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Two-step Homogeneous Geodesics in Homogeneous Spaces

Andreas Arvanitoyeorgos* and Nikolaos Panagiotis Souris

Abstract. We study geodesics of the form γ(t) = π(exp(tX) exp(tY )), X,Y ∈ g =

Lie(G), in homogeneous spaces G/K, where π : G → G/K is the natural projec-

tion. These curves naturally generalise homogeneous geodesics, that is orbits of

one-parameter subgroups of G (i.e., γ(t) = π(exp(tX)), X ∈ g). We obtain suf-

ficient conditions on a homogeneous space implying the existence of such geodesics

for X,Y ∈ m = To(G/K). We use these conditions to obtain examples of Rieman-

nian homogeneous spaces G/K so that all geodesics of G/K are of the above form.

These include total spaces of homogeneous Riemannian submersions endowed with one

parameter families of fiber bundle metrics, Lie groups endowed with special one pa-

rameter families of left-invariant metrics, generalised Wallach spaces, generalized flag

manifolds, and k-symmetric spaces with k-even, equipped with certain one-parameter

families of invariant metrics.

1. Introduction

The investigation of geodesics in homogeneous spaces G/K naturally focuses to those

geodesics which are orbits of one parameter subgroups of G. These are curves of the form

(1.1) γ(t) = π(exp(tX)),

where X is a non-zero vector in the Lie algebra g of G and π denotes the natural projection

G→ G/K. There are several classes of homogeneous spaces G/K such that any geodesic γ

passing through the origin of G/K is such an orbit, including Lie groups with bi-invariant

metrics, symmetric spaces, compact homogeneous spaces with the standard metric and

naturally reductive spaces.

A geodesic of the form (1.1) is called a homogeneous geodesic and a space G/K such

that any geodesic of G/K passing through the origin is homogeneous, is called a geodesic

orbit space (g.o. space). Homogeneous geodesics were originally studied by B. Kostant
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and E. B. Vinberg. In [18] O. Kowalski and L. Vanhecke initiated the study of g.o. spaces

in the early 90’s and since then, g.o. Riemannian and pseudo-Riemannian spaces have

been extensively investigated by many authors. We refer the reader to [13] for a survey

on homogeneous geodesics and g.o. spaces, concerning both the Riemannian and pseudo-

Riemannian case.

In this paper we consider a generalisation of homogeneous geodesics, namely geodesics

of the form

(1.2) γ(t) = π(exp(tX) exp(tY )), X, Y ∈ g,

which we call two-step homogeneous geodesics. In the main Theorem 2.3 we find sufficient

conditions on a Riemannian homogeneous space G/K, which imply the existence of two-

step homogeneous geodesics in G/K. We use Theorem 2.3 to obtain various classes of

Riemannian homogeneous spaces G/K such that any geodesic of G/K passing through

the origin is two-step homogeneous. We call these spaces two-step g.o. spaces. A notable

class of two-step g.o. spaces are total spaces G/K of a homogeneous fibration

H/K → G/K → G/H

endowed with a standard metric which is “deformed” along the fibers H/K (cf. Propo-

sition 2.5). Well known examples of such Riemannian spaces are the odd-dimensional

spheres S2n+1 as total spaces of the Hopf fibration, endowed with Cheeger deformation

metrics g1+ε, ε > 0. Other examples of two-step g.o. spaces include Lie groups with

special one parameter families of left invariant metrics, generalized flag manifolds and

generalised symmetric spaces of even order (cf. Section 6).

Geodesics of the form (1.2) were introduced by H. C. Wang in [22] as geodesics in a

semisimple Lie group G, equipped with a metric induced by a Cartan involution of the Lie

algebra g of G. In [11] D’Atri and Ziller proved that a large class of left-invariant metrics in

a compact Lie groupG induce geodesics of the form γ(t) = exp(tX) exp(tY ). IfG is simple,

these are precisely the left-invariant metrics which are naturally reductive with respect to

a subgroup of the isometry group of G. In [12] R. Dohira proved that if the tangent space

To(G/K) of a homogeneous space splits into submodules m1, m2 satisfying certain algebraic

relations, and if G/K is endowed with a special one parameter family of Riemannian

metrics gc, then all geodesics of the Riemannian space (G/K, gc) are of the form (1.2).

Corollary 2.4 in the present paper is a generalisation of Dohira’s result. In [3] the authors

studied metrics whose geodesics are of the form γ(t) = π(exp(tX) exp(tY ) exp(tZ)) in

generalized Wallach spaces. Moreover, the authors obtained a necessary and sufficient

condition for a curve of the form γ(t) = π(exp(tX) exp(tY ) exp(tZ)), X,Y, Z ∈ m =

To(G/K), to be a geodesic, which is a generalised version of the “geodesic lemma” for

homogeneous geodesics in [18].
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The paper is organised as follows: In Section 2 we state our main results (Theorem 2.3,

Corollary 2.4 and Proposition 2.5). In Section 3 we give some preliminary facts about in-

variant metrics on homogeneous spaces G/K and invariant decompositions of To(G/K).

In Section 4 we prove Theorem 2.3 and Corollary 2.4. In Section 5 we prove Proposi-

tion 2.5 and we give examples of two-step g.o. spaces that are total spaces of homogeneous

Riemannian fibrations. Finally, in Section 6 we use Corollary 2.4 to give examples of

Riemannian two-step g.o. spaces including Lie groups, flag manifolds and k-symmetric

spaces.

2. Statement of main results

Let (G/K, g) be a Riemannian homogeneous manifold and consider the natural map

π : G→ G/K. Let o = π(e) be the origin of G/K.

Definition 2.1. A two-step homogeneous geodesic on G/K is a geodesic γ with the

property that there exist X,Y ∈ g such that γ(t) = π(exp(tX) exp(tY )), for any t ∈ R.

Definition 2.2. A two-step geodesic orbit space (two-step g.o. space) is a Riemannian

homogeneous space so that all geodesics γ with γ(0) = o, are two-step homogeneous.

The main theorem is the following:

Theorem 2.3. Let M = G/K be a homogeneous space admitting a naturally reductive

Riemannian metric. Let B be the corresponding inner product on m = To(G/K). We

assume that m admits an Ad(K)-invariant orthogonal decomposition

(2.1) m = m1 ⊕m2 ⊕ · · · ⊕ms,

with respect to B. We equip G/K with a G-invariant Riemannian metric g corresponding

to the Ad(K)-invariant positive definite inner product

(2.2) 〈 , 〉 = λ1B|m1 + · · ·+ λsB|ms , λ1, . . . , λs > 0.

If (ma,mb) is a pair of submodules in the decomposition (2.1) such that

(2.3) [ma,mb] ⊂ ma,

then any geodesic γ of (G/K, g) with γ(0) = o and γ̇(0) ∈ ma ⊕ mb, is a two-step homo-

geneous geodesic.

In particular, if γ̇(0) = Xa +Xb ∈ ma⊕mb, then for every t ∈ R this geodesic is given

by

(2.4) γ(t) = π(exp t(Xa + λXb) exp t(1− λ)Xb),

where λ = λb/λa. Moreover, if any of the following relations hold:
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(1) λa = λb or

(2) [ma,mb] = {0},

then γ is a homogeneous geodesic, that is γ(t) = π(exp t(Xa +Xb)).

We note that conditions (1) and (2) are only sufficient conditions for a two-step homo-

geneous geodesic (2.4) to be a homogeneous geodesic. For example, the weakly symmetric

flag manifold SO(2`+ 1)/U(`) with tangent space decomposition To(SO(2`+ 1)/U(`)) =

m1⊕m2, with respect to the negative of the Killing form of so(2`+ 1), satisfies [m1,m2] ⊂
m1. Still, the SO(2` + 1)-metrics given by gλ = B|m1 + λBm2 , λ > 0 are one-parameter

family of metrics such that all geodesics are homogeneous [1]. In this case, neither of

the conditions (1), (2) are satisfied. Any geodesic γ with γ(0) = o and γ̇(0) = X1 + X2,

Xi ∈ mi, i = 1, 2, can be expressed as both homogeneous and two-step homogeneous

geodesic. Indeed, the homogeneous expression is given by γ(t) = π(exp(a + X1 + X2)),

where a ∈ u(`) is a vector which depends on the choice of X1, X2. On the other hand, by

Theorem 2.3 γ is also given by γ(t) = π(exp t(X1 +λX2) exp t(1−λ)X2) which is two-step

homogeneous. To find necessary conditions such that a two-step homogeneous geodesic is

a (one-step) homogeneous, is an open problem.

The following corollary provides a method to obtain many examples of two-step g.o.

spaces.

Corollary 2.4. Let M = G/K be a homogeneous space admitting a naturally reductive

Riemannian metric. Let B be the corresponding inner product of m = To(G/K). We

assume that m admits an Ad(K)-invariant orthogonal decomposition

(2.5) m = m1 ⊕m2

with respect to B, such that

[m1,m2] ⊂ m1.

Then M admits a one-parameter family of G-invariant Riemannian metrics gλ, λ ∈ R+,

such that (M, gλ) is a two-step g.o. space.

Each metric gλ corresponds to an Ad(K)-invariant positive definite inner product on

m of the form

(2.6) 〈 , 〉 = B|m1 + λB|m2 .

This is homothetic to a metric corresponding to the inner product

〈 , 〉 = λ1B|m1 + λ2B|m2 ,

where λ = λ2/λ1.



Two-step Homogeneous Geodesics in Homogeneous Spaces 1317

An important class of two-step g.o. spaces can be obtained as total space of a homo-

geneous Riemannian submersion π : G/K → G/H, endowed with a special one-parameter

family of fiber bundle metrics, as shown below.

Proposition 2.5. Let G be a Lie group admitting a bi-invariant Riemannian metric and

let K, H be closed and connected subgroups of G, such that K ⊂ H ⊂ G. Let B be the

Ad-invariant positive definite inner product on the Lie algebra g corresponding to the bi-

invariant metric of G. We identify each of the spaces To(G/K), To(G/H) and To(H/K)

with corresponding subspaces m, m1 and m2 of g, such that m = m1 ⊕ m2. We endow

G/K with the G-invariant Riemannian metric gλ corresponding to the Ad(K)-invariant

positive definite inner product

〈 , 〉 = B|m1 + λB|m2 , λ > 0,

on m. Then (G/K, gλ) is a two-step g.o. space.

Note that the natural map π : G/K → G/H is a Riemannian submersion with totally

geodesic fibers [6].

Theorem 2.3 and Corollary 2.4 will be proved in Section 4, and Proposition 2.5 will be

proved in Section 5. Other applications of Corollary 2.4 will be given in Section 6.

3. Preliminaries

3.1. Reductive homogeneous Riemannian spaces and G-invariant metrics

Let G be a Lie group with Lie algebra g, and K be a closed subgroup of G. Consider

the homogeneous manifold G/K with origin o, and the projection π : G→ G/K. The left

translation τg : G/K → G/K is given by τg(π(h)) = π(gh), g, h ∈ G. A G-invariant Rie-

mannian metric on G/K is a Riemannian metric which is invariant under left translations

on G/K. A Riemannian homogeneous space (G/K, g) is a homogeneous manifold G/K

endowed with a Riemannian G-invariant metric g.

Let g, k be the Lie algebras of G, K respectively and let Ad: G→ Aut(g) be the adjoint

representation of G. The homogeneous space G/K is called reductive if there exists a

decomposition g = k⊕m with Ad(K)m ⊂ m. The subspace m is naturally identified with

the tangent space To(G/K) through the pushforward (π∗)e of the projection π : G→ G/K.

Any G-invariant Riemannian metric on G/K corresponds to a unique Ad(K)-invariant

positive definite inner product on m and vice versa.

Definition 3.1. A reductive Riemannian homogeneous space (G/K, g) is called naturally

reductive if the G-invariant metric g corresponds to a positive definite inner product

B : m×m→ m with the property

(3.1) B([X,Y ]m, Z) +B(Y, [X,Z]m) = 0, for all X,Y, Z ∈ m.
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The class of naturally reductive Riemannian homogeneous spaces includes symmetric

spaces, Lie groups with bi-invariant metrics, flag manifolds with the standard metric and

generalised symmetric spaces.

3.2. Homogeneous geodesics in homogeneous spaces

It is well known that any homogeneous Riemannian manifold (G/K, g) is geodesically

complete, i.e., any geodesic γ on G/K is defined for all t ∈ R.

Definition 3.2. A homogeneous geodesic on a Riemannian homogeneous space G/K

is a geodesic γ with the property that there exists a vector X ∈ g \ {0}, such that

γ(t) = π(exp(tX)) for any t ∈ R. A Riemannian geodesic orbit space (g.o. space) is

a Riemannian homogeneous space (G/K, g) so that all geodesics γ with γ(0) = o are

homogeneous.

Every naturally reductive space is a g.o. space. Important examples of non naturally

reductive g.o. spaces are the generalised Heisenberg groups.

3.3. Invariant decompositions of m = To(G/K)

We assume that B : m×m→ m is an Ad(K)-invariant positive definite inner product on

m. An Ad(K)-invariant and B-orthogonal decomposition of m is a decomposition of the

form

m = m1 ⊕m2 ⊕ · · · ⊕ms,

with respect to B, such that Ad(K)mi ⊂ mi, i = 1, 2, . . . , s.

An important example of such a decomposition is the following:

Example 3.3. Let G/K be a compact homogeneous space. The isotropy representation

ρ : K → Aut(m) of G/K, given by ρ(k)X = ((τk)∗)o(X), k ∈ K, X ∈ m, is completely

reducible, therefore it induces a decomposition of m

(3.2) m = n1 ⊕ · · · ⊕ n`,

into irreducible submodules ni, i = 1, 2, . . . , ` with respect to an Ad(K)-invariant positive

definite inner product B on m. It is well known that the isotropy representation ρ of K is

equivalent to the restriction Ad(K)|m of the adjoint representation of K to m. Thus, it is

Ad(K)ni ⊂ ni, i = 1, 2, . . . , `.

In the decomposition (3.2) there might exist submodules nj that are pairwise equivalent

(as subrepresentations of K). By regrouping the pairwise equivalent subrepresentations

nj into submodules mi, we obtain a decomposition of the form

m = m1 ⊕m2 ⊕ · · · ⊕ms, s ≤ `,
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which is Ad(K)-invariant and orthogonal with respect to B.

If m = m1⊕· · ·⊕ms is an Ad(K)-invariant, orthogonal decomposition of m with respect

to an Ad(K)-invariant positive definite inner product B, then the inner product

〈 , 〉 = λ1B|m1 + · · ·+ λrB|mr , λ1, . . . , λs > 0,

is Ad(K)-invariant and positive definite, therefore it corresponds to a unique G-invariant

Riemannian metric on G/K.

Remark 3.4. Let ad: g → End(g) be the adjoint representation of g given by ad(X)Y =

[X,Y ]. The Ad(K)-invariance of a subspace mi implies the ad(k)-invariance of mi. More-

over, the Ad(K)-invariance of an inner product B implies the ad(k)-skew symmetry of B.

The converse of these statements is true if K is connected.

The following example will be used in Sections 5 and 6.

Example 3.5. Let G be a Lie group admitting a bi-invariant Riemannian metric g. Let

K be a connected subgroup of G and let g, k be the Lie algebras of G, K respectively.

The bi-invariant metric g corresponds to an Ad-invariant positive definite inner product

B on g, which induces an orthogonal decomposition g = k⊕m. Then this decomposition

is Ad(K)-invariant. Indeed, for any Xk, Yk ∈ k and Xm ∈ m, we set Zk = [Xk, Yk] ∈ k. Then

B([Xk, Xm], Yk) = −B(Xm, [Xk, Yk]) = −B(Xm, Zk) = 0.

It follows that [Xk, Xm] ∈ m, and since K is connected then Ad(K)m ⊂ m (cf. Re-

mark 3.4).

3.4. Local projections of vector fields

Let π : G → G/K be the projection and p ∈ G. Then for each vector field V in G there

exists an open neighborhood Uπ(p) of π(p) in G/K, such that π∗V is a well defined vector

field in Uπ(p). Indeed, since π : G→ G/K is a submersion, there exists a neighborhood U

of e in G such that π|U : U → π(U) is a bijection. Moreover, π(U) is an open neighborhood

of o in G/K (cf. [19, p. 546]). We set Uπ(p) = τp(π(U)) = π(LpU), where Lp is the left

translation in G. Since Lp is a diffeomorphism of G, the map π|LpU : LpU → Uπ(p) is a

bijection, therefore π∗V is a well defined vector field in Uπ(p).

4. Proof of the main results

In this section we will prove Theorem 2.3 and Corollary 2.4. The following lemmas will be

useful. Let XR, Y L denote the right-invariant and left-invariant vector fields in G induced

by X, Y , respectively.
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Lemma 4.1. Let G/K be a homogeneous space and let X,Y ∈ g. Then

(4.1) [XL, Y R] = 0.

Proof. Let p ∈ G and let f : G→ R be a smooth function. It is

[XL, Y R]pf = XL
p (Y Rf)− Y R

p (XLf)

=
d

dt

∣∣∣∣
t=0

(Y Rf)(p exp(tX))− d

dt

∣∣∣∣
t=0

(XLf)(exp(tY )p)

=
d

dt

∣∣∣∣
t=0

Y R
p exp(tX)f −

d

dt

∣∣∣∣
t=0

XL
exp(tY )pf

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(exp(sY )p exp(tX))

− d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

f(exp(tY )p exp(sX))

= 0,

which completes the proof.

Lemma 4.2. Let G be a Lie group with Lie algebra g. We assume that there exist subspaces

ma, mb of g such that [ma,mb] ⊂ ma. Then Ad(exp(mb))ma ⊆ ma.

Proof. The homomorphism Ad: G→ Aut g is analytic [14, p. 126], and for any X ∈ g, it

is

Ad(expg(X)) = expAut g ad(X) =
∞∑
n=0

1

n!
adn(X).

Let Xa ∈ ma and Xb ∈ mb. Then

Ad(expg(Xb))Xa =

∞∑
n=0

1

n!
adn(Xb)Xa.

Since [ma,mb] ⊂ ma, we use induction to obtain that adn(Xb)Xa ∈ ma, for any n ∈ N.

Consequently, for any N ∈ N, we have that

N∑
n=0

1

n!
adn(Xb)Xa ∈ ma.

Since ma is (topologically) closed, then

lim
N→∞

N∑
n=0

1

n!
adn(Xb)Xa ∈ ma,

which proves the lemma.
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Proof of Theorem 2.3. We set X = Xa + λXb, Y = (1− λ)Xb, α(t) = exp tX exp tY and

γ = π ◦ α. Let ∇ be the Riemannian connection of (G/K, gλ). Then γ(t) is a geodesic if

and only if ∇γ̇ γ̇ = 0. By using Koszul’s formula we have that

(4.2) g(V,∇γ̇ γ̇) = γ̇g(V, γ̇) + g(γ̇, [V, γ̇])− 1

2
V g(γ̇, γ̇),

for any vector field V in G/K. We will first show that the vector field ∇γ̇ γ̇ is well defined.

Indeed, let Rα(t), Lα(t) be the right and left translation respectively on G by α(t). Then

α̇(t) =
d

ds

∣∣∣∣
s=0

α(t+ s) =
d

ds

∣∣∣∣
s=0

exp(t+ s)X exp(t+ s)Y

=
d

ds

∣∣∣∣
s=0

exp(t+ s)X exp tY +
d

ds

∣∣∣∣
s=0

exp tX exp(t+ s)Y

=
d

ds

∣∣∣∣
s=0

exp sX exp tX exp tY +
d

ds

∣∣∣∣
s=0

exp tX exp tY exp sY

=
d

ds

∣∣∣∣
s=0

exp sXα(t) +
d

ds

∣∣∣∣
s=0

α(t) exp sY

= (Rα(t))∗(X) + (Lα(t))∗Y = (XR + Y L)α(t).

(4.3)

Equation (4.3) implies that the vector field α̇ along the curve α can be extended to the

vector field XR + Y L in G. Then, for any t ∈ R, there exists a neighborhood Uπ(α(t)) of

π(α(t)) = γ(t) in G/K such that π∗(X
R + Y L) is a well defined vector field in Uπ(α(t)),

which locally extends γ̇ (cf. Section 3.4). Therefore, ∇γ̇ γ̇ is well defined.

Next, we will show that the right-hand side of equation (4.2) vanishes for any t ∈ R
and for any vector field V in G/K. Since a basis of m can be transferred to a basis of

Tπ(p)G/K by (τp)∗, it suffices to consider any vector field V defined by

(4.4) Vπ(p) = (τp)∗Z = (π∗Z
L)π(p), Z ∈ m.

Moreover, we have that

γ̇(t) = (π∗)α(t)(X
R + Y L)α(t) = (τα(t))∗((τα(t)−1)∗(π∗)X

R
α(t) + Y )(4.5)

= (τα(t))∗(Ad(α(t)−1)X|m + Y ).(4.6)

We set

TX = Ad(α(t)−1)X = Ad(exp(−tY ) exp(−tX))X = Ad(exp(−tY ))X.

Since Y = (1− λ)Xb ∈ mb, and by taking into account relation (2.3), Lemma 4.2 implies

that TXa ∈ ma. Note also that TXb = Xb. We set Ya(t) = TXa. Then

(4.7) TX = T (Xa + λXb) = Ya(t) + λXb,
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and by relation (4.6) it follows that

(4.8) γ̇(t) = (τα(t))∗(Ya(t) +Xb).

Let t ∈ R. By using equations (4.4) and (4.6) and by taking into account the G-invariance

of the metric g, the first term in the right-hand side of (4.2) becomes

γ̇(t)g(V, γ̇) =
d

ds

∣∣∣∣
s=0

g((τα(t+s))∗Z, (τα(t+s))∗(Ad(α(t+ s)−1)X|m + Y ))

=
d

ds

∣∣∣∣
s=0

〈
Z,Ad(α(t+ s)−1)X|m + Y

〉
.

(4.9)

Also,

d

ds

∣∣∣∣
s=0

Ad(α(t+ s)−1)X|m =
d

ds

∣∣∣∣
s=0

Ad(exp(−t− s)Y exp(−t− s)X)X|m

=
d

ds

∣∣∣∣
s=0

Ad(exp(−t− s)Y )X|m

= [Ad(exp(−tY ))X,Y ]m = [TX, Y ]m.

(4.10)

By considering relations (2.2), (2.3) and by taking into account relations (4.7) and

(4.10), then equation (4.9) implies that the first term of the right-hand side of equation

(4.2) reduces to

γ̇(t)g(V, γ̇) = 〈[Ya(t) + λXb, (1− λ)Xb]m, Z〉 = (1− λ) 〈[Ya(t), Xb]m, Z〉

= (1− λ) 〈[Ya(t), Xb]ma , Z〉 = (1− λ)λaB(Z, [Ya(t), Xb]m).
(4.11)

To calculate the second term in the right-hand side of (4.2), we use expressions (4.5),

(4.8) and Lemma 4.1, as well as relation (4.4) and the G-invariance of the metric g. Hence

we obtain that

g
(
γ̇(t), [V, γ̇]γ(t)

)
= g

(
(τα(t))∗(Ya(t) +Xb), [(π∗)Z

L, (π∗)(X
R + Y L)]γ(t)

)
= g

(
(τα(t))∗(Ya(t) +Xb), ((π∗)[Z

L, XR + Y L])γ(t)
)

= g
(
(τα(t))∗(Ya(t) +Xb), (π∗)(Lα(t))∗[Z, Y ]

)
= g

(
(τα(t))∗(Ya(t) +Xb), (τα(t))∗(π∗)e[Z, Y ]

)
= 〈Ya(t) +Xb, [Z, Y ]m〉

= (1− λ) 〈Ya(t) +Xb, [Z,Xb]m〉 .

(4.12)

By taking into account relation (2.2) and the natural reductivity property of B, it

follows that

〈Ya(t) +Xb, [Z,Xb]m〉 = λaB(Ya(t), [Z,Xb]m) + λbB(Xb, [Z,Xb]m)

= −λaB(Z, [Ya(t), Xb]m)− λbB(Z, [Xb, Xb]m)

= −λaB(Z, [Ya(t), Xb]m).

(4.13)
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By using (4.13), then relation (4.12) implies that the second term in the right-hand

side of equation (4.2) reduces to

(4.14) (λ− 1)λaB(Z, [Ya(t), Xb]m).

To calculate the third term of (4.2), we use the local extension π∗(X
R + Y L) of γ̇(t),

which at π(p) (p ∈ G) is given by

(π∗)p(X
R + Y L)p = (τp)∗(Ad(p−1)X|m + Y ).

We have that

Vγ(t)g(γ̇, γ̇) = ((τα(t))∗Z)g(γ̇, γ̇)

=
d

ds

∣∣∣∣
s=0

g
(
(τp)∗(Ad(p−1)X|m + Y ), (τp−1)∗(Ad(p−1)X|m + Y )

)
=

d

ds

∣∣∣∣
s=0

〈
Ad(p−1)X|m + Y,Ad(p−1)X|m + Y

〉
,

(4.15)

where p = α(t) exp sZ. Notice that π(p) is sufficiently close to γ(t) if s is sufficiently

small, therefore π(p) lies in the domain of the local extension π∗(X
R + Y L) for small s.

Moreover, it is

d

ds

∣∣∣∣
s=0

Ad(p−1)X|m =
d

ds

∣∣∣∣
s=0

Ad(exp(−sZ)) Ad(α(t)−1)X|m

= [TX,Z]m

= [Ya(t), Z]m + λ[Xb, Z]m.

(4.16)

By using relation (4.16), assumptions (2.2) and (2.3) of the theorem, and the natural

reductivity property of B, then equation (4.15) yields the third term of the right-hand

side of (4.2) as follows:

Vγ(t)g(γ̇, γ̇) = 2 〈[Ya(t), Z]m + λ[Xb, Z]m, Ya(t) +Xb〉

= 2 〈[Ya(t), Z]m, Ya(t)〉+ 2 〈[Ya(t), Z]m, Xb〉

+ 2λ 〈[Xb, Z]m, Ya(t)〉+ 2λ 〈[Xb, Z]m, Xb〉

= −2λaB(Z, [Ya(t), Ya(t)]m)− 2λbB(Z, [Ya(t), Xb]m)

+ 2λλaB(Z, [Ya(t), Xb]m)− 2λλbB(Z, [Xb, Xb]m)

= 2B(Z, [Ya(t), Xb]m)(λλa − λb) = 0.

(4.17)

By summing equations (4.11), (4.14) and (4.17), we obtain that the right-hand side of

equation (4.2) vanishes, so the first part of the theorem follows.
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If λa = λb, then λ = 1, therefore

γ(t) = π(exp t(Xa + λXb) exp t(1− λ)Xb) = π(exp t(Xa +Xb)).

Finally, if [ma,mb] = {0} then the vectors Xa + λXb and Xb commute, therefore

γ(t) = π(exp t(Xa + λXb) exp t(1− λ)Xb)

= π(exp[t(Xa + λXb) + t(1− λ)Xb])

= π(exp t(Xa +Xb)),

which proves the second part of the theorem.

Proof of Corollary 2.4. Since [m1,m2] ⊂ m1, then Theorem 2.3 implies that any geodesic γ

of M with γ(0) = o and γ̇(0) ∈ m1⊕m2 is two-step homogeneous. Hence all geodesics γ of

M with γ(0) = o are two-step homogeneous, therefore (M, gλ) is a two-step g.o. space.

5. Total spaces of homogeneous Riemannian submersions

A natural application of Corollary 2.4 is for total spaces of homogeneous Riemannian

submersions. We have the following:

Proposition 5.1. Let G be a Lie group admitting a bi-invariant Riemannian metric and

let K, H be closed and connected subgroups of G, such that K ⊂ H ⊂ G. Let B be the

Ad-invariant positive definite inner product on the Lie algebra g corresponding to the bi-

invariant metric of G. We identify each of the spaces To(G/K), To(G/H) and To(H/K)

with corresponding subspaces m, m1 and m2 of g, such that m = m1 ⊕ m2. We endow

G/K with the G-invariant Riemannian metric gλ corresponding to the Ad(K)-invariant

positive definite inner product

(5.1) 〈 , 〉 = B|m1 + λB|m2 , λ > 0,

on m. Then (G/K, gλ) is a two-step g.o. space.

Proof. Let k, h, g be the Lie algebras of the groups K, H, G respectively. The subspaces

m1 and m2 can be obtained by the B-orthogonal decompositions

(5.2) g = h⊕m1 and h = k⊕m2,

such that

(5.3) Ad(H)m1 ⊂ m1, Ad(K)m2 ⊂ m2

(cf. Example 3.5). The inner product B|m induces a naturally reductive metric on G/K.

Then relations (5.3) and the orthogonality of m1, m2 with respect to B imply that the
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decomposition m = m1 ⊕ m2 is Ad(K)-invariant and B-orthogonal. Moreover, since

Ad(H)m1 ⊂ m1, we have that [m1, h] ⊂ m1, therefore,

[m1,m2] ⊂ [m1, h] ⊂ m1.

By Corollary 2.4 it follows that (G/K, gλ) is a two-step g.o. space.

Example 5.2. The odd-dimensional sphere S2n+1 can be considered as the total space of

the homogeneous Hopf bundle

(5.4) S1 → S2n+1 → CPn.

Let g1 be the standard metric of S2n+1. We equip S2n+1 with an one parameter family of

metrics gλ, which “deform” the standard metric along the Hopf circles S1.
By setting G = U(n + 1), K = U(n) and H = U(n) × U(1), the fibration (5.4)

corresponds to the fibration

H/K → G/K → G/H.

Since U(n+1) is compact, it admits a bi-invariant metric corresponding to an Ad(U(n+1))-

invariant positive definite inner product B on u(n + 1). We identify each of the spaces

ToS2n+1 = To(G/K), ToCPn = To(G/H), and ToS1 = To(H/K) with corresponding

subspaces m, m1 and m2 of u(n + 1). The desired one-parameter family of metrics gλ

corresponds to the one-parameter family of positive definite inner products

(5.5) 〈 , 〉 = B|m1 + λB|m2 , λ > 0

on m = m1⊕m2. Note that for λ = 1 the inner product (5.5) induces the standard metric

g1 on S2n+1. Then Proposition 5.1 implies that (S2n+1, gλ) is a two-step g.o. space. In

particular, let X ∈ ToS2n+1. Then the unique geodesic γ of (S2n+1, gλ) with γ(0) = o and

γ̇(0) = X, is given by

γ(t) = π(exp t(X1 + λX2) exp t(1− λ)X2), t ∈ R,

where X1, X2 are the projections of X on m1 = ToCPn and m2 = ToS1 respectively.

We remark that if λ = 1 + ε, ε > 0, then the metrics g1+ε are Cheeger deformations of

the natural metric g1. The spaces (S2n+1, g1+ε) are examples of Riemannian homogeneous

spaces with positive sectional curvature [9].

Remark 5.3. There exist total spaces G/K of homogeneous fibrations H/K → G/K →
G/H which are g.o. with respect to the metric (5.1) given in Proposition 5.1. In [21]

H. Tamaru obtained a classification of the total spaces G/K with the property that:

(1) G/K is fibered over an irreducible symmetric space G/H, and
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(2) G/K is g.o. with respect to the metric (5.1).

Remark 5.4. It was brought to the attention of the authors by Professor Yu. G. Nikonorov,

that if G is compact and semisimple, then it is possible to obtain a class of two-step

g.o. metrics of G/K as follows. We can consider the action of G × L on G/K, where L

is the normaliser of K in G. If l is the Lie algebra of L, then there exists an Ad(K)-

invariant decomposition g = l ⊕ m1 = k ⊕ m2 ⊕ m1, with respect to the negative of the

Killing form of g (here denoted by B). We endow G/K with the G-invariant metric

gλ as given in (2.6). Then by using an embedding of m into g × l as pointed in [23,

pp. 585–586], one may lift the metric gλ to a naturally reductive metric ĝλ in the space

(G×L)/K̂, where K̂ =
{

(a, b) ∈ G× L : ab−1 ∈ K
}

. The Riemannian homogeneous space

((G × L)/K̂, ĝλ) is a g.o. space, hence the geodesics of ((G × L)/K̂, ĝλ) are orbits of the

one parameter subgroups (exp(tX), exp(−tY )) of G × L. By using the right action of

L on G/K, the geodesics π(exp(tX), exp(−tY )) in (G × L)/K̂ correspond to two-step

homogeneous geodesics of the form π(exp tX exp tY ) in G/K.

6. Further examples of two-step g.o. spaces

In the present section we will use Corollary 2.4 to construct various classes of two-step

g.o. spaces. The recipe is the following:

• Let G/K be a homogeneous space with reductive decomposition g = k⊕m admitting

a naturally reductive metric corresponding to a positive definite inner product B on

m.

• We consider an Ad(K)-invariant, orthogonal decomposition m = n1 ⊕ · · · ⊕ ns with

respect to B.

• We separate the submodules ni into two groups as

m1 = ni1 ⊕ · · · ⊕ nin and m2 = nin+1 ⊕ · · · ⊕ nis ,

so that [m1,m2] ⊂ m1.

• We consider the decomposition m = m1 ⊕ m2, which is Ad(K)-invariant and or-

thogonal with respect to B. Then Corollary 2.4 implies that G/K admits an one

parameter family of metrics gλ, so that (G/K, gλ) is a two-step g.o. space.

We will apply the above recipe to the following classes of homogeneous spaces:

(1) Lie groups with bi-invariant metrics equipped with an one-parameter family of left-

invariant metrics.
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(2) Flag manifolds equipped with certain one-parameter families of diagonal metrics.

(3) Generalized Wallach spaces equipped with three different types of diagonal metrics.

(4) k-symmetric spaces where k is even, endowed with an one parameter family of di-

agonal metrics.

6.1. Lie groups

Let G be a Lie group admitting a bi-invariant Riemannian metric and let B be the cor-

responding Ad-invariant positive definite inner product on its Lie algebra g. We consider

a subgroup K of G with Lie algebra k. The subgroup K induces an Ad-invariant and

orthogonal decomposition g = k⊕m with respect to B, such that

(6.1) [k,m] ⊂ m

(cf. Example 3.5). We view G as the homogeneous space G/ {e} and we endow G with

the left invariant metric gλ corresponding to the positive definite inner product

(6.2) 〈 , 〉 = B|m + λB|k, λ > 0.

By taking into account relation (6.1) and by using Corollary 2.4 we conclude that

(G, gλ) is a two-step g.o. space.

6.2. Generalized flag manifolds

A generalized flag manifold is a homogeneous manifold G/K where G is a compact, con-

nected and semisimple Lie group, and K is the centralizer of a torus T in G. Every

generalized flag manifold G/K is a product of generalized flag manifolds Gi/K of simple

Lie groups Gi. Therefore, to study flag manifolds it suffices to consider flag manifolds

G/K, where G is a compact, connected and simple Lie group. The classification of the

g.o. Riemannian flag manifolds (G/K, g), where g is a non-standard G-invariant metric,

was obtained in [1]. Let G/K be a generalized flag manifold with G simple. Let B be

the negative of the Killing form of g. Then B is an Ad-invariant positive definite inner

product on g, which induces an orthogonal decomposition g = k ⊕ m, with m naturally

identified with To(G/K).

We will briefly describe the structure of m. For a more detailed description, we

refer to [2] or [7]. Consider the complexified Lie algebra gC and a Cartan subalge-

bra hC of gC which is the complexification of a maximal abelian subalgebra h of g.

Let Π = {α1, . . . , αr, αr+1, . . . , α`} be a set of simple roots of the root system R of

gC, with respect to hC. The flag manifold M = G/K is determined by a subset ΠM
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of Π, say ΠM = {α1, . . . , αr}. We call ΠM the set of simple complementary roots of

G/K. Let ΠK = Π \ ΠM and define RK = spanZ {α : α ∈ ΠK} ∩ R, RM = R \ RK and

R+
M = {α ∈ RM : α > 0}, R+

K = {α ∈ RK : α > 0}. We choose a Weyl basis {Eα : α ∈ R}
of gC, and let α ∈ R+. We set

Aα = Eα + E−α, Bα = i(Eα − E−α) and mα = RAα ⊕ RBα.

Then

m =
∑
α∈R+

M

mα,(6.3)

k = h⊕
∑
α∈R+

K

mα.(6.4)

Moreover, by using properties of root decompositions of simple Lie algebras, we obtain

that

(6.5) [mα,mβ] ⊂

mα+β ⊕m|α−β|, if α+ β ∈ R or α− β ∈ R,

{0} , otherwise.

The decomposition (6.3) of m is orthogonal with respect to B. We will now separate

the submodules mα, α ∈ R+
M into two groups m1, m2 so that [m1,m2] ⊂ m1. We achieve

this as follows.

Each α ∈ R+
M can be expressed as

(6.6) α = cα1α1 + · · ·+ cαr αr + cαr+1αr+1 + · · ·+ cα` α`,

where cαi ≥ 0, cαi ∈ Z for i = 1, 2, . . . , ` and at least one of the cα1 , . . . , c
α
r is not zero. Each

α ∈ R+
K can be expressed as

(6.7) α = cαr+1αr+1 + · · ·+ cα` α`,

where cαi ≥ 0 and cαi ∈ Z for i = r + 1, r + 2, . . . , `. Let αi0 be a simple root of ΠM . We

set

RM1 =
{
α ∈ R+

M : cαi0 is odd
}
, RM2 =

{
α ∈ R+

M : cαi0 is even
}
,

and let

m1 =
∑

α∈RM1

mα, m2 =
∑

α∈RM2

mα.

Then R+
M = RM1 ∪RM2 , RM1 ∩RM2 = ∅. By taking into account the decomposition (6.3)

we conclude that

(6.8) m = m1 ⊕m2.
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Also, by taking into account the expressions (6.6) and (6.7), it follows that if α ∈ RK

and β ∈ RMi , then α + β ∈ RMi , i = 1, 2. We conclude that the decomposition (6.8) is

Ad(K)-invariant. Moreover, by using relation (6.5) we obtain that

[m1,m2] =
∑

α∈RM1
,β∈RM2

mα+β ⊕m|α−β|.

We claim that [m1,m2] ⊂ m1. Indeed, if α ∈ RM1 , β ∈ RM2 , then the coefficients

cαi0 and cβi0 are odd and even respectively. Moreover, we have that cα+βi0
= cαi0 + cβi0

and c
|α−β|
i0

=
∣∣∣cαi0 − cβi0∣∣∣. Therefore, if α ∈ RM1 and β ∈ RM2 then α + β ∈ RM1 and

|α− β| ∈ RM1 , and the claim follows.

To summarise, for a generalised flag manifold G/K of a simple Lie group G there

exist Ad(K)-invariant decompositions m = m1 ⊕ m2 with respect to the negative of the

Killing form of g, such that [m1,m2] ⊂ m1. Such decompositions are determined by a

choice of αi0 ∈ ΠM , therefore the number of such decompositions is equal to (at least) the

cardinality of ΠM . Then by using Corollary 2.4 we obtain the following.

Proposition 6.1. Let G/K be generalized flag manifold of a simple Lie group G and let

ΠM be the set of simple complementary roots of G/K. Let p be the cardinality of ΠM .

Then G/K admits at least p one-parameter families of Riemannian metrics gλ1 , . . . , gλp,

such that each space (G/K, gλi), i = 1, 2, . . . , p is a two-step g.o. space.

We give some examples of the above construction.

Example 6.2. Let G/K be a generalized flag manifold whose isotropy representation

decomposes into two irreducible submodules m1, m2. The submodules m1, m2 constructed

above, are obtained by choosing a simple root of Dynkin mark 2 of gC. Note that the

metric of G/K corresponding to the inner product 〈 , 〉 = B|m1+2B|m2 is a Kähler-Einstein

metric (cf. [8]).

Example 6.3. Let G/K be a generalized flag manifold with three isotropy summands.

This is constructed by choosing either ΠM = {αi0} with Dynkin mark µi0 = 3 (Type I),

or ΠM = {α1, α2} with Dynkin marks µ1 = µ2 = 1 (Type II). The classification of flag

manifolds with three isotropy summands was obtained in [15].

Here we consider a flag manifold G/K of Type I. Let α ∈ R+
M and let cαi0 be the

coefficient of αi0 in the decomposition (6.6). The three isotropy submodules n1, n2, n3

To(G/K) are given by

ni =
∑

α∈R+
M :cαi0

=i

mα, i = 1, 2, 3.

We set m1 = n1 ⊕ n3 and m2 = n2. Then, it is easy to check that [m1,m2] ⊂ m1, hence

G/K endowed with the metric gλ induced by the inner product 〈 , 〉 = B|m1 + λB|m2 is a

Riemannian two-step g.o. space.
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6.3. Generalized Wallach spaces

Let M = G/K be a generalized Wallach space. Here G is a compact semisimple Lie group

and the isotropy representation of M decomposes into three irreducible submodules ni,

(i = 1, 2, 3) such that

(6.9) [ni, ni] ⊂ k.

The classification of generalized Wallach spaces was recently obtained in [20] and in [10].

In [3] the authors investigated G-invariant metrics whose geodesics are of the form γ(t) =

π(exp(tX) exp(tY ) exp(tZ)), X,Y, Z ∈ m. The main result there (Theorem 1.2) states

that if M is endowed with a G-invariant metric gλ induced by the inner product

(6.10) 〈 , 〉 = B|ni+nj + λB|n` , i, j, ` pairwise distinct

(where B is the negative of the Killing form of g), then the geodesics γ of (M, gλ) with

γ(0) = o are of the form γ(t) = π(exp(tX) exp(tY )), X,Y ∈ m. If we set m1 = ni⊕nj and

m2 = n` we see that m = m1 ⊕ m2. Moreover, relation (6.9) implies that [m1,m2] ⊂ m1.

By using Corollary 2.4 it follows that every generalized Wallach space M admits three

distinct one-parameter families of metrics gλ, induced from the inner products (6.10), such

that (M, gλ) is a 2-step g.o. space. This verifies the main theorem in [3].

6.4. k-symmetric spaces, k even

Let G be a connected Lie group and let φ : G → G be an automorphism of G such that

φk = id. Let Gφ = {g ∈ G : φ(g) = g} be the subgroup of fixed points of G and let Gφo

be its identity component. Assume that there exists a closed subgroup K of G such that

Gφo ⊂ K ⊂ Gφ. Then G/K is called a k-symmetric space (cf. [16, 17]). Let G/K be a

k-symmetric space where G is a compact, connected and semisimple Lie group. Let B be

the negative of the Killing form of g. Let s =
[
k−1
2

]
, the integer part of k−1

2 . We set

u =

s, if k is odd,

s+ 1, if k is even.

We obtain the following Ad(K)-invariant and orthogonal decomposition of g with

respect to B (cf. [4, 5]):

g = k⊕m = n0 ⊕ n1 ⊕ · · · ⊕ nu,

where n0 = k and the subspaces ni satisfy the following relations for 0 ≤ j ≤ i ≤ u:

(6.11) [ni, nj ] =

ni+j ⊕ ni−j , i+ j ≤ u,

nk−(i+j) ⊕ ni−j , i+ j > u.
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We assume that G/K is a k-symmetric space with k even and we set

m1 =
∑

1≤2i+1≤u
n2i+1, m2 =

∑
1≤2i≤u

n2i.

Then we have that m = m1 ⊕ m2. Moreover, by using relations (6.11) it follows that

[m1,m2] ⊂ m1. By using Corollary 2.4 we obtain the following proposition.

Proposition 6.4. Let G/K be a homogeneous symmetric space of order 2k, where G is a

compact, semisimple and connected Lie group. Then G/K admits a family of metrics gλ

such that (G/K, gλ) is a two-step g.o. space.
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