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Multiple Solutions for 4-superlinear Klein-Gordon-Maxwell System Without

Odd Nonlinearity

Lin Li*, Abdelkader Boucherif and Naima Daoudi-Merzagui

Abstract. In this paper, we study the following Klein-Gordon-Maxwell system−∆u+ V (x)u− (2ω + φ)φu = f(x, u), x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,

where the nonlinearity f and the potential V are allowed to be sign-changing. Under

some appropriate assumptions on V and f , we obtain the existence of two different

solutions of the system via the Ekeland variational principle and the Mountain Pass

Theorem.

1. Introduction

In this paper, we consider the following Klein-Gordon-Maxwell system

(KGM)

−∆u+ V (x)u− (2ω + φ)φu = f(x, u), x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,

where ω is positive constant, the potential V and the nonlinearity f are allowed to be sign-

changing. System (KGM) is a modified version of the classical Klein-Gordon-Maxwell

system, which has a strong physical meaning since it appears in quantum mechanical

models and in semiconductor theory. For more details about the physical background, we

refer the reader to [5, 6, 11,15,16] and the references therein.

This type of system is settled in the whole space R3, the Sobolev embedding is not

compact for the whole space. A natural idea is study this system on the radial space.
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Interesting reader can see the references [1, 2, 5, 6, 9, 11, 13, 15, 16, 21, 24, 28, 29]. Recently,

Carrião, Cunha and Miyagaki [10] studied this type of system with positive periodic

potential V . They proved the existence of positive ground state solutions for this system

when a periodic potential V is introduced. The method combines the minimization of

the corresponding Euler-Lagrange functional on the Nehari manifold with the Brézis and

Nirenberg technique. Later, Cunha [14] presented some results on the existence of positive

and ground state solutions for the nonlinear (KGM). She introduced a general nonlinearity

with subcritical and supercritical growth which does not require the usual Ambrosetti-

Rabinowitz condition. Another situation for the potential V is considered by He [20] (see

also [12, 22]). He used a coercive potential V which is introduced by Rabinowitz [26].

By means of a variant fountain theorem and the symmetric mountain pass theorem, he

obtained the existence of infinitely many large energy solutions. Recently, Li and Tang

[22] generalized He’s result. In addition, when dealing with nonlinearities which can be

negative for small values of u, there are some references [4, 7, 8, 25].

In some of the aforementioned references, the potential V is always assumed to be

positive or vanish at infinity and the following famous Ambrosetti-Rabinowitz ((AR) for

short) condition is usually required.

(AR) There exists µ > 4 such that

0 < µF (x, u) ≤ uf(x, u), u 6= 0.

It is well-known that the role of (AR) is to ensure the boundedness of the Palais-Smale

(PS) sequences of the energy functional, which is very crucial in applying the critical point

theory.

Motivated by [23, 27], in this paper, we consider another case of the potential V and

the primitive of f are also allowed to be sign-changing, which is quite different from the

previous results. Before stating our main results, we give the following assumption on

V (x).

(V1) V ∈ C(R3,R) and infx∈R3 V (x) > −∞. Moreover, there exists a constant d0 > 0

such that for any M > 0,

lim
|y|→∞

meas
{
x ∈ R3 : |x− y| ≤ d0, V (x) ≤M

}
= 0,

where meas(·) denotes the Lebesgue measure in R3.

We can find a constant V0 > 0 such that Ṽ (x) := V (x) + V0 ≥ 1 for all x ∈ R3 which

is inspired by Zhang and Xu [31] and let f̃(x, u) := f(x, u) + V0u for all (x, u) ∈ R3 × R.

Now it is easy to verify the following lemma.
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Lemma 1.1. System (KGM) is equivalent to the following problem

(KGM′)

−∆u+ Ṽ (x)u− (2ω + φ)φu = f̃(x, u), x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3.

In what follows, we let µ > 4 and give some assumptions on f̃ and its primitive F̃ as

follows:

(S1) f̃ ∈ C(R3 × R,R), and there exist constants c1, c2 > 0 and q ∈ (4, 6) such that∣∣∣f̃(x, u)
∣∣∣ ≤ c1 |u|3 + c2 |u|q−1 .

(S2) lim|u|→∞
|F̃ (x,u)|
|u|4 = ∞ a.e. x ∈ R3 and there exist constants c3 ≥ 0, r0 ≥ 0 and

τ ∈ (0, 2) such that

inf
x∈R3

F̃ (x, u) ≥ c3 |u|τ ≥ 0, ∀ (x, u) ∈ R3 × R, |u| ≥ r0,

where and in the sequel, F̃ (x, u) =
∫ u

0 f̃(x, s) ds.

(S3) F̃(x, u) := 1
4uf̃(x, u)− F̃ (x, u) ≥ 0, and there exist c4 > 0 and κ > 1 such that∣∣∣F̃ (x, u)

∣∣∣κ ≤ c4 |u|2κ F̃(x, u), ∀ (x, u) ∈ R3 × R, |u| ≥ r0.

Now, our main result is as follows:

Theorem 1.2. Suppose that conditions (V1), (S1), (S2) and (S3) are satisfied. Then

problem (KGM) possesses at least two different solutions.

Remark 1.3. There are some functions not satisfying the condition (AR) for any µ > 4.

For example, the superlinear function f(x, u) = sinx ln(1 + |u|)u2 does not satisfy condi-

tion (AR). In our theorems, F̃ (x, u) is allowed to be sign-changing. Even if F̃ (x, u) ≥ 0,

the assumptions (S2) and (S3) seem to be weaker than the superlinear conditions obtained

in the aforementioned references. It is easy to check that the following nonlinearities f̃

satisfy (S2) and (S3):

f̃(x, u) = a(x)(4.5u4.5 + 2u2 sinu− 4u cosu)

where a ∈ (R3,R) and 0 < infR3 a(x) ≤ supR3 a(x) <∞.

Remark 1.4. To the best of our knowledge, the condition (V1) is first given in [3], but

infx∈R3 V (x) > 0 is required. From (V1), one can see that the potential V (x) is allowed to

be sign-changing. Therefore, the condition (V1) is weaker than (1.2) in [10,12,14,20,22].
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Remark 1.5. It is not difficult to find functions V satisfying the above conditions. For

example, let V (x) be a zig-zag function with respect to |x| defined by

V (x) =

2n |x| − 2n(n− 1) + a0, n− 1 ≤ |x| ≤ (2n− 1)/2,

−2n |x|+ 2n2 + a0, (2n− 1)/2 ≤ |x| ≤ n,

where n ∈ N and a0 ∈ R.

Remark 1.6. Ding and Li [17] studied (KGM) with sign-changing potential V . They got

multiple solutions with odd nonlinearity. Here we do not need the nonlinearity to be odd,

and also get two solutions for problem (KGM).

Here, we give the sketch of how to look for two distinct critical points of the functional

I (where I is defined by (2.3)). First, we consider a minimization of I constrained in a

neighborhood of zero via the Ekeland variational principle (see [18, 30]) and we can find

a critical point of I which achieves the local minimum of I and the level of this local

minimum is negative (see Step 1 in the proof of Theorem 1.2); and then, around “zero”

point, by using Mountain Pass Theorem (see [19]) we can also obtain another critical point

of I with its positive level (see Step 2 in the proof of Theorem 1.2). Obviously, these two

critical points are different because they are in different levels.

2. Preliminaries and variational setting

Hereafter, we use the following notations:

• H1(R3) denotes the usual Sobolev space endowed with the standard scalar product

and norm

(u, v) =

∫
R3

(∇u · ∇v + uv) dx, ‖u‖ = (u, u)1/2.

• D1,2(R3) denotes the completion of C∞0 (R3) with respect to the norm

‖u‖2D1,2(R3) =

∫
R3

|∇u|2 dx.

• Let H =
{
u ∈ H1(R3) :

∫
R3

(
|∇u|2 + Ṽ (x) |u|2

)
dx <∞

}
with the norm

‖u‖2H =

∫
R3

(
|∇u|2 + Ṽ (x) |u|2

)
dx.

• H∗ denotes the dual space of H.

• Ls(R3), 1 ≤ s < +∞, denotes a Lebesgue space with the usual norm ‖u‖s =(∫
R3 |u|s dx

)1/s
.
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• For any ρ > 0 and for any z ∈ R3, Bρ(z) denotes the ball with radius ρ centered at

z.

• C and Ci denote various positive constants, which may vary from line to line.

• Si denote the Sobolev constant for the embedding.

• → denotes the strong convergence and ⇀ denotes the weak convergence.

Throughout this section, we make the following assumption instead of (V1):

(V2) Ṽ ∈ C(R3,R) and infx∈R3 Ṽ (x) > 0. Moreover, there exists a constant d0 > 0 such

that for any M > 0,

lim
|y|→∞

meas
{
x ∈ R3 : |x− y| ≤ d0, V (x) ≤M

}
= 0.

Remark 2.1. Under assumption (V2), we know from [3, Lemma 3.1] that the embedding

H ↪→ Ls(R3) is compact for s ∈ [2, 6).

Following technical results established in [6] (see also [16]), (KGM′) can be reduced to

a single equation with a nonlocal term.

Proposition 2.2. For any fixed u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3)

which solves equation

(2.1) −∆φ+ u2φ = −ωu2.

Moreover, the map Φ: u ∈ H1(R3) 7→ Φ[u] := φu ∈ D1,2(R3) is continuously differentiable,

and

(i) −ω ≤ φu ≤ 0 on the set {x | u(x) 6= 0};

(ii) ‖φu‖D1,2 ≤ C ‖u‖2H and
∫
R3 |φu|u2 dx ≤ C ‖u‖412/5 ≤ C ‖u‖

4
H .

Multiplying (2.1) by φu and integrating by parts we obtain

(2.2)

∫
R3

|∇φu|2 dx = −
∫
R3

ωφuu
2 dx−

∫
R3

φ2
uu

2 dx.

Using (2.2), we define a functional I on H by

(2.3) I(u) =
1

2

∫
R3

(
|∇u|2 + Ṽ (x)u2 − ωφuu2

)
dx−

∫
R3

F̃ (x, u) dx

for all u ∈ H. By condition (S1), we have

(2.4)
∣∣∣F̃ (x, u)

∣∣∣ ≤ c1

4
|u|4 +

c2

q
|u|q , ∀ (x, u) ∈ R3 × R.
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Consequently, similar to the discussion in [12, 20, 22], under assumptions (V2), Proposi-

tion 2.2 and (2.4), it is easy to prove that the functional I is of class C1(H,R). Moreover,

(2.5)
〈
I ′(u), v

〉
=

∫
R3

(
∇u · ∇v + Ṽ (x)uv − (2ω + φu)φuuv − f̃(x, u)v

)
dx.

Hence, if u ∈ H is a critical point of I, then the pair (u, φu) is a solution of system (KGM′).

Lemma 2.3 (Mountain Pass Theorem). [19] Let E be a real Banach space with its dual

space E∗, and suppose that I ∈ C1(E,R) satisfies

max {I(0), I(e)} ≤ µ < η ≤ inf
‖u‖=ρ

I(u)

for some µ, η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths joining 0

and e, then there exists a sequence {un} ⊂ E such that

I(un)→ c ≥ η and (1 + ‖un‖)
∥∥I ′(un)

∥∥
E∗ → 0 as n→∞.

This kind of sequence is usually called a Cerami sequence. Recall that a C1 functional

I satisfies Cerami condition at level c ((C)c condition for short) if any sequence {un} ⊂ H
such that I(un)→ c and (1 + ‖un‖) ‖I ′(un)‖E∗ → 0 has a convergent subsequence.

3. Proof of Theorem 1.2

First, we prove the functional I satisfies the Cerami condition.

Lemma 3.1. Assume that the conditions (V2), (S1), (S2) and (S3) hold. Then the

Cerami sequence {un}

(3.1) I(un)→ c > 0 and (1 + ‖un‖H)
∥∥I ′(un)

∥∥
H∗ → 0 as n→∞

is bounded in H.

Proof. Arguing by contradiction, we can assume ‖un‖H → ∞. Define vn := un/‖un‖H .

Clearly, ‖vn‖H = 1 and ‖vn‖s ≤ Ss ‖vn‖H = Ss for 2 ≤ s < 6. Observe that for n large

enough, from (3.1) and (S3) we have

c+ 1 ≥ I(un)− 1

4

〈
I ′(un), un

〉
=

1

4
‖un‖2H +

1

4

∫
R3

φ2
unu

2
n dx+

∫
R3

(
1

4
f̃(x, un)un − F̃ (x, un)

)
dx

≥
∫
R3

F̃(x, un) dx.

(3.2)
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In view of Proposition 2.2, (2.3) and (3.1), we have

1

2
=

I(un)

‖un‖2H
+

1

‖un‖2H

∫
R3

F̃ (x, un) dx+
1

2 ‖un‖2H

∫
R3

ωφunu
2
n dx

≤ I(un)

‖un‖2H
+

1

‖un‖2H

∫
R3

∣∣∣F̃ (x, un)
∣∣∣ dx

≤ lim sup
n→∞

[
I(un)

‖un‖2H
+

1

‖un‖2H

∫
R3

∣∣∣F̃ (x, un)
∣∣∣ dx]

≤ lim sup
n→∞

∫
R3

∣∣∣F̃ (x, un)
∣∣∣

‖un‖2H
dx.

(3.3)

For 0 ≤ a < b, let Ωn(a, b) :=
{
x ∈ R3 : a ≤ |un(x)| < b

}
. Going to a subsequence, if

necessary, we may assume that vn ⇀ v in H. Then by Remark 2.1, we have vn → v in

Ls(R3) for 2 ≤ s < 6, and vn → v a.e. on R3.

We now consider the following two possible cases about v.

Case 1: If v = 0, then vn → 0 in Ls(R3) for 2 ≤ s < 6, and vn → 0 a.e. on R3. Hence,

it follows from (2.4) and vn := un/‖un‖2H that

∫
Ωn(0,r0)

∣∣∣F̃ (x, un)
∣∣∣

‖un‖2H
dx =

∫
Ωn(0,r0)

∣∣∣F̃ (x, un)
∣∣∣

|un|2
|vn|2 dx

≤
(
c1

4
r2

0 +
c2

q
rq−2

0

)∫
Ωn(0,r0)

|vn|2 dx

≤ C4

∫
R3

|vn|2 dx→ 0 as n→∞.

(3.4)

From (S3), we know that κ > 1. Thus, if we set κ′ = κ/(κ− 1), then 2κ′ ∈ (2, 6). Hence,

it follows from (S3), Proposition 2.2 and (3.2) that

∫
Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

‖un‖2H
dx =

∫
Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

|un|2
|vn|2 dx

≤

∫
Ωn(r0,∞)


∣∣∣F̃ (x, un)

∣∣∣
|un|2

κ

dx

1/κ [∫
Ωn(r0,∞)

|vn|2κ
′
dx

]1/κ′

≤ c1/κ4

[∫
Ωn(r0,∞)

F̃(x, un) dx

]1/κ [∫
Ωn(r0,∞)

|vn|2κ
′
dx

]1/κ′

≤ c1/κ4 (c+ 1)1/κ

[∫
Ωn(r0,∞)

|vn|2κ
′
dx

]1/κ′

≤ C5

[∫
Ωn(r0,∞)

|vn|2κ
′
dx

]1/κ′

→ 0 as n→∞.

(3.5)
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Combining (3.4) with (3.5), we have∫
R3

∣∣∣F̃ (x, un)
∣∣∣

‖un‖2H
dx =

∫
Ωn(0,r0)

∣∣∣F̃ (x, un)
∣∣∣

‖un‖2H
dx+

∫
Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

‖un‖2H
dx→ 0 as n→∞,

which contradicts (3.3).

Case 2: If v 6= 0, we set A :=
{
x ∈ R3 : v(x) 6= 0

}
. Then meas(A) > 0. For a.e. x ∈ A,

we have limn→∞ |un(x)| = ∞. Hence A ⊂ Ωn(r0,∞) for n ∈ N large enough. It follows

from Proposition 2.2, (2.3), (2.4), (3.1) and Fatou’s lemma that

0 = lim
n→∞

c+ o(1)

‖un‖4H
= lim
n→∞

I(un)

‖un‖4H

= lim
n→∞

[
1

2 ‖un‖2H
− 1

2 ‖un‖4H

∫
R3

ωφun
u2
n dx−

∫
R3

F̃ (x, un)

‖un‖4H
dx

]

≤

 1

2 ‖un‖2H
− 1

2 ‖un‖4H

∫
R3

ω2u2
n dx−

∫
Ωn(0,r0)

∣∣∣F̃ (x, un)
∣∣∣

|un|4
|vn|4 dx

−
∫

Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

|un|4
|vn|4 dx


≤ lim sup

n→∞

∫
Ωn(0,r0)

(
c1
4

+
c2
q
|un|q−4

)
|vn|4 dx− lim inf

n→∞

∫
Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

|un|4
|vn|4 dx


≤
(
c1
4

+
c2
q
|r0|q−4

)
lim sup
n→∞

∫
Ωn(0,r0)

|vn|4 dx− lim inf
n→∞

∫
Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

|un|4
|vn|4 dx


≤ C7 − lim inf

n→∞

∫
Ωn(r0,∞)

∣∣∣F̃ (x, un)
∣∣∣

|un|4
|vn|4 dx

= C7 − lim inf
n→∞

∫
R3

|witF (x, un)|
|un|4

[χΩn(r0,∞)(x)] |vn|4 dx

≤ C7 −
∫
R3

lim inf
n→∞

∣∣∣F̃ (x, un)
∣∣∣

|un|4
[χΩn(r0,∞)(x)] |vn|4 dx→ −∞ as n→∞,

(3.6)

which is a contradiction. Thus {un} is bounded in H. The proof is completed.

To complete our proof, we have to cite a result in [27].

Lemma 3.2. Assume that p1, p2 > 1, r, q ≥ 1 and Ω ⊆ RN . Let g be a Carathéodory

function on Ω× R and satisfy

|g(x, t)| ≤ a1 |t|(p1−1)/r + a2 |t|(p2−1)/r , ∀ (x, t) ∈ Ω× R,

where a1, a2 ≥ 0. If un → u in Lp1(Ω) ∩ Lp2(Ω), and un → u a.e. x ∈ Ω, then for any

v ∈ Lp1q(Ω) ∩ Lp2q(Ω),

(3.7) lim
n→∞

∫
Ω
|g(x, un)− g(x, u)|r |v|q dx→ 0.
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Lemma 3.3. If the conditions (V2) and (S1) hold. Then any bounded sequence {un}
satisfying (3.1) has a convergent subsequence in H.

Proof. Going to a subsequence, if necessary, we may assume that un ⇀ u in H. Then by

Remark 2.1, we have vn → v in Ls(R3), for 2 ≤ s < 6. Let us take r ≡ 1 in Lemma 3.2

and combine with un → u in Ls(R3) for 2 ≤ s < 6, one can get

(3.8) lim
n→∞

∣∣∣f̃(x, un)− f̃(x, u)
∣∣∣ |un − u| dx→ 0 as n→∞.

We observe that 〈
I ′(un)− I ′(u), un − u

〉
→ 0 as n→∞,

and we have ∫
R3

[(2ω + φun)φunun − (2ω + φu)φuu] (un − u) dx

= 2ω

∫
(φunun − φuu)(un − u) +

∫
R3

(φ2
unun − φ

2
uu)(un − u) dx

→ 0 as n→∞.

Actually, by Hölder’s inequality, Proposition 2.2 and the Sobolev inequality, we have∣∣∣∣∫
R3

(φun − φu)un(un − u) dx

∣∣∣∣ ≤ ‖(φun − φu)(un − u)‖2 ‖un‖2

≤ ‖φun − φu‖6 ‖un − u‖3 ‖un‖2
≤ C ‖φun − φu‖D1,2 ‖un − u‖3 ‖un‖2 ,

where C > 0 is a constant. Because un → u in Ls(R3) for any 2 ≤ s < 6, we have∫
R3

(φun − φu)un(un − u) dx→ 0 as n→∞

and ∫
R3

φu(un − u)(un − u) dx ≤ ‖φu‖6 ‖un − u‖3 ‖un − u‖2 → 0 as n→∞.

Thus, we get ∫
R3

(φunun − φuu)(un − u) dx

=

∫
R3

(φun − φu)un(un − u) dx+

∫
R3

φu(un − u)(un − u) dx

→ 0 as n→∞.

Observe that the sequence
{
φ2
unun

}
is bounded in L3/2(R3), since∥∥φ2

unun
∥∥

3/2
≤ ‖φun‖

2
6 ‖un‖3 ,
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so ∣∣∣∣∫
R3

(φ2
un − φ

2
u)(un − u) dx

∣∣∣∣ ≤ ∥∥φ2
un − φ

2
u

∥∥
3/2
‖un − u‖3

≤
(∥∥φ2

un

∥∥
3/2

+
∥∥φ2

u

∥∥
3/2

)
‖un − u‖3

→ 0 as n→∞.

Now, using (3.8), we can get

‖un − u‖2H =
〈
I ′(un)− I ′(u), un − u

〉
−
∫
R3

[(2ω + φun)φunun − (2ω + φu)φuu] (un − u) dx

+

∫
R3

(
f̃(x, un)− f̃(x, u)

)
(un − u) dx

→ 0 as n→∞.

That is un → u in H and the proof is complete.

From Lemmas 3.1 and 3.3, we get the functional I satisfies the Cerami condition. Now,

we prove the functional I has a mountain pass geometric structure.

Lemma 3.4. Assume that the conditions (V2) and (S1) hold. Then there exist ρ, η > 0

such that inf {I(u) : u ∈ H with ‖u‖H = ρ} > η.

Proof. From (2.4) and the Sobolev inequality, we have∣∣∣∣∫
R3

F̃ (x, u) dx

∣∣∣∣ ≤ ∫
R3

∣∣∣∣c1

4
|u|4 +

c2

q
|u|q
∣∣∣∣ dx

=
c1

4
‖u‖44 +

c2

q
‖u‖qq

≤ S4
c1

4
‖u‖4H + Sq

c2

q
‖u‖qH

(3.9)

for any u ∈ H. Combining Proposition 2.2, (2.3) with (3.9), we have

I(u) =
1

2

∫
R3

(
|∇u|2 + Ṽ (x)u2 − ωφuu2

)
dx−

∫
R3

F̃ (x, u) dx

=
1

2
‖u‖2H −

1

2

∫
R3

ωφuu
2 dx−

∫
R3

F̃ (x, u) dx

≥ 1

2
‖u‖2H −

∫
R3

∣∣∣F̃ (x, u)
∣∣∣ dx

≥ 1

2
‖u‖2H − S4

c1

4
‖u‖4H − Sq

c2

q
‖u‖qH

=
1

2
‖u‖2H − C1 ‖u‖4H − C2 ‖u‖qH .

(3.10)

Since q ∈ (4, 6), we can easily get that there exists η > 0 such that this lemma holds if we

let ‖u‖H = ρ > 0 small enough.
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Lemma 3.5. Assume that the conditions (V2) and (S2) hold. Then there exists v ∈ H
with ‖v‖H = ρ such that I(v) < 0, where ρ is given in Lemma 3.4.

Proof. From (2.3), we have

I(tu)

t4
=

1

2t2

(
‖u‖2H −

∫
R3

ωφtuu
2 dx

)
− 1

t4

∫
R3

F̃ (x, tu) dx.

Then, by Proposition 2.2, (S2) and Fatou’s lemma we deduce that

lim
t→∞

I(tu)

t4
= lim

t→∞

[
1

2t2

(
‖u‖2H −

∫
R3

ωφtuu
2 dx

)
− 1

t4

∫
R3

F̃ (x, tu) dx

]
≤ lim sup

t→∞

[
1

2t2

(
‖u‖2H −

∫
R3

ω2u2 dx

)
− 1

t4

∫
R3

F̃ (x, tu) dx

]
= − lim inf

t→∞

∫
R3

F̃ (x, tu)

t4u4
u4 dx

≤ −
∫
R3

lim inf
t→∞

F̃ (x, tu)

t4u4
u4 dx

= −∞ as t→∞.

Thus, the lemma is proved by taking v = t0u with t0 > 0 large enough.

Now, we will complete the proof of Theorem 1.2.

Proof of Theorem 1.2. To complete the proof of Theorem 1.2, we need to consider the

following two steps.

Step 1. We first show that there exists a function u0 ∈ H such that I ′(u0) = 0 and

I(u0) < 0. Let r0 = 1, for any |u| ≥ 1, from (S2), we have

(3.11) F̃ (x, un) ≥ c3 |un|τ > 0.

By (S1), for a.e. x ∈ R3 and 0 ≤ |u| ≤ 1, there exists M > 0 such that∣∣∣∣∣ f̃(x, u)u

u2

∣∣∣∣∣ ≤
∣∣∣∣∣(c1 |u|3 + c2 |u|q−1) |u|

|u|2

∣∣∣∣∣ ≤M,

which implies that

f̃(x, u)u ≥ −M |u|2 .

Using the equality F̃ (x, u) =
∫ 1

0 f̃(x, tu) dt, for a.e. x ∈ R3 and 0 ≤ |u| ≤ 1, we obtain

(3.12) F̃ (x, u) > −1

2
M |u|2 .

In view of (3.11) and (3.12), we have for a.e. x ∈ R3 and all u ∈ R that

F̃ (x, u) ≥ −1

2
M |u|2 + c3 |u|τ .
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Then, we have

(3.13) F̃ (x, tψ) ≥ −1

2
Mt2 |ψ|2 + tτ c3 |ψ|τ .

Combining Proposition 2.2, (2.3) with (3.13), we have

I(tu) =
t2

2
‖u‖2H −

t2

2

∫
R3

ωφtuu
2 dx−

∫
R3

F̃ (x, tu) dx

≤ t2

2
‖u‖2H −

t2

2

∫
R3

ω2u2 dx+
t2M

2

∫
R3

|u|2 dx− tτ c3

∫
R3

|u|τ dx.

Since µ > 4, τ ∈ (0, 2), for t small enough, we can get that I(tu) < 0. Thus, we obtain

c0 = inf
{
I(u) : u ∈ Bρ

}
< 0,

where ρ > 0 is given by Lemma 3.4, Bρ = {u ∈ H : ‖u‖H < ρ}. By Ekeland’s variational

principle, there exists a sequence {un} ⊂ Bρ such that

c0 ≤ I(un) ≤ c0 +
1

n
and I(w) ≥ I(un)− 1

n
‖w − un‖H

for all w ∈ Bρ. Then, following the idea of [30], we can show that {un} is a bounded

Cerami sequence of I. Therefore, Lemma 3.3 implies that there exists a function u0 ∈ H
such that I ′(u0) = 0 and I(u0) = c0 < 0.

Step 2. We now show that there exists a function ũ0 ∈ H such that I ′(ũ0) = 0 and

I(ũ0) = c̃0 > 0. By Lemmas 3.4, 3.5 and 2.3, there is a sequence {un} ∈ H satisfies (3.1).

Moreover, Lemmas 3.1 and 3.3 show that this sequence has a convergent subsequence and

is bounded in H. So, we complete Step 2.

Therefore, combining the above two steps and Lemma 1.1, the proof of Theorem 1.2

is complete.
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