei et al. [3, 29] have developed
explicitly restarted generalized Krylov subspace algorithms. Deflation and breakdown
may take place in the SOAR and modified SOAR procedures, but they have completely
different consequences [2, 21], where it is proved that the SOAR method will find some
exact eigenpairs of QEP (1) if breakdown occurs but no eigenpair is found generally
when deflation takes place. A remedy strategy is given in [2] to treat the deflation
so as to continue the SOAR procedure. Similarly, deflation may occur in the GSOAR
procedure, but it is not mentioned in [3, 29].

Similar to the modified SOAR procedure, implicit restarting is directly adapted
to the GSOAR procedure, but it is useable only conditionally and requires that no
deflation occur in implicit restarts. Once deflation takes place, implicit restarting fails
completely. Therefore, one must cure deflations, so that implicit restarting can be
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applied unconditionally. For the success and overall performance of implicitly restarted
GSOAR type algorithms, just as the mechanism for those implicitly restarted Krylov
subspace algorithms for the linear eigenvalue problem and SVD problems [8, 12, 13,
15, 16, 18], it turns out that a proper selection of the shifts is crucial. Otto [21] has
proposed certain exact shifts for his implicitly restarted modified SOAR algorithm, but
they could cause convergence problems since some important aspects on the QEP are
ignored when determining the shifts.

In this paper, we are concerned with the GSOAR and RGSOAR methods and
their implicit restarting. We will explore more properties and features of them, and
consider the efficient and reliable computation of refined Ritz vectors. Particularly, we
show that there is a close relationship between the subspace generated by the GSOAR
procedure and a standard Krylov subspace. With help of this result, we can interpret
the convergence of the GSOAR type methods. Our main concern is a reasonable
selection of the shifts when implicitly restarting the GSOAR and RGSOAR algorithms.
We advance certain exact shifts, different from those in [21], and refined shifts for
respective use within the implicitly restarted GSOAR and RGSOAR algorithms. The
refined shifts are based on the refined Ritz vectors and theoretically better than the exact
shifts. Unlike the implicitly restarted algorithms for the linear eigenvalue problem, both
exact and refined shift candidates are now more than the shifts allowed. We show how
to reasonably select the desired shifts among them. We present an efficient algorithm
to compute the exact and refined shift candidates reliably. In addition, we propose an
effective approach to cure deflations in implicit restarts, so that implicit restarting is
useable unconditionally.

The rest of this paper is organized as follows. In Section 2 we review the SOAR
and GSOAR procedures, present some properties of them, and describe the SOAR
and GSOAR methods. In Section 3, we describe the RGSOAR method and discuss
some practical issues of it. In Section 4, we develop implicitly restarted GSOAR
and RGSOAR algorithms with the exact and refined shifts suggested. We present
an effective approach to treat deflations in implicit restarts. In Section 5, we report
numerical experiments to illustrate the efficiency of the restarted algorithms and the
superiority of the refined algorithm. We also compare our algorithms with IRSGA and
IRRSGA [10], demonstrating that ours perform better. More importantly, we compare
our algorithms with the Matlab function eigs, the implicitly restarted Arnoldi method
applied to a commonly used linearization problem, showing that ours generally have
sharp superiority to eigs in terms of the accuracy and the computational efficiency.
Finally, we conclude the paper in Section 6.

Throughout the paper, we denote by ‖ · ‖ the spectral norm of a matrix and the
2-norm of a vector, by I the identity matrix with the order clear from the context, by
the superscripts T and ∗ the transpose and conjugate transpose of a vector or matrix,
by Ck the complex vector space of dimension k and by C(k+1)×k the set of (k+1)×k
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matrices. We denote by σmin(F ) the smallest singular value of a matrix F and by the
Matlab notation A(i : j, k : l) the submatrix consisting of rows i to j and columns k
to l of A.

2. THE SOAR AND GSOAR METHODS

Bai and Su [2] introduce the following concepts.

Definition 1. Let A, B be matrices of order n and for the vector u �= 0, and define

r0 = u,
r1 = Ar0,

rj = Arj−1 + Brj−2 for j ≥ 2.

Then r0, r1, r2, . . . , rk−1 is called a second-order Krylov sequence based on A,B and
u, and Gk(A,B; u) = span{r0, r1, r2, . . . , rk−1} a k-th second-order Krylov subspace.

Note that (3) is a linearization of (4). Define the matrix

(5) H =
[
A B
I 0

]

of order 2n. For a 2n-dimensional starting vector v, we can generate a Krylov subspace
Kk(H, v) = span{v, Hv,H2v, . . . , Hk−1v}. Particularly, if we choose v = [uT , 0]T ,
we have

(6)
[

rj
rj−1

]
= Hjv, j ≥ 0 with r−1 = 0.

We observe the fundamental relation

(7) Kk(H, v) ⊆ G2
k(A,B; u),

where G2
k(A,B; u) is the subspace generated by the vector set{[

r0
0

]
,

[
r1
0

]
, . . . ,

[
rk−1

0

]
,

[
0
r0

]
,

[
0
r1

]
, . . . ,

[
0

rk−1

]}
.

Due to the equivalence of QEP (4) and the eigenproblem of H , relation (7) shows that
if the eigenvector [λxT , xT ]T is contained in Kk(H, [uT , 0]T ), then the eigenvector x of
QEP (4) is contained in Gk(A,B; u). By continuity, if there is a good approximation to
[λxT , xT ]T in Kk(H, [uT , 0]T ), then there must be a good approximation to x contained
in Gk(A,B; u).

Bai and Su [2] propose the following procedure for computing an orthonormal basis
{qj}k

j=1 of Gk(A,B; u) and an auxiliary vector sequence {pj} generating Gk−1(A,B; u).
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Algorithm 1. SOAR procedure

1: q1 = u/‖u‖, p1 = 0
2: for j = 1, 2, . . . , k do
3: r = Aqj +Bpj
4: s = qj
5: for i = 1, 2, . . . , j do
6: tij = q∗i r7: r = r − qitij
8: s = s − pitij
9: end for
10: tj+1j = ‖r‖
11: if tj+1j = 0, stop
12: qj+1 = r/tj+1j

13: pj+1 = s/tj+1j

14: end for

The following basic results hold for this algorithm; see [2].

Theorem 1. Define Qk = [q1, q2, . . . , qk] and Pk = [p1, p2, . . . , pk] and T̂k =[
Tk

tk+1ke
∗
k

]
= [tij ] ∈ C(k+1)×k. If Algorithm 1 does not stop before step k, then we

have

(8) span{Qk} = Gk(A,B; u)

and the k-step SOAR decomposition

(9) H

[
Qk

Pk

]
=

[
Qk+1

Pk+1

]
T̂k,

where Qk+1 = [Qk, qk+1], Pk+1 = [Pk, pk+1].

Before proceeding, we introduce the following definition.

Definition 2. [2]. If ri, i = 0, 1, . . . , j are linearly dependent but [rT
i , r

T
i−1]

T , i =
0, . . . , j with r−1 = 0 are not, we call this situation deflation; if both {ri} and
{[rT

i , r
T
i−1]

T} are linearly dependent at step j, we call this situation breakdown.

According to Definition 2, if Algorithm 1 stops prematurely at step j < k, then ei-
ther deflation or breakdown must occur at that step. Deflation means that Gj+1(A,B; u)
= Gj(A,B; u) but Kj+1(H, v) �= Kj(H, v), so the Arnoldi process on H does not ter-
minate at step j. As a result, when deflation occurs at step j, Kj(H, v) does not contain
any exact eigenvector of H , which, from (7), implies that Gj(A,B; u) may not contain
any exact eigenvector of QEP (1). Therefore, deflation must be remedied to continue
the algorithm.

Bai and Su [2] present the following algorithm that detects and remedies deflation.
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Algorithm 2. SOAR procedure with deflation remedy

1: q1 = u/‖u‖, p1 = 0
2: for j = 1, 2, . . . , k do
3: r = Aqj +Bpj
4: s = qj
5: for i = 1, 2, . . . , j do
6: tij = q∗i r
7: r = r − qitij
8: s = s − pitij
9: end for
10: tj+1j = ‖r‖
11: if tj+1j = 0
12: if s ∈ span{pi|i : qi = 0, 1 ≤ i ≤ j}
13: break
14: else deflation
15: reset tj+1j = 1
16: qj+1 = 0
17: pj+1 = s
18: end if
19: else
20: qj+1 = r/tj+1j
21: pj+1 = s/tj+1j
22: end if
23: end for

In the procedure, if deflation occurs, we simply set tj+1j to one and take qj+1 = 0.
To decide if s ∈ span{pi|i : qi = 0, 1 ≤ i ≤ j}, the Gram–Schmidt orthogonaliza-
tion with refinement is used [2, 21]. When deflation occurs, the nonzero vectors in
the sequence {qj} are still orthonormal and span the second-order Krylov subspace
Gk(A,B; u) with the dimension smaller than k. We refer the reader to Bai and Su [2]
for details.

We point out that Theorem 1 is true for Algorithm 2 but there are zero columns in
Qk when deflation occurs.

It is easily checked that a serious disadvantage of the SOAR procedure is that the
implicit restarting technique is not applicable since the updated p1 is not zero any more.
Several researchers have proposed replacing p1 = 0 in Algorithms 1–2 by a nonzero
one [3, 21, 29]. This leads to the following generalized second-order Krylov sequence
and subspace; see [3, 29].

Definition 3. Let A and B be n × n matrices and for vectors u1, u2 ∈ Cn, and
define

r0 = u1,
r1 = Ar0 +Bu2,

rj = Arj−1 +Brj−2 for j ≥ 2.

Then r0, r1, r2, . . . , rk−1 is called a generalized second-order Krylov sequence based
on A,B and u1, u2, and Gk(A,B; u1, u2) = span{r0, r1, r2, . . . , rk−1} the k-th gen-
eralized second-order Krylov subspace.
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Obviously, Gk(A,B; u1, 0) = Gk(A,B; u1). For a general ṽ = [uT
1 , u

T
2 ]T , it is seen

that

(10)
[

rj
rj−1

]
= Hj ṽ, j ≥ 1.

But different from (7), since u2 is a general vector, the fundamental relation now
becomes

(11) HKk−1(H, ṽ) = span{Hṽ, . . . , Hk−1ṽ} ⊆ G2
k(A,B; u1, u2),

where G2
k(A,B; u1, u2) is the subspace generated by the vector set{[

r0
0

]
,

[
r1
0

]
, . . . ,

[
rk−1

0

]
,

[
0
r0

]
,

[
0
r1

]
, . . . ,

[
0

rk−1

]}
.

Note that if the eigenvector [λxT , xT ]T is contained in Kk−1(H, ṽ) then it also lies
in the subspace HKk−1(H, ṽ). If this is the case, (11) shows that the eigenvector
x of QEP (1) is contained in Gk(A,B; u1, u2). More generally, by continuity, it is
deduced from the above that if Kk−1(H, ṽ) has a good approximation to [λxT , xT ]T

then HKk−1(H, ṽ) has one too, which, in turn, means that there must be a good
approximation to x contained in Gk(A,B; u1, u2).

Analogous to Algorithm 2, we can present a GSOAR procedure, i.e., Algorithm 3,
that remedies deflation and generates the vector sequence {qj}, whose nonzero ones
form an orthonormal basis of Gk(A,B; u1, u2). We point out that the GSOAR procedure
in [3, 29] is the same as Algorithm 1 except that p1 = 0 in line 1 is replaced by a
general vector p1 = u2/‖u2‖.

Algorithm 3. GSOAR procedure with deflation remedy

1: q1 = u1
‖u1‖ , p1 = u2

‖u2‖ .
2: for j = 1, 2, . . . , k do
3: r = Aqj +Bpj

4: s = qj

5: for i = 1, 2, . . . , j do
6: tij = q∗i r
7: r = r − tijqi
8: s = s − tijpi

9: end for
10: tj+1j = ‖r‖
11: if tj+1j = 0
12: if s ∈ span{pi|i : qi = 0, 1 ≤ i ≤ j}
13: break
14: else deflation
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15: reset tj+1j = 1
16: qj+1 = 0
17: pj+1 = s
18: end if
19: else
20: qj+1 = r/tj+1j
21: pj+1 = s/tj+1j
22: end if
23: end for

It is direct to justify that Theorem 1 holds for this algorithm with a general p1 =
u2/‖u2‖, that is, we have

span{Qk} = Gk(A,B; q1, p1)

with q1 and p1 normalized and the k-step GSOAR decomposition (9) if the algorithm
does not break down before step k.

Otto [21] defines the modified second-order Krylov sequence as r0, r1, r2, . . . , rk−1,
u2 and the modified second-order Krylov subspace of dimension k + 1 generated by
the vector sequence. After the orthonormal q1, q2, . . . , qk+1 are generated, he orthonor-
malizes u2 against them to get qk+2. This is called the modified SOAR procedure. A
disadvantage of it is that there is no compact relationship (7) or (11). So it is hard to
interpret such a modified subspace and establish definitive results on breakdown and
deflation.

The GSOAR method is a Rayleigh–Ritz method, and it projects the large QEP (1)
onto Gk(A,B; u1, u2) by imposing the Galerkin condition, leading to the k-dimensional
QEP

(12) (θ2Mk + θCk +Kk)g = 0

with ‖g‖ = 1, where Mk = Q∗
kMQk, Ck = Q∗

kCQk and Kk = Q∗
kKQk. Let the

(θ, g) be the eigenpairs of (12). Then the GSOAR method uses the Rayleigh–Ritz
pairs (θ, y(= Qkg)) to approximate some of the eigenpairs of (1). We comment that
if deflation occurs then Qk consists of only nonzero orthonormal vectors qj and the
dimension of (12) is smaller than k.

3. A REFINED GSOAR (RGSOAR) METHOD

As is known, the Rayleigh–Ritz method may fail to converge for computing eigen-
vectors of the linear eigenvalue problem and the QEP; see [17] and [9], respectively.
To correct this deficiency, a refined projection principle is proposed in [11] (see also
[24, 26]) for the linear eigenvalue problem, which leads to the refined Rayleigh–Ritz
method. The refined method extracts the best approximate eigenvectors from a given
subspace in the sense that the residuals formed with certain approximate eigenvalues
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available are minimized in the sense of 2-norm over the subspace. A refined GSOAR
(RGSOAR) method has been proposed in [3, 29]. We next describe it and give more
details on some practical issues.

Suppose that we have computed the Ritz values θ by the GSOAR method and
select m ones of them to approximate m desired eigenvalues of (1). For each chosen
θ, the RGSOAR method seeks a unit length vector ũ ∈ Gk(A,B; u1, u2) satisfying the
optimal requirement

(13) ‖(θ2M + θC +K)ũ‖ = min
u ∈ Gk(A, B;u1, u2)

‖u‖ = 1

‖(θ2M + θC +K)u‖

and uses it as an approximate eigenvector, called the refined Ritz vector. The pairs
(θ, ũ) are also called the refined Rayleigh–Ritz approximations. Since the (non-zero)
columns of Qk form an orthonormal basis of Gk(A,B; u1, u2), (13) amounts to seeking
a unit length vector z̃ ∈ Ck such that ũ = Qk z̃ with

(14) z̃ = arg min
z ∈ Ck

‖z‖ = 1

‖(θ2M + θC +K)Qkz‖,

the right singular vector of the matrix θ2MQk + θCQk + KQk associated with its
smallest singular value σmin(θ2MQk + θCQk +KQk). However, the direct computa-
tion of its SVD may be expensive. Precisely, assume that the matrix is real and k 	 n.
Then the cost of Golub–Reinsch’s SVD algorithm is about 4nk2 flops, and that of
Chan’s SVD algorithm is about 2nk2 flops [6, p. 254]. Keep in mind that m is the
number of the desired eigenpairs. The CPU time costs are then 4nmk2 and 2nmk2

flops, respectively.
The first author in [14] has proposed a cross-product matrix-based algorithm for

computing the SVD of a matrix, which can be much more efficient than the above
standard SVD algorithms. Applying the algorithm to (13), we form the cross-product
matrix

Bk =
(
θ2MQk + θCQk +KQk

)∗ (
θ2MQk + θCQk +KQk

)
,

which is the Hermitian (semi-)positive definite. z̃ is then the eigenvector of Bk asso-
ciated with its smallest eigenvalue σ2

min(θ2MQk + θCQk + KQk). We compute the
eigensystem of Bk by the QR algorithm to get z̃. In finite precision arithmetic, the
computed eigenvector is an approximation to z̃ with accuracy O(εmach) provided that
the second smallest singular value of θ2MQk + θCQk +KQk is not very close to the
smallest one, where εmach is the machine precision.

Let us now look at the computational cost of this algorithm. Define

W1 = MQk, W2 = CQk, W3 = KQk,

which are available when forming the projected QEP and do not need extra cost. Then
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(15)
Bk = | θ |4 W ∗

1W1+ | θ |2 W ∗
2W2 +W ∗

3W3 + θθ̄2W ∗
1W2 + θ̄θ2W ∗

2W1

+θ̄2W ∗
1W3 + θ2W ∗

3W1 + θ̄W ∗
2W3 + θW ∗

3W2,

where the bar denotes the complex conjugate of a scalar. Assume that W1, W2 and
W3 are real and note that Bk is Hermitian for a complex θ and real symmetric for
a real θ. Then we only need to form the upper (lower) triangular part of Bk , which
involves the upper (lower) triangular parts of the nine matrices W ∗

i Wj, i, j = 1, 2, 3.
All these cost about 9nk2 flops. With these nine W ∗

i Wj available, we only need
O(k2) flops to form Bk for either a real or complex θ, negligible to 9nk2 flops. So,
we CPU timely need 9nk2 flops to form m Hermitian matrices Bk for m approximate
eigenvalues θ. We then compute the complete eigensystems of these Bk by the QR
algorithm using O(mk3) flops. Therefore, we can compute m right singular vectors z̃
using about 9nk2 flops when mk 	 n, a natural requirement in practice. As a result, a
simple comparison indicates that such cross-product based algorithm is more efficient
than Golub–Reinsch’s SVD algorithm when m ≥ 3 and Chan’s SVD algorithm when
m ≥ 5.

We can now present a basic (non-restarted) RGSOAR algorithm.

Algorithm 4. The RGSOAR algorithm
1. Given the starting vectors u1, u2, run the GSOAR procedure to generate an

orthonormal basis Qk of Gk(A,B; u1, u2).
2. Compute W1 = MQk, W2 = CQk and W3 = KQk.
3. Compute Mk = Q∗

kW1, Ck = Q∗
kW2 and Kk = Q∗

kW3, solve the projected
QEP

(16) (θ2iMk + θiCk +Kk)gi = 0,

and select m Ritz values θi as approximations to the m desired eigenvalues λi.
1. For each chosen θi, 1 ≤ i ≤ m, form Bk, and compute the eigenvector z̃i of Bk

associated with its smallest eigenvalue and the refined Ritz vector ũi = Qkz̃i.
2. Test convergence of (θi, ũi) by computing the relative residual norms

‖(θ2iM + θiC +K)ũi‖
|θi|2‖M‖1 + |θi|‖C‖1 + ‖K‖1

, i = 1, 2, . . . , m.

4. IMPLICITLY RESTARTED ALGORITHMS

This section consists of three subsections. In Section , under the assumption that
no deflation occurs, we describe how to implicitly restart the GSOAR procedure. In
Section , we discuss how to select best possible shifts, and propose exact and refined
shifts for respective use within implicitly restarted GSOAR and RGSOAR algorithms.
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In Section 4.3, we present an effective approach to cure deflation in implicit restarts,
so that implicit restarting can be run unconditionally.

4.1. Implicit restarts

As step k increases, the GSOAR and RGSOAR methods become expensive and
impractical due to storage requirement and/or computational cost. So restarting is gen-
erally necessary. That is, for a given maximum k and the subspace Gk(A,B; q1, p1)
with q1 and p1 normalized, if the methods do not converge yet, based on the infor-
mation available, we select new unit length vectors q+1 and p+

1 to construct a better
subspace Gk(A,B; q+1 , p

+
1 ) that contains richer information on the desired eigenvectors

x. We then extract new better approximate eigenpairs with respect to Gk(A,B; q+1 , p
+
1 ).

Proceed in such a way until the methods converge.
If no deflation occurs, it is direct to adapt the implicit restarting scheme [23] to

the modified SOAR procedure in [21] and the GSOAR procedure. Given p shifts
μ1, μ2, . . . , μp, performing p implicit shifted QR iterations on Tk yields the relation

(Tk − μ1I) · · ·(Tk − μpI) = VkR,

where Vk is a k×k orthogonal (unitary) matrix and R is upper triangular. Specifically,
Vk has only p nonzero subdiagonals. Adapted from the derivation of implicitly restarting
the standard Arnoldi process [23], we can establish the following result for the GSOAR
procedure.

Theorem 2. Given p shifts μ1, . . . , μp, perform p steps of implicit shifted QR
iterations on Tk. Let ψ(Tk) = VkRk with ψ(μ) =

∏p
j=1(μ− μj), and define Q+

k =
QkVk and T+

k = V ∗
k TkVk. Assume that no deflation occurs in the k(= m + p)-step

GSOAR decomposition (9). Then we have an updated m-step GSOAR decomposition

(17) H

[
Q+

m

P+
m

]
=

[
Q+

m

P+
m

]
T+

m + t̃+m+1m

[
q+m+1

p+
m+1

]
e∗m

starting with
[
q+1
p+
1

]
, where Q+

m = QkVk(:, 1 : m), P+
m = PkVk(:, 1 : m), T+

m =

T+
k (1 : m, 1 : m) is upper Hessenberg and[

q+m+1

p+
m+1

]
=

1
t̃+m+1m

f+
m,

f+
m = t+m+1m

[
q+m+1

p+
m+1

]
+ tk+1kVk(k,m)

[
qk+1

pk+1

]
,

t̃+m+1m = ‖t+m+1mq
+
m+1 + tk+1kVk(k,m)qk+1‖

with Vk(k,m) the entry of Vk in position (k,m).
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Theorem 2 states that if no deflation occurs then we have naturally obtained an
m-step GSOAR decomposition (17) after p implicit shifted QR iterations are run
on Tk, thus generating an orthonormal basis {qj}m

j=1 of the m-dimensional subspace
Gm(A,B; q+1 , p

+
1 ). Decomposition (17) is then extended to a k-step one from step

m+ 1 upwards in a standard way other than from scratch, producing an orthonormal
basis {q+j }k

j=1 of the updated k-dimensional subspace Gk(A,B; q+1 , p
+
1 ).

Analogous to the proof of the result on updated starting vectors in [23], it is direct
to justify the following theorem.

Theorem 3. It holds that

(18)
[
q+1
p+
1

]
=

1
τ
ψ(H)

[
q1
p1

]
,

with ψ(λ) =
∏p

j=1(λ− μj) and τ a normalizing factor.

4.2. The selection of shifts

The selection of the shifts is one of the keys for the success and overall efficiency of
implicitly restarted GSOAR and RGSOAR algorithms. In this subsection we propose
the corresponding best possible shifts for respective use within each algorithm.

Assume that H is diagonalizable. It is shown in, e.g., [22], that if the starting
vector ṽ is a linear combination of m eigenvectors of H then Km(H, ṽ) is an invariant
subspace. Therefore, a fundamental principle of restarting is to select a better vector ṽ+,
in some sense, from the current Kk(H, ṽ) as an updated starting vector that amplifies
the components of the desired eigenvectors and simultaneously dampens those of the
unwanted ones, so that the updated Kk(H, ṽ+) contains more accurate approximations
to the m desired eigenvectors. For implicit restarting, based on formulas for updated
starting vectors like (18), for the linear eigenvalue problem and the computation of a
partial SVD, it has been shown in [12, 13] and [15, 16] that such goal is achieved by
selecting the shifts to approximate some of the unwanted eigenvalues or singular values
as best as possible within the framework of the underlying method. A general result is
that the better the shifts approximate the unwanted eigenvalues, the richer information
on the desired eigenvectors is contained in the updated starting vector, so that a better
Krylov subspace is generated.

Motivated by the above results, we now investigate a reasonable selection of shifts
for use within implicitly restarted GSOAR and RGSOAR algorithms. Observe that the
projected QEP (12) of the large QEP (1) over span{Qk} amounts to the generalized
eigenvalue problem

(19)
[ −Ck −Kk

I 0

] [
θg

g

]
= θ

[
Mk 0
0 I

] [
θg

g

]
,
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which is the projected problem of large generalized eigenvalue problem (2) over the
subspace G2

k(A,B; u1, u2) (c.f. (11)) spanned by the (nonzero) columns of

Q̂2k =
[
Qk 0
0 Qk

]
.

The above problem amounts to the standard linear eigenvalue problem[ −M−1
k Ck −M−1

k Kk

I 0

] [
θg
g

]
= θ

[
θg
g

]
.

(18) indicates that we should select the shifts μj , j = 1, 2, . . . , m as the best possible
approximations to the unwanted eigenvalues of H so as to generate increasingly better
updated subspaces Kk(H, ṽ+) and HKk−1(H, ṽ) with ṽ+ = [q+1

T
, p+

1
T ]T . In terms

of (11) and the comments followed, this, in turn, leads to increasingly better updated
G2

k(A,B; q+1 , p
+
1 ) that contains increasingly better approximations to the m desired

eigenvectors of H . As a result, Gk(A,B; q+1 , p
+
1 ) contains more accurate approxima-

tions to the desired eigenvectors of (1). So, just as for the linear eigenvalue problem,
we should choose shifts for each implicitly restarted GSOAR type algorithm in the
sense that they are best possible approximations to some of the unwanted eigenvalues
of (1).

For the Rayleigh–Ritz method with respect to a given subspace, the Ritz values can
be considered as the best approximations available to some eigenvalues of (1). Otto
[21] proposed exact second-order shifts for his implicitly restarted modified SOAR
algorithm. Adapted here, one solves the projected QEP (12) and selects m Ritz values
θi as approximations to the desired eigenvalues. Then the unwanted Ritz values are
shift candidates, called the exact second-order shift candidates. A problem is that there
are 2k − m shift candidates, while for (17) the number p of shifts must not exceed
k−m. One must select p = k−m shifts among the 2k−m candidates. Otto simply
suggested to take any p = k − m shifts among 2k −m ones. We should point out
that this situation is unlike implicitly restarted Arnoldi type algorithms for the linear
eigenvalue problem, where the the maximum number of shifts is just that of candidates;
see [23] and [12, 13, 15, 16].

However, the above selection of exact second-order shifts is problematic and sus-
ceptible to failure, as elaborated below. It is crucial to keep in mind a basic fact that
the QEP may often have two distinct eigenvalues that share the same eigenvector [25].
This means that, for QEP (12), some of the shift candidates and some of the m Ritz
values used to approximate the desired eigenvalues may share common eigenvector(s).
Therefore, if it is unfortunate to take such candidates for shifts, restarting will filter out
the information on the corresponding desired eigenvectors and thus makes implicitly
restarted GSOAR algorithms perform poorly.

In order to avoid the above deficiency, we propose new shift candidates for the
implicitly restarted GSOAR and RGSOAR algorithms, respectively, and show how
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to reasonably select the shifts among the candidates. We first consider the GSOAR
method. Project QEP (1) onto the orthogonal complement of span{y1, . . . , ym} with
respect to Gk(A,B; q1, p1), where y1, . . . , ym are the Ritz vectors approximating the
desired eigenvectors x1, . . . , xm. Then we obtain a p-dimensional projected QEP and
compute its 2p eigenvalues. A remarkable consequence is that these 2p eigenvalues
must be approximations to some of the unwanted eigenvalues of QEP (1) because the
information on x1, . . . , xm has been removed from Gk(A,B; q1, p1). So we can use
any p ones of these 2p candidates as shifts. To be unique, we choose the p ones
farthest from the Ritz values θi, i = 1, 2, . . . , m that are used to approximate the
desired eigenvalues λ1, . . . , λm. The motivation of this choice is that, based on (18),
these shifts can be better to amplify the information of ṽ+ on the desired eigenvectors
and dampen the components of undesired eigenvectors in ṽ+.

If we are interested in the m eigenvalues nearest to a target σ and/or the associated
eigenvectors, QEP (1) can be equivalently transformed to a shift-invert QEP; see the
end of this subsection. In this case, we select the p Ritz values among 2p candidates
farthest from σ as shifts. Such selection of shifts is motivated by an idea from [15,
16], where some of the shifts are taken to be unwanted Ritz values farthest from the
wanted approximate singular values. It was argued there that this selection can better
dampen those components of the unwanted singular vectors and meanwhile amplify the
components of the desired singular vectors.

We now turn to the selection of shifts for the RGSOAR algorithm. Algorithm 4
computes the refined Ritz vectors ũi, which are generally more and can be much more
accurate than the Ritz vectors yi [9, 17]. The first author [12, 13] has proposed certain
refined shifts for the refined Arnoldi method and the refined harmonic Arnoldi method
for the linear eigenvalue problem. It is shown that the refined shifts are generally better
than the corresponding exact shifts and can be computed efficiently and reliably. In
the same spirit, we next propose certain refined shifts for the RGSOAR algorithm.

Since the refined Ritz vectors ũi, i = 1, 2, . . . , m are more accurate than the
corresponding yi, the orthogonal complement of span{ũ1, . . . , ũm} with respect to
Gk(A,B; q1, p1) contains richer information on the unwanted eigenvectors than the
orthogonal complement of span{y1, . . . , ym} with respect to Gk(A,B; q1, p1). As a
result, the eigenvalues of the projected QEP of QEP (1) onto this orthogonal com-
plement are more accurate approximate eigenvalues than the exact shift candidates
described above. We call them refined shift candidates. We use the same approach as
above to select p ones among them as shifts, called the refined shifts, for use within
the implicitly restarted RGSOAR algorithm.

Finally, we show how to compute the exact and refined shifts efficiently and reliably.
We take the refined shifts as example. The computation of exact shifts is analogous.
Recall ũi = Qkz̃i, i = 1, 2, . . . , m, and write Zm = [z̃1, . . . , z̃m]. If QEP (1) is real
and two columns z̃i and z̃i+1 of Zm are complex conjugate, we replace them by their
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normalized real and imaginary parts, respectively, so that the resulting Zm is real. We
then make the full QR decomposition

Zm = [Um, U⊥]
[
Rm

0

]
,

where Um and U⊥ are k×m and k×p column orthonormal matrices, respectively, and
Rm is m×m upper triangular. We use the Matlab built-in function qr.m to compute
the decomposition in experiments. This costs O(k3) flops, negligible to the cost of the
k-step GSOAR procedure. Obviously, it holds that

span{ũ1, . . . , ũm} = span{QkUm}, span{[QkUm, QkU⊥]} = Gk(A,B; q1, p1).

Therefore, QkU⊥ is an orthonormal basis of the orthogonal complement of span{ũ1,
. . . , ũm} with respect to Gk(A,B; q1, p1). It is direct to justify that the projected QEP
of the original QEP (1) onto span{QkU⊥} is just the projected QEP of the small QEP
(16) onto span{U⊥}. So, we form the projected QEP of the original QEP (1) onto
span{QkU⊥} at cost of O(k3) flops. We then compute its 2p eigenvalues usingO(p3)
flops and select p ones among them as the refined shifts. Since p < k, the CPU time
cost of computing the refined shifts is O(k3) flops. For the exact shifts, recall the Ritz
vectors yi = Qkgi, i = 1, 2, . . . , m. Write Gm = [g1, . . . , gm] and replace Zm by it.
We then compute the exact shifts in the same way as above.

Having done the above, we have finally developed the following Algorithm 5.

Algorithm 5. The implicitly restarted GSOAR type algorithms
1. Given unit length starting vectors q1 and p1, the number m of desired eigenpairs

and the number p of shifts p satisfying p ≤ m − k, run the k-step GSOAR
procedure to generate Qk.

2. Do until convergence
Project QEP (1) onto span{Qk} to get QEP (12), select m Ritz pairs (θi, yi)
or refined Ritz pairs (θi, ũi) as approximations to the m desired eigenpairs,
respectively, and determine their convergence.

3. If not converged, compute the p exact shifts or refined shifts, and implicitly
restart the GSOAR method or the RGSOAR method, respectively.

4. EndDo

Algorithm 5 includes two algorithms: the implicitly restarted GSOAR algorithm
with the exact shifts and RGSOAR algorithm with the refined shifts, abbreviated as
IGSOAR and IRGSOAR here and hereafter. They can be used to compute a number
of largest eigenvalues in magnitude and the associated eigenvectors of QEP (1). We
determine the convergence of a Ritz pair (θ, y) by requiring

(20)
‖(θ2M + θC +K)y‖

|θ|2‖M‖1 + |θ|‖C‖1 + ‖K‖1
≤ tol,
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where tol is a user-prescribed accuracy. For the convergence of a refined Ritz pair
(θ, ũ), we replace the above y by ũ.

If the m eigenvalues closest to a given target σ are desired, we use the shift-invert
transformation ρ = 1

λ−σ with det(Q(σ)) �= 0 to transform QEP (1) to the new QEP

(21) Qσ(ρ)x = (ρ2Mσ + ρCσ +Kσ)x = 0,

where Mσ = σ2M + σC + K is nonsingular as det(Mσ) = det(Q(σ)) �= 0, Cσ =
C + 2σM , Kσ = M . We then apply the previous analysis and algorithms to (21). Let
(ρ̃, y) be an approximate eigenpair (either a Ritz or refined Ritz pair) of Qσ(ρ)x = 0
and r̂ = Qσ(ρ̃)y. Then ( 1

ρ̃ + σ, y) is the corresponding approximate eigenpair of
Q(λ)x = (λ2M + λC +K)x = 0. Define r̃ = Q( 1

ρ̃ + σ)y. Then we obtain

(22)

r̂/ρ̃2 = (Mσ +Cσ/ρ̃+Kσ/ρ̃
2)y

= (σ2M + σC +K + (C + 2σM)/ρ̃+M/ρ̃2)y

= ((
1
ρ̃

+ σ)2M + (
1
ρ̃

+ σ)C +K)y = Q(
1
ρ̃

+ σ)y = r̃,

from which it is direct to get the desired ‖r̃‖ from ‖r̂‖ without computing r̃ explicitly.
We make a final note on Algorithm 5. In previous discussions and analysis, we

have supposed p = k −m previously. This is not mandatory. In order to compute m
desired eigenpairs of (1), the only restriction to p is that p ≤ k −m. So the choice
of p is flexible and takes the form p = k − (m + l) with l a very small nonnegative
integer, as done in [23] and [12, 13, 15, 16], where l = 3 is often used. We remark that
different p may have considerable effects on the overall performance of the algorithms,
but its choice can only be empirical.

4.3. Cure of deflations in implicit restarts

Theorem 2 requires that no deflation occurs in implicit restarts. If deflations occur
at steps m1, m2, . . . , mj ≤ k, then the corresponding j columns qmj of Qk are zeros.
Denote by Q̂k and V̂k the matrices by deleting the zero columns of Qk and rows
m1, m2, . . . , mj of Vk, respectively. Then we have Q+

k = QkVk = Q̂kV̂k, from which
and (9) we get

(23)
[
A B
I 0

] [
Q̂kV̂k

PkVk

]
=

[
Q̂kV̂k

PkVk

]
T+

k + tk+1k

[
qk+1

pk+1

]
e∗kVk,

where T+
k = V ∗

k TkVk. We see that, although Q̂k is still column orthonormal, Q+
k =

Q̂kV̂k is not as V̂k is not orthogonal any longer when some rows are deleted from the
orthogonal matrix Vk. As a result, Q+

m = QkVk(:, 1 : m) is not column orthonormal,
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and (17) is not an m-step GSOAR decomposition any longer. This means that implicit
restarting fails to work whenever deflation occurs.

In what follows we present an effective approach to cure deflation so as to re-
cover a standard GSOAR decomposition, making implicit restarting always applicable
unconditionally.

Note that V̂k is a (k−j)×k of rank k−j. Without loss of generality, we assume that
the first k − j columns of V̂k are linearly independent, i.e., the matrix V̂k1 consisting
the first k − j columns of V̂k is nonsingular. Write V̂k = [V̂k1, V̂k2]. We compute
the QR decomposition of V̂k1 using the Matlab built-in function qr.m and obtain the
decomposition of form

(24) V̂k = UkRk = [Uk−j , 0]
[
Rk−j R12

0 I

]
,

where V̂k1 = Uk−jRk−j is the QR decomposition of V̂k1 and R12 = U∗
k−j V̂k2, and I

is the identity matrix of order j, so that Rk is nonsingular and upper triangular.
Noting that Uk = V̂kR

−1
k and right multiplying (23) by R−1

k , we get

(25)
[
A B
I 0

][
Q̂kUk

PkVkR
−1
k

]
=

[
Q̂kUk

PkVkR
−1
k

]
RkT

+
k R

−1
k + tk+1k

[
qk+1

pk+1

]
e∗kVkR

−1
k .

Since R−1
k is upper triangular, RkT

+
k R

−1
k is Hessenberg. Note that Vk has only p =

k − m nonzero subdiagonals. Then the first possible nonzero entry β̃ of e∗kVk is in
position m and

tk+1ke
∗
kVkR

−1
k = (0, . . . , 0, β̃, bT )

with β̃ = tk+1kVk(k,m)/e∗mRkem. Equating the first m columns on two sides of (25),
we obtain

(26)

[
A B

I 0

][
Q̃+

m

P̃+
m

]
=

[
Q̃+

m

P̃+
m

]
T̃+

m + β+
m

[
q+m+1

p+
m+1

]
e∗m,

where Q̃+
m = Q̂kUk(:, 1 : m), P̃+

m = PkVk(:, 1 : m)R−1
m with Rm the m×m leading

principal matrix of Rk, T̃+
m the m×m leading principal matrix of RkT

+
k R

−1
k , and

[
q+m+1

p+
m+1

]
=

1
β+

m
f+
m = t̃+m+1m

[
Q̂kUk

PkVkR
−1
k

]
em+1 + β̃

[
qk+1

pk+1

]
,(27)

β+
m = ‖t̃+m+1mQ̂kUkem+1 + β̃qk+1‖.(28)

(24) indicates that the column orthonormality of Uk(:, 1 : m) is guaranteed when-
ever m ≤ k − j, i.e., j ≤ k −m. This means that Q̃+

m = Q̂kUk(:, 1 : m) is column
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orthonormal, provided that the number j of deflations during the last cycle of GSOAR
procedure does not exceed k − m. If m > k − j, the first k − j columns of Q̃+

m

are orthonormal and the last m − (k − j) columns of Uk are zero, so that the last
m− (k− j) columns of Q̃+

m are zero. As a result, there are m− (k− j) deflations in
(26). For either m ≤ k − j or m > k − j, it is trivial to justify that (Q̃+

m)∗q+m+1 = 0.
Therefore, by curing deflations in implicit restarts, we have obtained a truly m-step
GSOAR decomposition (26).

5. NUMERICAL EXPERIMENTS

In this section we report numerical examples to illustrate the practicability of IG-
SOAR and IRGSOAR and the superiority of IRGSOAR to IGSOAR. Meanwhile, we
also compare them with the corresponding counterparts IRSGA and IRRSGA proposed
in [10] for some test problems. In addition, we compare IGSOAR and IRGSOAR with
the Matlab function eigs, the implicitly restarted Arnoldi method with exact shifts
used, which is directly applied to the linearization problem (3). All the experiments
were run on Intel(R)Core(TM)i5-3470s CPU 2.9GHz, RAM 4G using Matlab R2012b
with εmach = 2.22× 10−16 under the Windows 7 system.

We list CPU timings (in second) of the three main parts abbreviated as ‘SOAR’,
‘SMALL’ and ‘IMRE’, where ‘SOAR’ denotes the CPU time of the first cycle of
GSOAR procedure plus standard extensions of the GSOAR decomposition from step
m + 1 to step k for all the other cycles, ‘SMALL’ is the CPU time of forming the
projected QEP, solving them and computing residuals of approximate eigenpairs, and
‘IMRE’ is the CPU time of performing all implicit QR iterations and generating the
m-step GSOAR decompositions for all cycles. In addition, we use ‘restarts’ and ‘CPU
time’ to denote the number of restarts and the total CPU time of IGSOAR, IRGSOAR
and eigs, respectively.

For each example, we used the same starting vector generated randomly in a uniform
distribution for IGSOAR and IRGSOAR. We transformed the projected QEP (12) to
the generalized eigenvalue problem (19) and solved it by the QZ algorithm, i.e., the
Matlab built-in function eig.m. We recovered an eigenvector g of QEP (12) from either
the first k components or the last k components of [θgT , gT ]T . From the backward
error analysis [7], it is preferable to take the first k ones if |θ| ≥ 1 and the last k ones
if |θ| < 1. We adopted this choice.

For eigs, we used the same k as that in IGSOAR and IRGSOAR to compute the
same m eigenpairs for each example. The CPU time of eigs did not include the time
of computing the LU decomposition of M , which is used when acting a matrix-vector
product in eigs at each step. The starting vector of eigs was obtained by normalizing

[
q1
p1

]
,
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where q1 and p1 were the vectors in Algorithm 3. The number of shifts was the default
value, i.e., p = k − (m + 3). We also used tol to denote the stopping criterion used
in eigs for (3). Let (θ, y) be a converged eigenpair computed by eigs, we set y1 to
be the vector consisting of the first n components of y, and y2 the vector consisting
of the last n components of y. We then computed the relative residual norms (20)
of (θ, y1) and (θ, y2) and took the smaller one as the residual norm of eigs for QEP
(1). ’Resmin ’ and ’Resmax ’ recorded the minimum and maximum relative residual
norms (20) obtained in this way for all the converged eigenpairs for (3). The maximum
number of restarts is limited to 50.

Example 1. We consider the damped vibration mode of an acoustic fluid confined
in a cavity with absorbing walls capable of dissipating acoustic energy [9]. We take
the same geometrical data as in [9]. The QEP is

λ2Muu+ (α+ λβ)Au +Kuu = 0,

where α = 5 × 104N/m3, β = 200Ns/m3, and the order n = 46548.
By taking tol = 10−14 and two sets of parameters k = 30, p = 7 and k = 30, p = 5,

we used IRGSOAR and IGSOAR to compute the twenty eigenvalues nearest to the
complex target σ = 25 + 18πi and the corresponding eigenvectors of the above QEP.
Table 1 reports the results obtained, and Figure 1 describes the convergence processes
of two algorithms, depicting the maxima of relative residual norms of m approximate
eigenpairs versus restarts.

We see from Table 1 and Figure 1 that two algorithms were efficient. However,
as far as both restarts and CPU timings are concerned, IRGSOAR was twice as fast
as IGSOAR for k = 30 and p = 5, and the former was also considerably faster than
the latter for k = 30 and p = 7. Furthermore, we observe from the figure that the
residual norm of IRGSOAR was smaller than that of IGSOAR substantially at each
cycle, indicating that the refined Ritz vectors can be considerably more accurate than
the Ritz vectors. We find that for the same k, the value of p has an effect on the overall
performance of IGSOAR and IRGOAR. For this example, we took two p smaller than
k −m = 10. It is seen that the effect is marginal for IRGSOAR, while it is relatively
essential for IGSOAR. In addition, we remark that the most consuming cost was paid
to the SOAR procedure, but the explicit computation and solutions of all small QEP
also occupied quite portion of the CPU time cost. The CPU time ’IMRE’ of implicit
restarting consumed least but could not be negligible.

For this example, by taking tol = 10−6, we found that eigs was much more costly
than IGSOAR and IRGSOAR to converge and the approximate eigenpairs were as
accurate as those obtained by the latter two algorithms, while, for tol = 10−8, it failed
to converge after 50 restarts. We should point out that our codes are programmed
in the Matlab language and may not be optimized while eigs is programmed in C
language and optimized. This means that for the same k each restart of eigs should be
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more time consuming than that of IGSOAR and IRGSOAR since eigs is much more
expensive than IGSOAR and IRSOAR in the orthogonalization of Arnoldi vectors. As
a result, in all the experiments the number of restarts is more reasonable to compare
the computational efficiency of these three algorithms. It is worthwhile to mention that
for this example a relatively big tol = 10−6 for eigs delivered very accurate eigenpairs
of QEP (1) and a smaller tol is unnecessary.

Table 1: Example 1, tol=10−14

Algorithm k p restarts CPU time SOAR SMALL IMRE
IRGSOAR 30 7 3 12.55 8.56 2.58 1.34
IGSOAR 30 7 5 16.86 10.99 3.12 2.68

IRGSOAR 30 5 3 11.96 7.93 2.58 1.31
IGSOAR 30 5 7 21.01 12.06 4.57 4.27

The results obtained by eigs
tol k CPU restarts Resmin Resmax

10−6 30 27.89 15 0.42× 10−15 0.93× 10−14

10−8 30 – 50 – –

Fig. 1. Example 1. Residuals versus restarts. Left: k=30, p=5; right: k=30, p=7.

Example 2. This problem and arises in a model of the concrete structure supporting
a machine assembly [4, 5] and has the form Q(λ)x = (λ2M +λC+(1+ iμ)K)x = 0.
The matrices are of order 2472, where M is real diagonal, C, the viscous damping
matrix, is pure imaginary and diagonal, K is complex symmetric, and the factor 1+ iμ

adds uniform hysteretic damping. We use the command nlevp(‘concrete’, 0.04) in
[4] to generate the complex symmetric coefficient matrices. Thus problem was tested
in [10].

We ran IRGSOAR and IGSOAR to compute the ten eigenvalues nearest to the
origin by taking tol = 10−14 and the same k = 20, two p = 7 and 5. Table 2 and
Figure 2 reported the results, from which it can be seen that two algorithms worked very
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well and IRGSOAR was a little more efficient than IGSOAR in terms of both restarts
and CPU timings. We remark that, for this problem, the corresponding algorithms
IRSGA and IRRSGA in [10] both used four restarts to achieve the convergence for
the same k = 20 and tol. Note that they use the F-norm in the denominator of (20),
which means that for the same tol our convergence tolerance is smaller. Therefore,
for p = 7, IGSOAR was (at least) as efficient as IRSGA, and IRGSOAR was faster
than IRRSGA. For p = 5, IGSOAR used five restarts for a smaller stopping tolerance
than that used by IRSGA, and IRGSOAR used four restarts. This demonstrates that,
for this problem, IGSOAR and IRGSOAR were as efficient as IRSGA and IRRSGA,
respectively. It is clear that two different p affected the overall efficiency of each
algorithm only marginally. Finally, we observe that, unlike Example 1, the main cost
of each algorithm was paid to the GSOAR procedure and overwhelmed ”SMALL” and
”IMRE”.

Table 2: Example 2, tol=10−14

Algorithm k p restarts CPU time SOAR SMALL IMRE
IRGSOAR 20 7 3 0.78 0.62 0.10 0.03
IGSOAR 20 7 4 1.03 0.91 0.07 0.04

IRGSOAR 20 5 4 0.90 0.72 0.12 0.05
IGSOAR 20 5 5 0.93 0.77 0.09 0.07

The results obtained by eigs
tol k CPU time restarts Resmin Resmax

10−8 20 1.03 7 0.19× 10−17 0.13× 10−13

10−10 20 1.25 9 0.19× 10−17 0.12× 10−15

10−14 20 1.70 12 0.13× 10−17 0.52× 10−17

Fig. 2. Example 2. Residuals versus restarts; Left: k = 20, p = 7; right: k = 20, p = 5.

We also report the results obtained by eigs for three tol and list them in Table 2.
It is seen from Table 2 that both IGSOAR and IRGSOAR performed much better than
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eigs, and they used much less CPU time and fewer restarts to compute the desired
eigenpairs with much higher accuracy. As Resmin and Resmax indicated, the accuracy
of the converged eigenpairs obtained by eigs with three greatly varying tol essentially
had no difference as the approximate eigenpairs of QEP (1), and their relative residual
norms were already at the level of εmach for tol = 10−8.

Example 3. This example is from [4] and tested in [10] (cf. Example 6.3).
We tested IRGSOAR and IGSOAR for the following cases (a) and (b) by taking
tol = 10−14.

Case (a): Acoustic 1D. This example arises from the finite element discretization
of the time harmonic wave equation −
p − (2πf/c)2p = 0. Here, p denotes the
pressure, f is the frequency, c is the speed of sound in the medium, and ξ is the
(possibly complex) impedance. On the domain [0, 1] with c = 1, the n × n matrices
M , D, and K are defined by

M = −4π2 1
n

(
I − ene

T
n

)
, D = 2πi

1
ξ
ene

T
n , K = n

(
tridiag(−1, 2,−1)− ene

T
n

)
.

Table 3: Example 3(a), tol=10−14

Algorithm k p restarts CPU time SOAR SMALL IMRE
IRGSOAR 12 5 2 0.12 0.02 0.06 0.02
IGSOAR 12 5 3 0.12 0.02 0.05 0.03

IRGSOAR 12 3 2 0.10 0.02 0.06 0.01
IGSOAR 12 3 3 0.10 0.02 0.05 0.02

The results obtained by eigs
tol k CPU time restarts Resmin Resmax

10−8 12 0.27 10 0.32× 10−18 0.97× 10−13

10−10 12 0.72 22 0.40× 10−18 0.20× 10−15

10−14 12 0.75 23 0.81× 10−18 0.83× 10−18

Fig. 3. Example 3(a). Left: k = 12, p = 5; right: k = 12, p = 3.
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We use nlevp(<®acoustic wave 1d,5000,1) to generate matrices M, D and K with
size n = 5000.

Just as in [10], we computed the six eigenvalues nearest to the origin with k =
12, p = 5 and 3. Table 3 reports the results, and Figure 3 depicts the convergence
processes of two algorithms. From the figure we see that, for the same k and two
p, IRGSOAR and IGSOAR used two and three cycles, respectively. As indicated in
[10], for the same k = 12 and a little larger convergence tolerance, the correspond-
ing implicitly restarted algorithms IRSGA and IRRSGA both used three cycles. So
IRGSOAR was a little better than IRRSGA. Regarding CPU time, since M,D and K
are very sparse, the CPU timings of the GSOAR procedure and implicit restarting are
comparable, and less than ‘SMALL’.

As we have seen, the eigenpairs obtained by eigs had similar accuracy to those
obtained by IGSOAR and IRGSOAR with three greatly varying tol, and all of them
converged to the level of machine precision. However, Table 3 clearly shows that
IGSOAR and IRGSOAR were much more efficient than eigs.

Table 4: Example 3(b), tol=10−14

Algorithm k p restarts CPU time SOAR SMALL IMRE
IRGSOAR 12 5 7 1.21 0.59 0.39 0.19
IGSOAR 12 5 11 1.57 0.85 0.36 0.33

IRGSOAR 12 3 10 1.18 0.45 0.45 0.24
IGSOAR 12 3 10 0.94 0.46 0.25 0.22

The results obtained by eigs
tol k CPU time restarts Resmin Resmax

10−8 12 0.84 8 0.38× 10−17 0.48× 10−13

10−10 12 0.83 8 0.40× 10−17 0.14× 10−13

10−14 12 0.99 11 0.32× 10−17 0.53× 10−16

Fig. 4. Example 3(b). Left: k = 12, p = 5; right: k = 12, p = 3.

Case (b): Acoustic 2D. This example is a two-dimensional acoustic wave equation
on [0, 1]× [0, 1]. The coefficient matrices M, D and K are given by



Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms 25

M = −4π2h2Iq−1 ⊗
(
Iq − 1

2
eqe

T
q

)
, D = 2πi

h

ξ
Iq−1 ⊗ (eqeTq ),

K = Iq−1 ⊗Dq + Tq−1 ⊗
(
−Iq +

1
2
eqe

T
q

)
.

where h denotes the mesh size, q = 1/h, ⊗ denotes the Kronecker product, ξ is
the (possibly complex) impedance, Dq = tridiag(−1, 4,−1) − 2eqeTq , and Tq−1 =
tridiag(1, 0, 1). We use nlevp(‘acoustic wave 2d’,90,0.1× 1i) to get the real sym-
metric matrices (M,D,K). The matrix size is given by n = 8010.

As in [10], we computed the six eigenvalues nearest to the origin with k = 12, p = 5
and 3. Table 4 and Figure 4 give the results and convergence processes of two algo-
rithms, respectively. It is seen that IRGSOAR and IGSOAR used seven and eleven
restarts for p = 5, respectively, and both of them used ten cycles for p = 3. Therefore,
two algorithms were efficient, and IRGSOAR could be more efficient than IGSOAR.
We find that both IGSOAR and IRGSOAR were more efficient than IRSGA and IR-
RSGA [10], where the latter ones used eleven and twelve cycles, respectively.

For this problem, unlike the previous examples, eigs performed very well and was
comparable to IGSOAR and IRGSOAR in terms of the accuracy and the computational
efficiency.

Example 4. This QEP arises in an n-degree-of-freedom damped mass-spring sys-
tem [25]. By taking mi = 1 and letting all the springs (respectively, dampers) have
the same constant κ (respectively, τ ) except κ1 = κn = 2κ and τ1 = τn = 2τ , the
resulting matrices are

M = I, C = τ · tridiag(−1, 3,−1), K = κ · tridiag(−1, 3,−1),

which are very sparse. We took n = 5000, κ = 5 and τ = 10 and were interested in
the six eigenvalues nearest to the complex target σ = −13+0.4i and the corresponding
eigenvectors.

For tol = 10−10, we tested IRGSOAR and IGSOAR for k = 40, p = 23 and 28.
Table 5 lists the results, and Figure 5 depicts the convergence processes for two sets
of parameters k and p.

It can be found from Table 5 and Figure 5 that two algorithms worked quite
well. Compared with Examples 1-3, much more restarts were needed now; for the
given k, two different p did not make much difference on restarts and CPU timings
of two algorithms. Furthermore, IRGSOAR and IGSOAR are similarly efficient, and
the former used a little fewer restarts but more CPU time than IGSOAR. Since the
matrices in this QEP are very sparse, it appears that performing the SOAR procedure
in each algorithm was not dominant, and instead it was considerably less costly than the
explicit computation and solutions of all small QEP and implicit restarting, as indicated
by Table 5.
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Table 5: Example 4, tol=10−10

Algorithm k p restarts CPU time SOAR SMALL IMRE
IRGSOAR 40 23 41 11.01 1.78 4.74 4.39
IGSOAR 40 23 44 9.02 1.88 2.33 4.73

IRGSOAR 40 28 39 9.96 1.79 4.07 4.01
IGSOAR 40 28 47 9.50 2.18 2.47 4.78

The results obtained by eigs
tol k CPU time restarts Resmin Resmax

10−8 40 6.05 31 0.37× 10−3 0.37× 10−3

10−10 40 9.36 47 0.37× 10−3 0.37× 10−3

Fig. 5. Example 4. Residuals versus restarts. Left: k= k40, p=23; right: k=40, p=28.

For this example, unlike all the previous examples, for given two tol similar to
that used by IGSOAR and IRGSOAR, eigs used comparable restarts and the CPU
time to IGSOAR and IRGSOAR, but it computed the desired eigenpairs with much
poorer accuracy, so, as a whole, it is considerably inferior to IGSOAR and IRGSOAR.
An important observation is that improving the accuracy of approximate eigenpairs of
(3) may be helpless to improve their accuracy as the approximate eigenpairs of (1).
A comparison of this example and Example 1 reveals a remarkable difference: eigs
with big tol computed the desired eigenpairs with the accuracy at the level of εmach

for Example 1, while it with smaller tol got the desired eigenpairs with much poorer
accuracy. So it is uncertain for us to choose a suitable tol for eigs to compute the
desired eigenpairs with a prescribed accuracy in the sense of the stopping criterion (20)
for QEP (1).

Example 5. This problem comes from [4]. It is a nonlinear eigenvalue problem
modeling a radio-frequency gun cavity that is of the form

T (λ)x = [K − λM + i(λ− σ2
1)1/2W1 + i(λ− σ2

2)
1/2W2]x = 0,
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where M, K, W1, W2 are real symmetric matrices of size 9956× 9956. From these
matrices, we constructed a QEP of the form

(λ2W2 + λM +K)x = 0,

which is purely for our test purpose. We used IRGSOAR and IGSOAR to compute the
six eigenvalues nearest to σ = 0.5 + 0.5i and the associated eigenvectors. Table 6 and
Figure 6 reported the results.

Table 6: Example 5, tol=10−10

Algorithm k p restarts CPU time SOAR SMALL IMRE
IRGSOAR 20 5 1 1.73 1.59 0.11 0.00
IGSOAR 20 5 9 6.10 4.93 0.58 0.54

IRGSOAR 20 11 1 1.73 1.61 0.11 0.00
IGSOAR 20 11 3 3.77 3.42 0.19 0.13

The results obtained by eigs
tol k CPU time restarts Resmin Resmax

10−6 20 2.73 4 0.37× 10−10 0.45× 10−8

10−8 20 59.31 50 0.25× 10−7 0.21× 10−3

Fig. 6. Example 5. Residuals versus restarts. Left: k = 20, p = 5; right: k = 20, p = 11.

For this example, two algorithms worked well. However, IRGSOAR exhibited
the very considerable superiority to IGSOAR. We find the desired eigenpairs without
restarting the algorithm for given two sets of parameters k and p while IGSOAR used
nine and three cycles, respectively. In terms of CPU timings, IRGSOAR was also a few
times faster than IGSOAR. Furthermore, for this example, the CPU time of the SOAR
procedure dominated the CPU time cost of each algorithm. On contrary to Example 4,
for the given k, the smaller p = 5 made IGSOAR use considerably more restarts and
CPU time, meaning that the choice of p may have considerable effects on the overall
performance of IGSOAR. However, this example and Examples 1-4 illustrate that the
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effects of p must be problem dependent, and it is impossible to design a definite and
general effective way to select it.

In contrast, eigs behaved not good for this example, and it used much more restarts
to achieve the convergence for the not much smaller tol = 10−8 than 10−6. However,
as approximate eigenpairs of QEP (1), the converged eigenpairs with tol = 10−6 were
substantially more accurate than those with tol = 10−8. This is really bad because it
shows that, on the contrary to our common acceptance, that considerably more accurate
eigenpairs for the linearization problem (3) are not necessarily more accurate too for
QEP (1). This, together with Example 1 and Example 4, demonstrates that solving
the linearization problem (3) directly has serious uncertainty, as far as the accuracy is
concerned.

6. CONCLUSION

We have considered generalized second-order Arnoldi method and its refined ver-
sion for solving the large QEP. The methods are structure-preserving and applied to
the QEP directly after an orthonormal basis of the generalized second-order Krylov
subspace is generated by the GSOAR procedure. To be practical, we have developed
implicitly restarted algorithms with certain exact and refined shifts proposed for two
methods, respectively. We have presented an efficient and reliable algorithm for com-
puting the shift candidates. Unlike Arnoldi type algorithms for the linear eigenvalue
problem, where the number of shift candidates are just that of shifts, for the QEP the
shift candidates are more than the shifts. we have discussed in detail how to seek and
determine reasonable shifts for each method. Also, deflation may occur in the algo-
rithms for the QEP, for which implicit restarting is not applicable. To overcome this
deficiency, we have proposed an effective approach to cure deflation in implicit restarts,
so that implicit restarting can be used to the GSOAR procedure unconditionally. We
have tested our algorithms on a number of real-world problems. Numerical experi-
ments have demonstrated that two algorithms work well and the refined algorithm can
outperform the standard counterpart considerably. They also show that our algorithms
generally perform much better than eigs in terms of the accuracy or the computational
efficiency.
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of nonlinear eigenvalue problems. users’ guide, MIMS EPrint 2010. 98, November 2010.

5. A. Feriani, F. Perotti and V. Simoncini, Iterative system solvers for the frequency analysis
of linear mechanical systems, Computer Methods Appl. Mech. Engrg., 190 (2000),
1719-1739.

6. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, The John Hopkins
University, Baltimore, 1996.

7. N. J. Higham, R. C. Li and F. Tisseur, Backward error of polynomial eigenproblems
solved by linearization, SIAM J. Matrix Anal. Appl., 29 (2007), 1218-1241.

8. M. E. Hochstenbach, Harmonic and refined extraction methods for the singular value
problem, with applications in least squares problems, BIT Numer. Math., 44 (2004),
721-754.

9. H.-M. Huang, Z. Jia and W.-W. Lin, Convergence of Ritz pairs, Ritz vectors and refined
Ritz vectors for quadratic eigenvalue problems, BIT Numer. Math., 53 (2013), 941-958.

10. W.-Q. Huang, T. Li, Y.-Ta Li and W.-W. Lin, A semiorthogonal generalized Arnoldi
method and its variations for quadratic eigenvalue problems, Numer. Linear Algebra
Appl., 20 (2013), 259-280.

11. Z. Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric
eigenproblems, Linear Algebra Appl., 259 (1997), 1-23.

12. Z. Jia, Polynomial characterizations of the approximate eigenvectors by the refined
Arnoldi method and implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl.,
287 (1999), 191-214.

13. Z. Jia, The refined harmonic Arnoldi method and an implicitly restarted refined algorithm
for computing interior eigenpairs of large matrices, Appl. Numer. Math., 42 (2002), 489-
512.

14. Z. Jia, Using cross-product matrices to compute the SVD, Numer. Algor., 42 (2006),
31-61.

15. Z. Jia and D. Niu, An implicitly restarted refined bidiagonalization Lanczos method
for computing a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25
(2003), 246-265.

16. Z. Jia and D. Niu, A refined harmonic Lanczos bidiagonalization method and an im-
plicitly restarted algorithm for computing the smallest singular triplets of large matrices,
SIAM J. Sci. Comput., 32 (2010), 714-744.

17. Z. Jia and G. W. Stewart, The RayleighRitz method for approximating eigenspaces, Math.
Comput., 270 (2001), 637-647.

18. E. Kokiopoulou, C. Bekas and E. Gallopoulos, Computing smallest singular triplets with
implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), 39-61.

19. K. Meerbergen, The quadratic Arnoldi method for the solution of the quadratic eigenvalue
problem, SIAM J. Matrix Anal. Appl., 34 (2008), 1463-1482.



30 Zhongxiao Jia and Yuquan Sun

20. D. Kressner and J. E. Roman, Memory-efficient Arnoldi algorithms for linearizations
of matrix polynomials in Chebyshev basis, Numer. Linear Algebra Appl., 2013, DOI:
10.1002/nla.

21. C. Otto, Arnoldi and Jacobi-Davidson Methods for Quadratic Eigenvalue Problems,
diploma thesis, Institut für Mathematik, Technische Universität Berlin, Germany, 2004.

22. Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised Version, Vol. 66
of Classics in Applied Mathematics, SIAM, Philadelphia, PA, 2011.

23. D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method,
SIAM J. Matrix Anal. Appl., 13 (1992), 357-385.

24. G. W. Stewart, Matrix Algorithms, Vol II: Eigensystems, SIAM, Philadelphia, PA, 2001.

25. F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001),
235-286.

26. H. A. Van der Vorst, Computational Methods for Large Eigenvalue Problems, Elsevier,
NorthHollands, 2002.

27. S. Wei and I. Kao, Vibration analysis of wire and frequency response in the modern
wiresaw manufacturing process, J. Sound Vibr., 231 (2000), 1383-1395.

28. Y. Zhang and Y. Su, A memory-efficient model order reduction for time-delay systems,
BIT Numer. Math., 53 (2013), 1047-1073.

29. L. Zhou, L. Bao, Y. Lin, Y. Wei and Q. Wu, Restarted generalized Krylov subspace
methods for solving quadratic eigenvalue problems, Inter. J. Comput. Math. Sci., 4
(2010), 148-155.

Zhongxiao Jia
Department of Mathematical Sciences
Tsinghua University
Beijing 100084
People’s Republic of China
E-mail: jiazx@tsinghua.edu.cn

Yuquan Sun
LMIB and School of Mathematics and Systems Science
BeiHang University
Beijing 100191
People’s Republic of China
E-mail: sunyq@buaa.edu.cn


