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A Characterization of Multipliers of a Lau Algebra Constructed by

Semisimple Commutative Banach Algebras

Sin-Ei Takahasi, Hiroyuki Takagi and Takeshi Miura*

Abstract. A necessary and sufficient condition for a Lau type binary operation defined

by two mappings to be an algebra-operation is given in terms of multipliers. Also a

characterization of multipliers of a Lau algebra constructed by semisimple commuta-

tive Banach algebras is given in terms of multipliers of original Banach algebras.

1. Introduction

In 2007, Sangani Monfared introduced a product ×θ on the Cartesian product A × B of

two Banach algebras A and B, which is of the form

(a, b)×θ (c, d) = (ac+ θ(d)a+ θ(b)c, bd),

where θ is a multiplicative linear functional on B. He investigated the Banach algebra

(A × B,×θ) in [4]. This type of product was first introduced by A. Lau [3] for a special

class of Banach algebras in 1983. After Lau, a product ×θ is called a θ-Lau product and

the algebra (A×B,×θ), abbreviated to A×θB, is called a θ-Lau Banach algebra. Several

mathematicians have studied τ -Lau Banach algebras A×τ B defined by a norm-decreasing

homomorphism τ from B into A instead of θ. We will note that the unitization and the

direct product are special cases of a Lau product. In this paper, we first give a necessary

and sufficient condition for a Lau type binary operation defined by two mappings to

be an algebra-operation in terms of multipliers. Secondly, we give a characterization of

multipliers of the Lau algebra constructed by semisimple commutative Banach algebras in

terms of multipliers of original Banach algebras. This extends a characterization obtained

by P. A. Dabhi [1].
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2. Lau type binary operations

Let A and B be algebras. Then the Cartesian product A×B becomes a linear space with

pointwise operations. Let F0(A) be the set of all mappings ρ from A into itself such that

ρ(0) = 0. Then F0(A) becomes a linear space with pointwise operations:

(ρ+ σ)(a) = ρ(a) + σ(a) and (λρ)(a) = λρ(a)

for a ∈ A, ρ, σ ∈ F0(A) and λ ∈ C. Also a mapping ρ in F0(A) is called a left (resp. right)

multiplier of A if ρ(xy) = ρ(x)y (resp. ρ(xy) = xρ(y)) holds for all x, y ∈ A. Also an

ordered pair (τ, σ) of mappings in F0(A) is called a double multiplier if xτ(y) = σ(x)y

holds for all x, y ∈ A. In particular, the algebra of all linear mappings from A into itself

is denoted by L(A).

For two mappings S : d 7→ Sd and T : b 7→ Tb from B into F0(A), we define

(a, b)×S,T (c, d) = (ac+ Sda+ Tbc, bd)

for each (a, b), (c, d) ∈ A×B. Then ×S,T is a binary operation on A×B.

Theorem 2.1. Let S and T be as above. Then ×S,T is an algebra-operation on A×B if

and only if the following conditions hold:

(i) S (resp. T ) is an anti-homomorphism (resp. a homomorphism) from B into L(A).

(ii) Sb (resp. Tb) is a right (resp. left) multiplier of A for all b ∈ B.

(iii) SbTd = TdSb holds for all b, d ∈ B.

(iv) (Tb, Sb) is a double multiplier of A for all b ∈ B.

Proof. Suppose that ×S,T is an algebra-operation on A×B. Since

(e, f)×S,T ((a, b) + (c, d)) = (e, f)×S,T (a+ c, b+ d)

= (e(a+ c) + Sb+de+ Tf (a+ c), f(b+ d))

and since

(e, f)×S,T (a, b) + (e, f)×S,T (c, d)

= (ea+ Sbe+ Tfa, fb) + (ec+ Sde+ Tfc, fd)

= (e(a+ c) + (Sb + Sd)e+ Tfa+ Tfc, f(b+ d)),

it follows that

Sb+de+ Tf (a+ c) = (Sb + Sd)e+ Tfa+ Tfc
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for all (a, b), (c, d), (e, f) ∈ A×B. Putting e = 0 in the above equation, we see that Tf is

additive for each f ∈ B. Also putting a = c = 0 in the same equation, we see that S is

additive. Similarly, considering the equation

((a, b) + (c, d))×S,T (e, f) = (a, b)×S,T (e, f) + (c, d)×S,T (e, f),

we see that T and Sf (f ∈ B) are additive. Also since

λ((a, b)×S,T (c, d)) = (λac+ λSda+ λTbc, λbd)

and

(a, b)×S,T (λ(c, d)) = (a, b)×S,T (λc, λd) = (λac+ Sλda+ Tb(λc), λbd),

it follows that

λSda+ λTbc = Sλda+ Tb(λc)

for all (a, b), (c, d) ∈ A× B and λ ∈ C. Putting a = 0 in the above equation, we see that

Tb is homogeneous for each b ∈ B. Also putting c = 0 in the same equation, we see that

S is homogeneous. Similarly, considering the equation

λ((a, b)×S,T (c, d)) = (λ(a, b))×S,T (c, d),

we see that T and Sd (d ∈ B) are homogeneous. Consequently, we obtain that both S

and T are linear mappings from B into L(A).

Now for (a, b), (c, d), (e, f) ∈ A×B, we have

((a, b)×S,T (c, d))×S,T (e, f)

= (ac+ Sda+ Tbc, bd)×S,T (e, f)

= (ace+ (Sda)e+ (Tbc)e+ Sf (ac+ Sda+ Tbc) + Tbde, bdf)

= (ace+ (Sda)e+ (Tbc)e+ Sf (ac) + Sf (Sda) + Sf (Tbc) + Tbde, bdf)

and

(a, b)×S,T ((c, d)×S,T (e, f))

= (a, b)×S,T (ce+ Sfc+ Tde, df)

= (ace+ a(Sfc) + a(Tde) + Sdfa+ Tb(ce+ Sfc+ Tde), bdf)

= (ace+ a(Sfc) + a(Tde) + Sdfa+ Tb(ce) + Tb(Sfc) + Tb(Tde), bdf).

Therefore ×S,T is associative if and only if

(Sda)e+ (Tbc)e+ Sf (ac) + Sf (Sda) + Sf (Tbc) + Tbde

= a(Sfc) + a(Tde) + Sdfa+ Tb(ce) + Tb(Sfc) + Tb(Tde)
(2.1)
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holds for all (a, b), (c, d), (e, f) ∈ A×B. Putting e = 0 in (2.1), we have

(2.2) Sf (ac) + Sf (Sda) + Sf (Tbc) = a(Sfc) + Sdfa+ Tb(Sfc)

for all a, c ∈ A and b, d, f ∈ B. Putting c = 0 in (2.2), we have

(2.3) Sf (Sda) = Sdfa

for all a ∈ A and d, f ∈ B. Putting a = 0 in (2.2), we have

(2.4) Sf (Tbc) = Tb(Sfc)

for all c ∈ A and b, f ∈ B. By (2.2), (2.3) and (2.4), we have

(2.5) Sf (ac) = a(Sfc)

for all a, c ∈ A and f ∈ B. By (2.3), (2.4) and (2.5), the equation (2.1) becomes

(2.6) (Sda)e+ (Tbc)e+ Tbde = a(Tde) + Tb(ce) + Tb(Tde)

for all a, c, e ∈ A and b, d ∈ B. Putting a = c = 0 in (2.6), we have

(2.7) Tbde = Tb(Tde)

for all e ∈ A and b, d ∈ B. By (2.7) and (2.6), we have

(2.8) (Sda)e+ (Tbc)e = a(Tde) + Tb(ce)

for all a, c, e ∈ A and b, d ∈ B. Putting c = 0 in (2.8), we have

(2.9) (Sda)e = a(Tde)

for all a, e ∈ A and d ∈ B. By (2.8) and (2.9), we have

(2.10) (Tbc)e = Tb(ce)

for all c, e ∈ A and b ∈ B. Therefore (2.1) implies (2.3), (2.4), (2.5), (2.7), (2.9) and

(2.10). Conversely, we can easily see that (2.3), (2.4), (2.5), (2.7), (2.9) and (2.10) imply

(2.1).

Also we have the following equivalences:

(2.3) ⇐⇒ Sdf = SfSd (d, f ∈ B)

⇐⇒ S is an anti-homomorphism from B into L(A).

(2.4) ⇐⇒ SfTb = TbSf (b, f ∈ B).

(2.5) ⇐⇒ each Sb is a right multiplier of A (b ∈ B).

(2.7) ⇐⇒ Tbd = TbTd (b, d ∈ B)

⇐⇒ T is an algebra-homomorphism from B to L(A).

(2.9) ⇐⇒ each (Tb, Sb) is a double multiplier of A (b ∈ B).

(2.10) ⇐⇒ each Tb is a left multiplier of A (b ∈ B).
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Therefore we obtain the desired conditions (i)–(iv).

Conversely, suppose that (i)–(iv) hold. By a similar argument, we can easily see that

×S,T is an algebra-operation on A×B.

If ×S,T is an algebra-operation on A × B, then we call (A × B,×S,T ) a Lau algebra

defined by S and T , and denote (A×B,×S,T ) by A×S,T B.

Now let M(A) be the set of all double multipliers of A. Then it becomes an algebra

with natural operations:

(T1, S1) + (T2, S2) = (T1 + T2, S1 + S2),

λ(T1, S1) = (λT1, λS1),

(T1, S1)(T2, S2) = (T1T2, S2S1).

Also we denote by Ml(A) and Mr(A) the algebra of all left multipliers of A and the algebra

of all right multipliers of A, respectively. If a left annihilator of A is only zero or if a right

annihilator of A is only zero, then A is said to be without order.

Lemma 2.2. Assume that A is without order. If (T, S), (T ′, S′) ∈ M(A), T, T ′ ∈ Ml(A)

and S, S′ ∈Mr(A), then TS′ = S′T .

Proof. First assume that a left annihilator of A is only zero. Since

(TS′)(x)y = T (S′x)y = T ((S′x)y) = T (xT ′y)

= (Tx)(T ′y) = S′(Tx)y = (S′T )(x)y

for all x, y ∈ A, the assumption implies that TS′ = S′T . Assume next that a right

annihilator is only zero. Since

y(TS′)x = y(T (S′x)) = (Sy)(S′x) = S′((Sy)x)

= S′(yTx) = yS′(Tx) = y(S′T )x

for all x, y ∈ A, the assumption implies that TS′ = S′T .

A semisimple Banach algebra is, of course, without order. It is known that if A is a

semisimple Banach algebra and (T, S) ∈M(A), then:

(v) T is a left multiplier of A and S is a right multiplier of A.

(vi) T and S are bounded linear operators on A.

From Theorem 2.1, Lemma 2.2 and the above facts, we obtain the following.
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Corollary 2.3. Assume that A is a semisimple Banach algebra. Then ×S,T is an algebra-

operation on A × B if and only if the mapping b 7→ (Tb, Sb) is a homomorphism from B

into M(A).

Assume that A is a semisimple commutative Banach algebra. If (T, S) ∈ M(A), then

T = S. Indeed, since

z(Tx)y = zyTx = z(Sy)x = x(Sy)z = xyTz = yxTz = y(Sx)z = z(Sx)y

for all x, y, z ∈ A, it follows from the semisimplicity of A that T = S as required. As

a consequence, M(A) becomes the usual multiplier algebra of A. Therefore for any two

mappings S, T : B → F0(A), ×S,T is an algebra-operation on A× B if and only if S = T

and T is a homomorphism from B into M(A). In this case, we write ×T for ×T,T and

A ×T B for A ×T,T B. We can easily see that if B is commutative, then A ×T B is also

commutative.

3. A characterization of multipliers of Lau algebras

In this section, we focus on the semisimple commutative Banach algebras. Let A and

B be semisimple commutative Banach algebras. By ΦA and ΦB, we denote the Gelfand

spaces of A and B, respectively. Let M(A) be the multiplier algebra of A with Gelfand

space ΦM(A). Put La(x) = ax for each a, x ∈ A. Then La is a multiplier of A. We

sometimes identify La with a. Then A is an ideal of M(A). Let T be a norm-decreasing

homomorphism from B into M(A). Then the Lau algebra A×T B becomes a commutative

Banach algebra with the l1-norm:

‖(a, b)‖ = ‖a‖+ ‖b‖ ((a, b) ∈ A×B).

For any ϕ ∈ A∗, the dual space of A, and for any ψ ∈ B∗, the dual space of B, we put

(ϕ,ψ)(a, b) = ϕ(a) + ψ(b) ((a, b) ∈ A×B).

Then (ϕ,ψ) is a continuous linear functional on A×T B with the norm max {‖ϕ‖ , ‖ψ‖}.
Let ϕ ∈ ΦA. Choose eϕ ∈ A with ϕ(eϕ) = 1 and put

ϕ̃(S) = ϕ(Seϕ)

for all S ∈ M(A). Here ϕ̃ does not depend on a choice of eϕ. Indeed, if a ∈ A with

ϕ(a) = 1, then

ϕ(Sa) = ϕ(eϕSa) = ϕ((Seϕ)a) = ϕ(Seϕ)ϕ(a) = ϕ(Seϕ).

We have the following.
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Lemma 3.1. Let ϕ ∈ ΦA. Then ϕ̃ ∈ ΦM(A) and (ϕ, ϕ̃ ◦ T ) ∈ ΦA×TB.

Proof. (i) Observe that ϕ̃ is a nonzero continuous linear functional on M(A). If S1, S2 ∈
M(A), then

ϕ̃(S1S2) = ϕ(S1(S2(eϕ))) = ϕ(eϕS1(S2(eϕ)))

= ϕ(S1(eϕ)S2(eϕ)) = ϕ(S1eϕ)ϕ(S2eϕ) = ϕ̃(S1)ϕ̃(S2)

for all S1, S2 ∈M(A), and hence ϕ̃ ∈ ΦM(A).

(ii) By (i), we have ϕ̃ ◦ T ∈ B∗ and hence (ϕ, ϕ̃ ◦ T ) is a nonzero continuous linear

functional on A ×T B. We next show that (ϕ, ϕ̃ ◦ T ) is multiplicative. To do this, let

(a, b), (c, d) ∈ A×T B. Then

(ϕ, ϕ̃ ◦ T )((a, b)×T (c, d)) = (ϕ, ϕ̃ ◦ T )(ac+ Tda+ Tbc, bd)

= ϕ(ac) + ϕ(Tda) + ϕ(Tbc) + (ϕ̃ ◦ T )(bd)

= ϕ(a)ϕ(c) + ϕ(Tda) + ϕ(Tbc) + ϕ̃(Tbd)

= ϕ(a)ϕ(c) + ϕ(Tda) + ϕ(Tbc) + ϕ̃(Tb)ϕ̃(Td)

and

(ϕ, ϕ̃ ◦ T )(a, b)(ϕ, ϕ̃ ◦ T )(c, d) = (ϕ(a) + ϕ̃(Tb))(ϕ(c) + ϕ̃(Td))

= ϕ(a)ϕ(c) + ϕ(a)ϕ̃(Td) + ϕ(c)ϕ̃(Tb) + ϕ̃(Tb)ϕ̃(Td)

= ϕ(a)ϕ(c) + ϕ(a)ϕ(Tdeϕ) + ϕ(c)ϕ(Tbeϕ) + ϕ̃(Tb)ϕ̃(Td)

= ϕ(a)ϕ(c) + ϕ(eϕTda) + ϕ(eϕTbc) + ϕ̃(Tb)ϕ̃(Td)

= ϕ(a)ϕ(c) + ϕ(Tda) + ϕ(Tbc) + ϕ̃(Tb)ϕ̃(Td).

Therefore

(ϕ, ϕ̃ ◦ T )((a, b)×T (c, d)) = (ϕ, ϕ̃ ◦ T )(a, b)(ϕ, ϕ̃ ◦ T )(c, d)

holds. Consequently, (ϕ, ϕ̃ ◦ T ) ∈ ΦA×TB.

By the above lemma, we have {(ϕ, ϕ̃ ◦ T ) : ϕ ∈ ΦA} ⊂ ΦA×TB. Also observe that if

ψ ∈ ΦB, then (0, ψ) ∈ ΦA×TB. Then we have {(0, ψ) : ψ ∈ ΦB} ⊂ ΦA×TB. Put

E = {(ϕ, ϕ̃ ◦ T ) : ϕ ∈ ΦA} and F = {(0, ψ) : ψ ∈ ΦB} .

Then we have the following.

Lemma 3.2. The set E (resp. F ) is open (resp. closed) in ΦA×TB and ΦA×TB = E ∪ F
(disjoint union).
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Proof. Take f ∈ ΦA×TB arbitrarily. Assume that f |A×{0} 6= 0. Put

ϕ(a) = f(a, 0)

for each a ∈ A. Then ϕ ∈ ΦA. Moreover we have

(ϕ, ϕ̃ ◦ T )(a, b) = ϕ(a) + ϕ̃(Tb) = f(a, 0) + ϕ(Tbeϕ)

= f(a, 0) + f(Tbeϕ, 0) = f(a, 0) + f((eϕ, 0)×T (0, b))

= f(a, 0) + f(eϕ, 0)f(0, b) = f(a, 0) + ϕ(eϕ)f(0, b) = f(a, b)

for all (a, b) ∈ A×T B. In other words, (ϕ, ϕ̃ ◦ T ) = f .

Next assume that f |A×{0} = 0. Put

ψ(b) = f(0, b)

for each b ∈ B. Then ψ is a multiplicative linear functional on B. Since

ψ(b) = f(0, b) = f(a, 0) + f(0, b) = f(a, b)

for all (a, b) ∈ A ×T B, it follows that ψ ∈ ΦB and f = (0, ψ). These observations imply

ΦA×TB = E ∪ F . It is evident that E ∩ F = ∅. Also it is easy to see that F is closed in

ΦA×TB, and hence E is open.

Lemma 3.3. The mapping ϕ 7→ (ϕ, ϕ̃ ◦ T ) (resp. ψ → (0, ψ)) is a homeomorphism from

ΦA (resp. ΦB) onto E (resp. F ).

Proof. It is clear that the mapping ϕ 7→ (ϕ, ϕ̃◦T ) is a bijection from ΦA onto E. Also this

mapping is continuous. To see this, let {ϕλ} be a net in ΦA which converges to ϕ ∈ ΦA.

Take (a, b) ∈ A×T B arbitrarily. Then limλ ϕλ(eϕ) = ϕ(eϕ) = 1. Also we have

lim
λ
ϕλ(Tb(eϕλ))ϕλ(eϕ) = lim

λ
ϕλ(Tb(eϕλ)eϕ) = lim

λ
ϕλ(Tb(eϕ)eϕλ)

= lim
λ
ϕλ(Tbeϕ) = ϕ(Tbeϕ) = ϕ̃(Tb),

and hence limλ ϕλ(Tb(eϕλ)) = ϕ̃(Tb). Therefore

lim
λ

(ϕλ, ϕ̃λ ◦ T )(a, b) = lim
λ
ϕλ(a) + lim

λ
ϕ̃λ(Tb) = ϕ(a) + lim

λ
ϕλ(Tb(eϕλ))

= ϕ(a) + ϕ̃(Tb) = (ϕ, ϕ̃ ◦ T )(a, b)

holds for all (a, b) ∈ A×T B. In other words, limλ(ϕλ, ϕ̃λ ◦ T ) = (ϕ, ϕ̃ ◦ T ). It is evident

that the inverse mapping is continuous.

Moreover, it will be obvious that the mapping ψ 7→ (0, ψ) is a homeomorphism from

ΦB onto F .
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Hereafter, according to the above lemma, we may identify ΦA and ΦB with E and F ,

respectively. Moreover, we may identify A×{0} and {0}×B with A and B, respectively.

Thus Lemma 3.2 is restated as follows.

Lemma 3.4. ΦA×TB = ΦA ∪ ΦB (disjoint union).

The above disjoint union implies that the commutative Banach algebra A ×T B is

semisimple. Also note that ΦA is an open subset of ΦA×TB and ΦB is a closed subset of

ΦA×TB.

Now if S is a bounded linear mapping from A ×T B into itself, then there exist a

unique pair of bounded linear mappings S1 : A×T B → A and S2 : A×T B → B such that

S(a, b) = (S1(a, b), S2(a, b)) for all (a, b) ∈ A×T B. We will express this by

S = (S1, S2).

The next theorem describes the multipliers of A×T B completely.

Theorem 3.5. Let S be a bounded linear mapping from A ×T B into itself with S =

(S1, S2). Then S ∈M(A×T B) if and only if S1 and S2 satisfy the following conditions:

(i) S1|A ∈M(A).

(ii) S2|B ∈M(B).

(iii) S2|A = 0.

(iv) (S1b)a = Tb(S1a)− TS2b(a) for all a ∈ A and b ∈ B.

Proof. First assume S ∈M(A×T B). Let (a, b), (c, d) ∈ A×T B. Then

(a, b)×T (S1(c, d), S2(c, d)) = (a, b)×T S(c, d)

= (S(a, b))×T (c, d)

= (S1(a, b), S2(a, b))×T (c, d).

Therefore it follows that

aS1(c, d) + TS2(c,d)(a) + Tb(S1(c, d)) = S1(a, b)c+ Td(S1(a, b)) + TS2(a,b)(c)

and

bS2(c, d) = S2(a, b)d.

Taking b = d = 0, we have

(3.1) aS1c+ TS2c(a) = (S1a)c+ TS2a(c).
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Taking a = c = 0, we get

(3.2) Tb(S1d) = Td(S1b) and bS2d = (S2b)d.

Taking a = d = 0, we get

(3.3) Tb(S1c) = (S1b)c+ TS2b(c) and bS2c = 0.

By the second equation of (3.3) and the semisimplicity of B, we obtain that S2c = 0 for

all c ∈ A, i.e., S2|A = 0. Then TS2c = TS2a = 0 for all a, c ∈ A. So we have from (3.1) that

aS1c = (S1a)c for all a, c ∈ A, i.e., S1|A ∈ M(A). Also note that the second equation of

(3.2) implies that S2|B ∈M(B). By the first equation of (3.3), we have

(S1b)c = Tb(S1c)− TS2b(c)

holds for all c ∈ A and b ∈ B. Consequently, S1 and S2 satisfy the conditions (i)–(iv).

Conversely, assume that S1 and S2 satisfy the conditions (i)–(iv). Let a, c ∈ A and

b, d ∈ B. We observe

(3.4) Td(S1a) + Tb(S1(c, d)) = Tb(S1c) + Td(S1(a, b)).

In fact, let x be any element of A. Then we have

x[Td(S1a) + Tb(S1(c, d))] = Td(xS1a) + Tb(xS1(c, d))

= Td(xS1a) + Tb[xS1c+ (S1d)x]

= Td(xS1a) + Tb[xS1c+ Td(S1x)− TS2d(x)] (by (iv))

= Td(xS1a) + Tb(xS1c) + (TbTd)(S1x)− (TbTS2d)(x)

= Td(xS1a) + xTb(S1c) + Tbd(S1x)− TS2(bd)(x) (by (ii))

and

x[Tb(S1c) + Td(S1(a, b))] = xTb(S1c) + Td(xS1(a, b))

= xTb(S1c) + Td(xS1a+ xS1b)

= xTb(S1c) + Td[(xS1a+ Tb(S1x)− TS2b(x)] (by (iv))

= xTb(S1c) + Td(xS1a) + (TdTb)(S1x)− (TdTS2b)(x)

= xTb(S1c) + Td(xS1a) + Tbd(S1x)− TS2(bd)(x) (by (ii)).

Consequently we have

x[Td(S1a) + Tb(S1(c, d))] = x[Tb(S1c) + Td(S1(a, b))]

for all x ∈ A. Since A is semisimple, we obtain the equality (3.4) as required.
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Now take (a, b), (c, d) ∈ A×T B arbitrarily. Then we have

(a, b)×T S(c, d)

= (a, b)×T (S1(c, d), S2(c, d))

= (aS1(c, d) + TS2(c,d)(a) + Tb(S1(c, d)), bS2(c, d))

= (aS1(c, d) + TS2d(a) + Tb(S1(c, d)), bS2d) (by (iii))

= (aS1c+ aS1d+ TS2d(a) + Tb(S1(c, d)), bS2d)

= (aS1c+ Td(S1a)− TS2d(a) + TS2d(a) + Tb(S1(c, d)), bS2d) (by (iv))

= ((S1a)c+ Td(S1a) + Tb(S1(c, d)), dS2b) (by (i) and (ii))

and

(S(a, b))×T (c, d)

= (S1(a, b), S2(a, b))×T (c, d)

= (S1(a, b)c+ Td(S1(a, b)) + TS2(a,b)(c), S2(a, b)d)

= ((S1a)c+ (S1b)c+ Td(S1(a, b)) + TS2b(c), (S2b)d) (by (iii))

= ((S1a)c+ Tb(S1c)− TS2b(c) + Td(S1(a, b)) + TS2b(c), dS2b) (by (iv))

= ((S1a)c+ Tb(S1c) + Td(S1(a, b)), dS2b).

Therefore it follows from (3.4) that

(a, b)×T S(c, d) = (S(a, b))×T (c, d).

Consequently, we have S ∈M(A×T B).

If {Tb : b ∈ B} ⊆ A, then the above theorem is just [1, Theorem 1] obtained by

P. A. Dabhi.

For each T ∈M(A), there exists a unique bounded continuous function T̂ on ΦA such

that T̂ a(ϕ) = T̂ (ϕ)â(ϕ) for all a ∈ A and ϕ ∈ ΦA (see [2]). Put

M̂(A) =
{
T̂ : T ∈M(A)

}
.

Definition 3.6. Let Û ∈ M̂(A) and V̂ ∈ M̂(B). We say that the ordered pair (Û , V̂ )

satisfies the condition ([) if

TbU − TV (b) ∈ A (∼= {La : a ∈ A} ⊆M(A))

for all b ∈ B.

Given a topological space X, we denote by Cb(X) the set of all bounded continuous

complex-valued functions on X. Then we have the following.
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Theorem 3.7. M̂(A×TB) equals the set S of all σ ∈ Cb(ΦA×TB) such that σ|ΦA ∈ M̂(A),

σ|ΦB ∈ M̂(B) and the ordered pair (σ|ΦA , σ|ΦB ) satisfies the condition ([).

Proof. Take S ∈M(A×T B) arbitrarily. Write

S = (S1, S2),

where S1 : A×T B → A and S2 : A×T B → B are bounded linear mappings. Then S1 and

S2 must satisfy the conditions (i)–(iv) in Theorem 3.5. Take ϕ ∈ ΦA arbitrarily. By (i)

and (iii), we have

Ŝeϕ(ϕ) = (ϕ, ϕ̃ ◦ T )(S(eϕ, 0)) = (ϕ, ϕ̃ ◦ T )(S1eϕ, S2eϕ)

= (ϕ, ϕ̃ ◦ T )(S1eϕ, 0) = ϕ(S1eϕ) = Ŝ1|A(ϕ)êϕ(ϕ)

= Ŝ1|A(ϕ).

On the other hand, we have

Ŝeϕ(ϕ) = Ŝ(ϕ, ϕ̃ ◦ T )(̂eϕ, 0)(ϕ, ϕ̃ ◦ T ) = Ŝ(ϕ, ϕ̃ ◦ T ) = Ŝ(ϕ).

Therefore we have Ŝ(ϕ) = Ŝ1|A(ϕ). In other words, Ŝ|ΦA = Ŝ1|A ∈ M̂(A). Take ψ ∈ ΦB

arbitrarily. By (ii), we have

Ŝeψ(ψ) = (0, ψ)(S1(eψ), S2(eψ)) = ψ(S2eψ) = ψ(S2|B(eψ))

= Ŝ2|B(ψ)êψ(ψ) = Ŝ2|B(ψ).

On the other hand, we have

Ŝeψ(ψ) = Ŝ(ψ)(̂0, eψ)(0, ψ) = Ŝ(ψ)ψ(eψ) = Ŝ(ψ).

Therefore we have Ŝ(ψ) = Ŝ2|B(ψ). In other words, Ŝ|ΦB = Ŝ2|B ∈ M̂(B). Now put

U = S1|A and V = S2|B.

Since LS1b = Tb(S1|A)− TS2b holds for all b ∈ B from (iv), it follows that the ordered pair

(Û , V̂ ) satisfies the condition ([). Then Ŝ must be in S. Consequently, M̂(A×T B) ⊆ S.

Conversely, let σ ∈ S. Then σ ∈ Cb(ΦA×TB), σ|ΦA = Û ∈ M̂(A), σ|ΦB = V̂ ∈ M̂(B)

and the pair (Û , V̂ ) satisfies the condition ([). So we have

Û(a)(ϕ) = σ(ϕ, ϕ̃ ◦ T )â(ϕ) (ϕ ∈ ΦA, a ∈ A)

and

V̂ (b)(ψ) = σ(0, ψ)̂b(ψ) (ψ ∈ ΦB, b ∈ B).
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Define S1 : A×T B → A and S2 : A×T B → B by

S1(a, b) = U(a) + TbU − TV (b) and S2(a, b) = V (b)

for each (a, b) ∈ A ×T B. Then both S1 and S2 are bounded linear mappings. Put

S = (S1, S2). Then we can easily see that S is a bounded linear mapping from A ×T B
into itself and that S1, S2 satisfy the conditions (i)–(iv) in Theorem 3.5. Hence we have

from Theorem 3.5 that S ∈M(A×T B). Let (a, b) ∈ A×T B, ϕ ∈ ΦA and ψ ∈ ΦB. Then

Ŝ(a, b)(ϕ, ϕ̃ ◦ T ) = (ϕ, ϕ̃ ◦ T )(S1(a, b), S2(a, b))

= ϕ(S1(a, b)) + ϕ̃(TS2(a,b))

= ϕ
(
(Ua)eϕ + (TbU)eϕ − TV (b)eϕ

)
+ ϕ(TS2(a,b)eϕ)

= ϕ(Ua) + ϕ((TbU)eϕ))

= σ(ϕ, ϕ̃ ◦ T )â(ϕ) + T̂b(ϕ)Û(ϕ)

= σ(ϕ, ϕ̃ ◦ T )â(ϕ) + T̂b(ϕ)σ(ϕ, ϕ̃ ◦ T )

= σ(ϕ, ϕ̃ ◦ T )(â(ϕ) + T̂b(ϕ)).

On the other hand, we have

Ŝ(a, b)(ϕ, ϕ̃ ◦ T ) = Ŝ(ϕ, ϕ̃ ◦ T )(̂a, b)(ϕ, ϕ̃ ◦ T )

= Ŝ(ϕ, ϕ̃ ◦ T )(ϕ(a) + ϕ̃(Tb))

= Ŝ(ϕ, ϕ̃ ◦ T )(â(ϕ) + T̂b(ϕ)).

Therefore we have

σ(ϕ, ϕ̃ ◦ T )(â(ϕ) + T̂b(ϕ)) = Ŝ(ϕ, ϕ̃ ◦ T )(â(ϕ) + T̂b(ϕ)).

In particular taking a = eϕ and b = 0 in the above equation, we have

Ŝ(ϕ) = Ŝ(ϕ, ϕ̃ ◦ T ) = σ(ϕ, ϕ̃ ◦ T ) = σ(ϕ) (ϕ ∈ ΦA),

and hence Ŝ|ΦA = σ|ΦA . Note that

Ŝ(a, b)(0, ψ) = (0, ψ)(S1(a, b), S2(a, b)) = ψ(S2(a, b))

= ψ(V b) = V̂ (ψ)̂b(ψ) = σ(ψ)̂b(ψ).

On the other hand, we have

Ŝ(a, b)(0, ψ) = Ŝ(0, ψ)(̂a, b)(0, ψ) = Ŝ(ψ)̂b(ψ).

Therefore we have that Ŝ(ψ) = σ(ψ) for all ψ ∈ ΦB, and hence Ŝ|ΦB = σ|ΦB . Then we

have σ = Ŝ ∈ M̂(A ×T B). Consequently, S ⊆ M̂(A ×T B). Thus we have the desired

result.
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Note that if {Tb : b ∈ B} ⊆ A, then any ordered pair (Û , V̂ ) with U ∈ M(A) and

V ∈ M(B) always satisfies the condition ([). Therefore the next corollary follows from

Theorem 3.7 immediately.

Corollary 3.8. Assume that {Tb : b ∈ B} ⊆ A. Then

M̂(A×T B) =
{
σ ∈ Cb(ΦA×TB) : σ|ΦA ∈ M̂(A), σ|ΦB ∈ M̂(B)

}
.

Let θ ∈ ΦB and idA the identity mapping of A. Put

Tb = θ(b) idA

for each b ∈ B. Then T is a norm-decreasing homomorphism from B into M(A). In this

case, ×T is just the θ-Lau product ×θ defined in Sangani Monfared [4]. Therefore we have

the following.

Corollary 3.9. M̂(A×θ B) equals the set of all σ ∈ Cb(ΦA×θB) such that σ|ΦA ∈ M̂(A),

σ|ΦB ∈ M̂(B) and σ|ΦA − σ(θ)1 ∈ Â.

Proof. Let b ∈ B, U ∈M(A) and V ∈M(B). Then

̂TbU − TV (b)(ϕ) = T̂b(ϕ)Û(ϕ)− T̂V (b)(ϕ) = θ(b)Û(ϕ)− θ(V (b))

= Û(ϕ)̂b(θ)− V̂ (θ)̂b(θ) =
(
Û(ϕ)− V̂ (θ)

)
b̂(θ)

for all ϕ ∈ ΦA. Then we have

TbU − TV (b) = b̂(θ)
(
U − V̂ (θ) idA

)
for all b ∈ B. Then an ordered pair (Û , V̂ ) satisfies the condition ([) if and only if

U − V̂ (θ) idA ∈ A or equivalently, Û − V̂ (θ)1 ∈ Â. Therefore the desired result follows

from Theorem 3.7.

The above corollary immediately implies the following.

Corollary 3.10. Suppose that A is a non-unital commutative C*-algebra. Then

M̂(A×θ B) =

{
σ ∈ Cb(ΦA×θB) : σ|ΦB ∈ M̂(B), lim

ϕ→∞
σ|ΦA(ϕ) = σ(θ)

}
.

In particular, if B is a commutative C*-algebra, then

M̂(A×θ B) =

{
σ ∈ Cb(ΦA×θB) : lim

ϕ→∞
σ|ΦA(ϕ) = σ(θ)

}
.
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