Answers to Kirk-Shahzad's Questions on Strong b-metric Spaces

Tran Van An and Nguyen Van Dung*

Abstract

In this paper, two open questions on strong b-metric spaces posed by Kirk and Shahzad [11, Chapter 12] are investigated. A counterexample is constructed to give a negative answer to the first question, and a theorem on the completion of a strong b-metric space is proved to give a positive answer to the second question.

1. Introduction and preliminaries

In 1993 Czerwik [4] introduced the notion of a b-metric which is a generalization of a metric with a view of generalizing the Banach contraction map theorem.

Definition 1.1. [4] Let X be a nonempty set and $d: X \times X \rightarrow[0, \infty)$ be a function such that for all $x, y, z \in X$,
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, z) \leq 2[d(x, y)+d(y, z)]$.

Then d is called a b-metric on X and (X, d) is called a b-metric space.
After that, in 1998, Czerwik 5] generalized this notion where the constant 2 was replaced by a constant $K \geq 1$, also with the name b-metric. The convergence, Cauchy sequence and completeness in b-metric spaces are defined as follows.

Definition 1.2. [5] Let (X, D, K) be a b-metric space.
(1) A sequence $\left\{x_{n}\right\}$ is called convergent to x, written $\lim _{n \rightarrow \infty} x_{n}=x$, if $\lim _{n \rightarrow \infty} D\left(x_{n}\right.$, $x)=0$.
(2) A sequence $\left\{x_{n}\right\}$ is called Cauchy if $\lim _{n, m \rightarrow \infty} D\left(x_{n}, x_{m}\right)=0$.

[^0](3) (X, D, K) is called complete if every Cauchy sequence is a convergent sequence.

The same relaxation of the triangle inequality in definition of a b-metric was also discussed in 2003 by Fagin et al. [8], who called this new distance measure nonlinear elastic matching. The authors of that paper remarked that this measure had been used, for example, in 9 for trademark shapes and in [3] to measure ice floes. In 2009 Xia 13 used this semimetric distance to study the optimal transport path between probability measures.

In recent times, b-metric spaces and fixed point theory on b-metric spaces were studied by many authors [1], [7], [10], [11, Chapter 12], [12]. Some authors were also studied topological properties of b-metric spaces. An et al. [2] showed that every b-metric space with the topology induced by its convergence is a semi-metrizable space and thus many properties of b-metric spaces used in the literature are obvious. Then the authors proved the Stone-type theorem on b-metric spaces and obtained a sufficient condition for a b metric space to be metrizable. Notice that a b-metric space is always understood to be a topological space with respect to the topology induced by its convergence and a b-metric need not be continuous [2, Examples $3.9 \& 3.10]$. This fact suggests a strengthening of the notion of b-metric spaces which remedies this defect. Recently Kirk and Shahzad introduced the notion of a strong b-metric space.

Definition 1.3. [11, Definition 12.7] Let X be a nonempty set, $K \geq 1$ and $D: X \times X \rightarrow$ $[0, \infty)$ be a function such that for all $x, y, z \in X$,
(1) $D(x, y)=0$ if and only if $x=y$;
(2) $D(x, y)=D(y, x)$;
(3) $D(x, z) \leq D(x, y)+K D(y, z)$.

Then D is called a strong b-metric on X and (X, D, K) is called a strong b-metric space.
Remark 1.4. 11, page 122] (1) Every strong b-metric is continuous.
(2) Every open ball $B(a, r)=\{x \in X: D(a, x)<r\}$ of a strong b-metric space (X, D, K) is open.

In [11, Chapter 12] Kirk and Shahzad surveyed b-metric spaces, strong b-metric spaces, and related problems. An interesting work was attracted many authors is to transform results of metric spaces to the setting of b-metric spaces. It is only fair to point out that some results seem to require the full use of the triangle inequality of a metric space. In this connection, Kirk and Shahzad [11, page 127] mentioned an interesting extension of

Nadler's theorem due to Dontchev and Hager [6]. Recall that for a metric space (X, d) and $A, B \subset X, x \in X$,

$$
\operatorname{dist}(x, A)=\inf \{d(x, a): a \in A\}, \quad \delta(A, B)=\sup \{\operatorname{dist}(x, A): x \in B\}
$$

and these notations are understood similarly on b-metric spaces.

Theorem 1.5. [11, Theorem 12.7] Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a map from X into a nonempty closed subset of X, and $x_{0} \in X$ such that
(1) $\operatorname{dist}\left(x_{0}, T x_{0}\right)<r(1-k)$ for some $r>0$ and some $k \in[0,1)$;
(2) $\delta\left(T x \cap B\left(x_{0}, r\right), T y\right) \leq k d(x, y)$ for all $x, y \in B\left(x_{0}, r\right)$.

Then T has a fixed point in $B\left(x_{0}, r\right)$.
Based on the definition of $\delta(A, B)$ and the proof in [11, Theorem 12.7], Theorem 1.5(2) is implicitly understood as

$$
\delta\left(T x \cap B\left(x_{0}, r\right), T y\right) \leq k d(x, y) \quad \text { for all } x, y \in B\left(x_{0}, r\right) \text { and } T x \cap B\left(x_{0}, r\right) \neq \emptyset .
$$

The authors of 11 did not know whether Theorem 1.5 holds under the weaker strong b-metric assumption. Explicitly we have the following question.

Question 1.6. 11, page 128] Let (X, D, K) be a complete strong b-metric space, $T: X \rightarrow$ X be a map from X into a nonempty closed subset of X, and $x_{0} \in X$ such that
(1) $\operatorname{dist}\left(x_{0}, T x_{0}\right)<r(1-k)$ for some $r>0$ and some $k \in[0,1)$;
(2) $\delta\left(T x \cap B\left(x_{0}, r\right), T y\right) \leq k D(x, y)$ for all $x, y \in B\left(x_{0}, r\right)$ and $T x \cap B\left(x_{0}, r\right) \neq \emptyset$.

Does the map T have a fixed point in $B\left(x_{0}, r\right)$?
Recall that a map $f: X \rightarrow Y$ from a b-metric space (X, D, K) into a b-metric space $\left(Y, D^{\prime}, K^{\prime}\right)$ is called an isometry if $D^{\prime}(f(x), f(y))=D(x, y)$ for all $x, y \in X$. Also, a b-metric space $\left(X^{*}, D^{*}, K^{*}\right)$ is called a completion of the b-metric space (X, D, K) if $\left(X^{*}, D^{*}, K^{*}\right)$ is complete and there exists an isometry $f: X \rightarrow X^{*}$ such that $\overline{f(X)}=X^{*}$. A classical result is that every metric space is dense in a complete metric space. So it is interesting to ask whether this result holds or not in the setting of strong b-metric spaces.

Question 1.7. [11, page 128] Is every strong b-metric space dense in a complete strong b-metric space?

Kirk and Shahzad [11, page 128] commented that if the answer of Question 1.7 is positive then every contraction map $f: X \rightarrow X$ on a strong b-metric space X may be extended to a contraction map $f: X^{*} \rightarrow X^{*}$ on a complete strong b-metric space X^{*} which has a unique fixed point. Ostrowski's theorem [11, Theorem 12.6] then would provide a method for approximating this fixed point.

In this paper, the above two questions on strong b-metric spaces are investigated. A counterexample is constructed to give a negative answer to Question 1.6, and a theorem on the completion of a strong b-metric space is proved to give a positive answer to Question 1.7.

2. Main results

First, the following example gives a negative answer to Question 1.6 ,
Example 2.1. Let $X=\{1,2,3\}$, the function $D: X \times X \rightarrow[0, \infty)$ be defined by

$$
\begin{array}{ll}
D(1,1)=D(2,2)=D(3,3)=0, & D(1,2)=D(2,1)=2 \\
D(2,3)=D(3,2)=1, & D(1,3)=D(3,1)=6
\end{array}
$$

and a map $T: X \rightarrow X$ be defined by $T 1=2, T 2=3, T 3=1$. Then
(1) (X, D, K) is a complete strong b-metric space with $K=4$.
(2) T and (X, D, K) satisfy all assumptions of Question 1.6 with $x_{0}=1, r=6, k=1 / 2$.
(3) T has no any fixed point.

Proof. (1) For all $x, y \in X$, it follows from definition of D that $D(x, y)=D(y, x)$, and $D(x, y)=0$ if and only if $x=y$.

We also have

$$
\begin{aligned}
& D(1,3)+K D(3,2)=6+4 \cdot 1=10 \geq 2=D(1,2), \\
& K D(1,3)+D(3,2)=4 \cdot 6+1=25 \geq 2=D(1,2), \\
& D(1,2)+K D(2,3)=2+4 \cdot 1=6=D(1,3), \\
& K D(1,2)+D(2,3)=4 \cdot 2+1=9 \geq 6=D(1,3), \\
& D(2,1)+K D(1,3)=2+4 \cdot 6=26 \geq 1=D(2,3), \\
& K D(2,1)+D(1,3)=4 \cdot 2+6=14 \geq 1=D(2,3) .
\end{aligned}
$$

By the above, D is a strong b-metric on X. Since X is finite and discrete, X is complete. So (X, D, K) is a complete strong b-metric space with $K=4$.
(2) Since $T X=X, T X$ is a nonempty closed subset of X. We have

$$
\operatorname{dist}\left(x_{0}, T x_{0}\right)=\operatorname{dist}(1, T 1)=\operatorname{dist}(1,\{2\})=D(1,2)=2
$$

and $r(1-k)=6\left(1-\frac{1}{2}\right)=3$. This proves that $\operatorname{dist}\left(x_{0}, T x_{0}\right)<r(1-k)$.
We also have $B\left(x_{0}, r\right)=B(1,6)=\{1,2\}$. We will show that $\delta\left(T x \cap B\left(x_{0}, r\right), T y\right) \leq$ $k D(x, y)$ for all $x, y \in B\left(x_{0}, r\right)$ and $T x \cap B\left(x_{0}, r\right) \neq \emptyset$ as follows.

If $x=y=1$ then $T x \cap B\left(x_{0}, r\right)=\{2\}$ and

$$
\delta\left(T x \cap B\left(x_{0}, r\right), T y\right)=\delta(\{2\},\{2\})=D(2,2)=0 \leq k D(x, y)
$$

If $x=y=2$ then $T x \cap B\left(x_{0}, r\right)=\emptyset$. If $x=1, y=2$ then

$$
\delta\left(T x \cap B\left(x_{0}, r\right), T y\right)=\delta(\{2\},\{3\})=D(2,3)=1=\frac{1}{2} D(1,2)=k D(x, y) .
$$

If $x=2, y=1$ then $T x \cap B\left(x_{0}, r\right)=\emptyset$.
By the above calculations we find that $\delta\left(T x \cap B\left(x_{0}, r\right), T y\right) \leq k D(x, y)$ for all $x, y \in$ $B\left(x_{0}, r\right)$ and $T x \cap B\left(x_{0}, r\right) \neq \emptyset$.
(3) By definition of T we see that T has no any fixed point.

Next, the following theorem is a positive answer to Question 1.7 ,
Theorem 2.2. Let (X, D, K) be a strong b-metric space. Then
(1) (X, D, K) has a completion $\left(X^{*}, D^{*}, K\right)$.
(2) The completion of (X, D, K) is unique in the sense that if $\left(X_{1}^{*}, D_{1}^{*}, K_{1}\right)$ and $\left(X_{2}^{*}, D_{2}^{*}\right.$, K_{2}) are two completions of (X, D, K) then there is a bijective isometry $\varphi: X_{1}^{*} \rightarrow X_{2}^{*}$ which restricts to the identity on X.

Proof. Put

$$
\mathcal{C}=\left\{\left\{x_{n}\right\}:\left\{x_{n}\right\} \text { is a Cauchy sequence in }(X, D, K)\right\} .
$$

Define a relation \sim on \mathcal{C} as follows

$$
\left\{x_{n}\right\} \sim\left\{y_{n}\right\} \quad \text { if and only if } \lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=0 \text { for all }\left\{x_{n}\right\},\left\{y_{n}\right\} \in \mathcal{C}
$$

The relation \sim obviously satisfies reflexivity and symmetry. If $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$ and $\left\{y_{n}\right\} \sim$ $\left\{z_{n}\right\}$ then $\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} D\left(y_{n}, z_{n}\right)=0$. Since

$$
0 \leq D\left(x_{n}, z_{n}\right) \leq D\left(x_{n}, y_{n}\right)+K D\left(y_{n}, z_{n}\right)
$$

for all $n, \lim _{n \rightarrow \infty} D\left(x_{n}, z_{n}\right)=0$. Thus $\left\{x_{n}\right\} \sim\left\{z_{n}\right\}$. Therefore, the relation \sim is an equivalent relation on \mathcal{C}.

Denote $X^{*}=\left\{x^{*}=\left[\left\{x_{n}\right\}\right]:\left\{x_{n}\right\} \in \mathcal{C}\right\}$ where $x^{*}=\left[\left\{x_{n}\right\}\right]$ is the equivalence class of $\left\{x_{n}\right\}$ under the relation \sim, and define the function $D^{*}: X^{*} \times X^{*} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
D^{*}\left(x^{*}, y^{*}\right)=\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right) \tag{2.1}
\end{equation*}
$$

We see that, for all n, m,

$$
\begin{aligned}
D\left(x_{n}, y_{n}\right) & \leq K D\left(x_{n}, x_{m}\right)+D\left(x_{m}, y_{n}\right) \\
& \leq K D\left(x_{n}, x_{m}\right)+D\left(x_{m}, y_{m}\right)+K D\left(y_{m}, y_{n}\right) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
D\left(x_{n}, y_{n}\right)-D\left(x_{m}, y_{m}\right) \leq K\left[D\left(x_{n}, x_{m}\right)+D\left(y_{m}, y_{n}\right)\right] . \tag{2.2}
\end{equation*}
$$

Also

$$
\begin{aligned}
D\left(x_{m}, y_{m}\right) & \leq K D\left(x_{m}, x_{n}\right)+D\left(x_{n}, y_{n}\right) \\
& \leq K D\left(x_{n}, x_{m}\right)+D\left(x_{n}, y_{n}\right)+K D\left(y_{n}, y_{m}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
D\left(x_{m}, y_{m}\right)-D\left(x_{n}, y_{n}\right) \leq K\left[D\left(x_{n}, x_{m}\right)+D\left(y_{m}, y_{n}\right)\right] . \tag{2.3}
\end{equation*}
$$

It follows from (2.2) and (2.3) that

$$
\begin{equation*}
\left|D\left(x_{m}, y_{m}\right)-D\left(x_{n}, y_{n}\right)\right| \leq K\left[D\left(x_{n}, x_{m}\right)+D\left(y_{m}, y_{n}\right)\right] \tag{2.4}
\end{equation*}
$$

Letting $n, m \rightarrow \infty$ in (2.4) we get $\lim _{n, m \rightarrow \infty}\left|D\left(x_{m}, y_{m}\right)-D\left(x_{n}, y_{n}\right)\right|=0$, i.e., $\left\{D\left(x_{n}, y_{n}\right)\right\}$ is a Cauchy sequence in \mathbb{R}. Thus $\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)$ exists.

Moreover, if $\left\{x_{n}\right\} \sim\left\{z_{n}\right\}$ and $\left\{y_{n}\right\} \sim\left\{w_{n}\right\}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D\left(x_{n}, z_{n}\right)=\lim _{n \rightarrow \infty} D\left(y_{n}, w_{n}\right)=0 \tag{2.5}
\end{equation*}
$$

We see that

$$
\begin{aligned}
D\left(x_{n}, y_{n}\right) & \leq K D\left(x_{n}, z_{n}\right)+D\left(z_{n}, y_{n}\right) \\
& \leq K D\left(x_{n}, z_{n}\right)+D\left(z_{n}, w_{n}\right)+K D\left(w_{n}, y_{n}\right) .
\end{aligned}
$$

This implies that

$$
D\left(x_{n}, y_{n}\right)-D\left(z_{n}, w_{n}\right) \leq K D\left(x_{n}, z_{n}\right)+K D\left(w_{n}, y_{n}\right)
$$

Similarly,

$$
D\left(z_{n}, w_{n}\right)-D\left(x_{n}, y_{n}\right) \leq K D\left(z_{n}, x_{n}\right)+K D\left(y_{n}, w_{n}\right)
$$

Therefore,

$$
\begin{equation*}
\left|D\left(x_{n}, y_{n}\right)-D\left(z_{n}, w_{n}\right)\right| \leq K D\left(x_{n}, z_{n}\right)+K D\left(w_{n}, y_{n}\right) \tag{2.6}
\end{equation*}
$$

Letting $n, m \rightarrow \infty$ in 2.6) and using (2.5) we get $\lim _{n \rightarrow \infty}\left|D\left(x_{n}, y_{n}\right)-D\left(z_{n}, w_{n}\right)\right|=0$. Thus $\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} D\left(z_{n}, w_{n}\right)$. Therefore, the function D^{*} is well-defined.

In the next, we shall prove that $\left(X^{*}, D^{*}, K\right)$ is a strong b-metric space. For all $x^{*}, y^{*}, z^{*} \in X^{*}$ we have

1. $D^{*}\left(x^{*}, y^{*}\right)=\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right) \geq 0$ since $D\left(x_{n}, y_{n}\right) \geq 0$ for all n.
2. $D^{*}\left(x^{*}, y^{*}\right)=0$ if and only if $\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=0$, that is, $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$. This is equivalent to $x^{*}=y^{*}$.
3. $D^{*}\left(x^{*}, y^{*}\right)=\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} D\left(y_{n}, x_{n}\right)=D^{*}\left(y^{*}, x^{*}\right)$ since $D\left(x_{n}, y_{n}\right)=$ $D\left(y_{n}, x_{n}\right)$ for all n.
4. $D^{*}\left(x^{*}, z^{*}\right)=\lim _{n \rightarrow \infty} D\left(x_{n}, z_{n}\right) \leq \lim _{n \rightarrow \infty}\left[D\left(x_{n}, y_{n}\right)+K D\left(y_{n}, z_{n}\right)\right]=D^{*}\left(x^{*}, y^{*}\right)+$ $K D^{*}\left(y^{*}, z^{*}\right)$.

So $\left(X^{*}, D^{*}, K\right)$ is a strong b-metric space.
For each $x \in X$, put $f(x)=[\{x, x, x, \ldots\}] \in X^{*}$. We see that f is an isometry from (X, D, K) into $\left(X^{*}, D^{*}, K\right)$ since $D^{*}(f(x), f(y))=\lim _{n \rightarrow \infty} D(x, y)=D(x, y)$ for all $x, y \in X$.

Next, we will prove that $f(X)$ is dense in X^{*}. If $x^{*}=\left[\left\{x_{n}\right\}\right] \in X^{*}$ then $\lim _{n, m \rightarrow \infty} D\left(x_{n}\right.$, $\left.x_{m}\right)=0$. For each $i \in \mathbb{N}$, there exists n_{0}^{i} such that $D\left(x_{n}, x_{m}\right) \leq 1 / i$ for all $n, m \geq n_{0}^{i}$. This implies that

$$
0 \leq D^{*}\left(f\left(x_{n_{0}^{i}}\right), x^{*}\right)=\lim _{n \rightarrow \infty} D\left(x_{n_{0}^{i}}, x_{n}\right) \leq \frac{1}{i}
$$

So $\lim _{i \rightarrow \infty} D^{*}\left(f\left(x_{n_{0}^{i}}\right), x^{*}\right)=0$. This proves that $\lim _{i \rightarrow \infty} f\left(x_{n_{0}^{i}}\right)=x^{*}$, that is, $f(X)$ is dense in X^{*}.

Next, we will prove that $\left(X^{*}, D^{*}, K\right)$ is complete. Let $\left\{x_{n}^{*}\right\}$ be a Cauchy sequence in X^{*}, where $x_{n}^{*}=\left[\left\{x_{i}^{n}\right\}_{i}\right]$ for some $\left\{x_{i}^{n}\right\}_{i} \in \mathcal{C}$. Then

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} D^{*}\left(x_{n}^{*}, x_{m}^{*}\right)=0 \tag{2.7}
\end{equation*}
$$

Note that the open ball $B\left(x_{n}^{*}, \frac{1}{K n}\right)$ is open by Remark 1.4(2). From the fact that $f(X)$ is dense in X^{*}, for each n there exists $y_{n} \in X$ such that

$$
\begin{equation*}
D^{*}\left(f\left(y_{n}\right), x_{n}^{*}\right)<\frac{1}{K n} \tag{2.8}
\end{equation*}
$$

By (2.8), for all n, m, we have

$$
\begin{align*}
D\left(y_{n}, y_{m}\right) & =D^{*}\left(f\left(y_{n}\right), f\left(y_{m}\right)\right) \\
& \leq K D^{*}\left(f\left(y_{n}\right), x_{n}^{*}\right)+D^{*}\left(x_{n}^{*}, f\left(y_{m}\right)\right) \\
& \leq K D^{*}\left(f\left(y_{n}\right), x_{n}^{*}\right)+D^{*}\left(x_{n}^{*}, x_{m}^{*}\right)+K D^{*}\left(x_{m}^{*}, f\left(y_{m}\right)\right) \tag{2.9}\\
& <\frac{1}{n}+D^{*}\left(x_{n}^{*}, x_{m}^{*}\right)+\frac{1}{m} .
\end{align*}
$$

Letting $n, m \rightarrow \infty$ in 2.9) and using (2.7) we get

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} D\left(y_{n}, y_{m}\right)=0 \tag{2.10}
\end{equation*}
$$

Thus $\left\{y_{n}\right\}$ is a Cauchy sequence in (X, D, K). Put $y^{*}=\left[\left\{y_{n}\right\}\right] \in X^{*}$. From (2.8) we have

$$
\begin{align*}
D^{*}\left(x_{n}^{*}, y^{*}\right) & \leq K D^{*}\left(x_{n}^{*}, f\left(y_{n}\right)\right)+D^{*}\left(f\left(y_{n}\right), y^{*}\right) \\
& <K \frac{1}{K n}+\lim _{m \rightarrow \infty} D\left(y_{n}, y_{m}\right) \tag{2.11}\\
& =\frac{1}{n}+\lim _{m \rightarrow \infty} D\left(y_{n}, y_{m}\right) .
\end{align*}
$$

Letting $n \rightarrow \infty$ in (2.11) and using 2.10 we have $\lim _{n \rightarrow \infty} D^{*}\left(x_{n}^{*}, y^{*}\right)=0$, that is, $\lim _{n \rightarrow \infty} x_{n}^{*}=y^{*}$ in $\left(X^{*}, D^{*}, K\right)$. Therefore, $\left(X^{*}, D^{*}, K\right)$ is complete.

Finally, we prove the uniqueness of the completion. Let $\left(X_{1}^{*}, D_{1}^{*}, K_{1}\right)$ and ($X_{2}^{*}, D_{2}^{*}, K_{2}$) be two completions of (X, D, K). For each $x_{1}^{*} \in X_{1}^{*}$, there exists $\left\{x_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} f_{1}\left(x_{n}\right)=x_{1}^{*}$ where $f_{1}: X \rightarrow X_{1}^{*}$ is an isometry. Since $\left\{f_{1}\left(x_{n}\right)\right\}$ is convergent, $\left\{f_{1}\left(x_{n}\right)\right\}$ is a Cauchy sequence in X_{1}^{*}. Since f_{1} is an isometry, $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Note that there exists $f_{2}: X \rightarrow X_{2}^{*}$ which is also an isometry. Then $\left\{f_{2}\left(x_{n}\right)\right\}$ is a Cauchy sequence in X_{2}^{*} and thus there exists $x_{2}^{*} \in X_{2}^{*}$ such that $\lim _{n \rightarrow \infty} f_{2}\left(x_{n}\right)=x_{2}^{*}$. Define $\varphi: X_{1}^{*} \rightarrow X_{2}^{*}$ by $\varphi\left(x_{1}^{*}\right)=x_{2}^{*}$. We will show that $\varphi: X_{1}^{*} \rightarrow X_{2}^{*}$ is a bijective isometry. Indeed, if $y_{2}^{*} \in X_{2}^{*}$ then $y_{2}^{*}=\lim _{n \rightarrow \infty} f_{2}\left(y_{n}\right)$ for some $\left\{y_{n}\right\} \subset X$. Since $\left\{f_{2}\left(y_{n}\right)\right\}$ is convergent, $\left\{f_{2}\left(y_{n}\right)\right\}$ is a Cauchy sequence in X_{2}^{*}. Since f_{2} is an isometry, $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Also, f_{1} is an isometry, $\left\{f_{1}\left(y_{n}\right)\right\}$ is a Cauchy sequence in X_{1}^{*}. Then there exists $y_{1}^{*}=\lim _{n \rightarrow \infty} f_{1}\left(y_{n}\right)$. Therefore, $y_{2}^{*}=\varphi\left(y_{1}^{*}\right)$. This proves that φ is bijective. Moreover, for every $x^{*}, y^{*} \in X_{1}^{*}$ with $x^{*}=\lim _{n \rightarrow \infty} f_{1}\left(x_{n}\right)$ and $y^{*}=\lim _{n \rightarrow \infty} f_{1}\left(y_{n}\right)$, by using the continuity of D_{1}^{*} and D_{2}^{*}, we have

$$
\begin{aligned}
D_{1}^{*}\left(x^{*}, y^{*}\right) & =\lim _{n \rightarrow \infty} D_{1}^{*}\left(f_{1}\left(x_{n}\right), f_{1}\left(y_{n}\right)\right)=\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right) \\
& =\lim _{n \rightarrow \infty} D_{2}^{*}\left(f_{2}\left(x_{n}\right), f_{2}\left(y_{n}\right)\right)=D_{2}^{*}\left(\varphi\left(x^{*}\right), \varphi\left(y^{*}\right)\right) .
\end{aligned}
$$

This implies that $\varphi: X_{1}^{*} \rightarrow X_{2}^{*}$ is a bijective isometry which restricts to the identity on X.

Finally, the following example shows that techniques used in the proof of Theorem 2.2 may not be applied to b-metric spaces.

Example 2.3. Let $X=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$ and

$$
D(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y \in\{0,1\} \\ |x-y| & \text { if } x \neq y \in\{0\} \cup\left\{\frac{1}{2 n}: n=1,2, \ldots\right\}, \\ 4 & \text { otherwise }\end{cases}
$$

Then D is a b-metric on X [2, Example 3.9]. Put $x_{n}=1, y_{n}=\frac{1}{2 n}, z_{n}=1$ and $w_{n}=0$ for all n. Then $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{w_{n}\right\}$ are Cauchy sequences and $\left\{x_{n}\right\} \sim\left\{z_{n}\right\}$ and $\left\{y_{n}\right\} \sim\left\{w_{n}\right\}$. However,

$$
\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} D\left(1, \frac{1}{2 n}\right)=4 \neq 1=D(1,0)=\lim _{n \rightarrow \infty} D\left(z_{n}, w_{n}\right)
$$

This shows that the formula (2.1) is not well-defined for the above b-metric D.
Though the above example shows that techniques used in the proof of Theorem 2.2 may not be applied to b-metric spaces we do not know whether Theorem 2.2 fully extends to b-metric spaces or not. So we conclude with the following question.
Question 2.4. Does every b-metric space have a completion?

Acknowledgments

The authors are greatly indebted to the referee for his/her helpful suggestions.

References

[1] T. Van An, N. Van Dung, Z. Kadelburg and S. Radenović, Various generalizations of metric spaces and fixed point theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109 (2015), no. 1, 175-198.
http://dx.doi.org/10.1007/s13398-014-0173-7
[2] T. V. An, L. Q. Tuyen and N. V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185-186 (2015), 50-64.
http://dx.doi.org/10.1016/j.topol.2015.02.005
[3] R. M. Connell, R. Kwok, J. Curlander, W. Kober and S. Pang, $\Psi-S$ correlation and dynamic time warping: Two methods for tracking ice floes in SAR images, IEEE Trans. Geosci. Remote Sens. 29 (1991), no. 6, 1004-1012.
http://dx.doi.org/10.1109/36.101377
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), no. 1, 5-11.
[5] , Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263-276.
[6] A. L. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), no. 2, 481-489. http://dx.doi.org/10.1090/s0002-9939-1994-1215027-7
[7] N. V. Dung, N. T. T. Ly, V. D. Thinh and N. T. Hieu, Suzuki-type fixed point theorems for two maps on metric-type spaces, J. Nonlinear Anal. Optim. 4 (2013), no. 2, 17-29.
[8] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math. 17 (2003), no. 1, 134-160. http://dx.doi.org/10.1137/s0895480102412856
[9] R. Fagin and L. Stockmeyer, Relaxing the triangle inequality in pattern matching, Int. J. Comput. Vis. 30 (1998), no. 3, 219-231.
[10] N. T. Hieu and N. V. Dung, Some fixed point results for generalized rational type contraction mappings in partially ordered b-metric spaces, Facta Univ. Ser. Math. Inform. 30 (2015), no. 1, 49-66.
[11] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5
[12] P. Kumam, N. V. Dung and V. T. L. Hang, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 573740, 8 pp. http://dx.doi.org/10.1155/2013/573740
[13] Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal. 19 (2009), no. 2, 452-479. http://dx.doi.org/10.1007/s12220-008-9065-4

Tran Van An
Department of Mathematics, Vinh University, Vinh City, Nghe An, Vietnam
E-mail address: andhv@yahoo.com

Nguyen Van Dung
Institute of Research and Development, Duy Tan University, R.809, K7/25 Quang
Trung, Da Nang City, Vietnam
and
Faculty of Mathematics and Information Technology Teacher Education, Dong Thap
University, Cao Lanh City, Dong Thap Province, Vietnam
E-mail address: nvdung@dthu.edu.vn

[^0]: Received May 31, 2015; Accepted April 27, 2016.
 Communicated by Ruey-Lin Sheu.
 2010 Mathematics Subject Classification. Primary: 47H10, 54H25; Secondary: 54D99, 54E99.
 Key words and phrases. Strong b-metric, b-metric, Completion, Nadler's theorem.
 *Corresponding author.

