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On Focusing Entropy at a Point

Ewa Korczak-Kubiak, Anna Loranty* and Ryszard J. Pawlak

Abstract. In the paper we consider points focusing entropy and such that this fact is

influenced exclusively by the behaviour of the function around these points (i.e., it is

independent from the form of the function at any distance from these points). Thus

the notion of an F-focal entropy point has been introduced. We prove that each edge

periodic tree function and each continuous function mapping the unit interval into

itself have such points. Moreover, we discuss the possibility of improving functions

defined on some topological manifolds so that any fixed point of the function becomes

its focal entropy point.

1. Introduction

Entropy for discrete dynamical systems may be considered in terms of topological or

measure approach. In 1971 T. Goodman [8] proved the variational principle determining

the relationship between these two approaches. In this paper we will consider exclusively

topological entropy.

It is commonly accepted that if the entropy is positive, the function is chaotic. The

analysis of different examples of functions lead us to the interesting observation that chaos,

and thereby entropy of a function, may be focused around one point. The basic problem in

this case is connected with the possible best description of this situation. There are some

papers connected with the problem of focusing entropy at a point (e.g., [13, 14, 16, 19]).

However, in this paper we do not want to consider in detail the earlier propositions related

to this topic. We now present a completely new approach to this issue. There are two

basic reasons for our research.

The first one will not be reflected in this paper, but we can read these intentions

comparing our solution with results contained in [15]. We would like to be able to use

our definitions to a more general case (for example, generalized topological space and

moreover, for multifunctions). This may be connected with the theory of information

flow.
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The second reason is more complex and it is connected with the expectations related

to such points. For example, if we consider a function f : [0, 1] → [0, 1] such that f(x) =

−x + 1, for x ∈ [0, 14 ] and f([34 , 1]) ⊂ [34 , 1], then the value of the entropy “around” 0

depends exclusively on the behaviour of function f on [34 , 1]. Obviously, if we change the

function f around 1 (quite far from 0), it also changes the value of entropy of f around

0. Discussing points focusing entropy we want to avoid the inconvenience described in

this example. It seems appropriate to assume that the essence of such points should be

connected with the behaviour of functions exclusively around this point.

That is why we will consider such a definition that being a “focal entropy point”

or not will depend exclusively on the behaviour of the function around the given point.

Obviously, the question of existence of such a point is essential. For this reason, directly

after introducing definition and presenting basic properties of focal entropy points we

will put the section in which we will prove, among others, that each continuous function

mapping the unit interval into itself and each edge periodic tree function have such a

point. The last part of the paper will be devoted to possibility of improving continuous

functions defined on some topological manifolds so that a given fixed point of the function

becomes its focal entropy point.

2. Preliminaries

Throughout the paper N and R denote the sets of positive integers and real numbers,

respectively. The symbol I stands for the unit interval. In this paper it will be always

considered with the natural topology. Moreover, all functions considered in the paper are

always assumed to be continuous. So writing that f is a function we have in mind that f

is a continuous function.

If x0 = (x10, x
2
0, . . . , x

n
0 ) ∈ Rn and r > 0, then C[x0, r] is the Cartesian product∏n

i=1[x
i
0 − r, xi0 + r] and R[x0, r] = C[x0, r] \

∏n
i=1(x

i
0 − r, xi0 + r). Moreover, we will

write the cardinality of a set A as #(A).

Let (X, ρ) be a metric space and A ⊂ X. The interior (closure, diameter) of A will

be denoted by int(A) (cl(A),diam(A)). The symbol dist(A,B) stands for the distance be-

tween the sets A,B ⊂ X. Moreover, if x0 ∈ X then the family of all open neighbourhoods

of x0 will be denoted by O(x0) and the open ball of radius r > 0 centered at x0 will be

denoted by Bρ(x0, r). The symbol exp(X) will stand for the family of all subsets of X.

Let f : X → X and A,B ⊂ X. We say that A f -covers B (A →
f
B for short) if

B ⊂ f(A). If A→
f
A then we say that A is a set f -covering itself. Moreover, we say that

A is an f -invariant set if f(A) ⊂ A. The symbol f � A will stand for the restriction of f

to A. The metric of uniform convergence in the space of all continuous functions mapping
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compact space X into itself will be denoted by ρu. What is more, if f, g : X → Y then

O(f, g) = {x ∈ X : f(x) 6= g(x)}.
Additionally, we will use the classical definitions of nonwandering, recurrent and fixed

points [2, 4, 6, 19]. The sets of all nonwandering, recurrent and fixed points of a function

f will be denoted by Ω(f), R(f) and Fix(f), respectively.

Now, we shortly recall the concepts associated with an entropy of a function. In the

paper we will use two equivalent concepts of this notion. The first one was introduced by

R. L. Adler, A. G. Konheim and M. H. McAndrew in the paper [1] and the second one is

the Bowen-Dinaburg version of the definition of entropy of a function defined on a metric

space [5, 7] (see also [6, 10]).

In some parts of the proof of Theorem 4.4 we will use directly the results contained

in [2,4,12,15], so in this connection, we will present basic definitions and some statements

(without proofs) from these papers adjusted to the notations used in this paper.

Let α be an open cover of a compact space X. Then f−k(α) =
{
f−k(A) : A ∈ α

}
and

Λk = α ∨ f−1(α) ∨ · · · ∨ f−k+1(α) = {A1 ∩ f−1(A2) ∩ · · · ∩ f−k+1(Ak) : Ai ∈ α for i ∈ {1,
. . . , k}} are open covers of X for any k ∈ N. Moreover, if β is an open cover of X and

α is an open cover of X such that for any set B ∈ β there exists a set A ∈ α such that

B ⊂ A then we will write α < β.

An entropy of a cover α is the number H(α) = logN(α), where N(α) denotes the

minimal number of sets in any finite subcover chosen from α.

An entropy of a function f : X → X with respect to an open cover α is the number

h(f, α) = limn→∞
1
nH(Λn). Obviously, if α < β, then h(f, α) ≤ h(f, β).

Let us put h(f) = suph(f, α), where supremum is taken over all open covers α of X.

The number h(f) is called the (topological) entropy of f .

Now, let λ be a finite family of pairwise disjoint intervals contained in I and f : I→ I
be a function.

Put λk = {(A1, . . . , Ak) : Ai ∈ λ for i ∈ {1, . . . , k} and A1∩f−1(A2)∩· · ·∩f−k+1(Ak)

6= ∅}, for k ∈ N. Let ck(λ) denote the cardinality of the family λk. If A ∈ λ, then λk|A ={
(A1, . . . , Ak) ∈ λk : A1 = A

}
and ck(λ|A) denotes the cardinality of the family λk|A. Put

h∗(f, λ) = limk→∞
log ck(λ)

k . Clearly, since the sequence {log ck(λ)}k∈N is subadditive, i.e.,

log ck+`(λ) ≤ log ck(λ) + log c`(λ) for all k, ` ∈ N, so Lemma 4.1.1 in [2] gives that the

above limit exists. Let λ? be the family of all the intervals A ∈ λ for which the following

condition is fulfilled lim supk→∞
log ck(λ|A)

k = h∗(f, λ). Notice that λ? 6= ∅. Using our

notations we have (by Proposition 25 in [4, Chapter 8])

lim sup
k→∞

log ck(λ
?|A)

k
= h∗(f, λ).

Now, let us define inductively a sequence {λ?k}k∈N consisting of finite families of pair-
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wise disjoint intervals. Put λ?1 = λ?. If λ?k has been defined, then for any interval J ∈ λ?k
and any A ∈ λ? such that fk(J)∩A 6= ∅ there exists interval I(J,A) such that I(J,A) ⊂ J ,

fk(I(J,A)) = fk(J) ∩A. Put λ?k+1 =
{
I(J,A) : J ∈ λ?k, A ∈ λ?, fk(J) ∩A 6= ∅

}
.

If A,B ∈ λ?, then put γ(A,B, k) = #
{
J ∈ λ?k : J ⊂ A,B ⊂ fk(J)

}
. Using our as-

sumptions and notations we have (by Proposition 28 in [4, Chapter 8])

(2.1) If h?(f, λ) > 2, then there is A ∈ λ? such that lim sup
k→∞

log γ(A,A, k)

k
= h∗(f, λ).

Now let us concentrate on the Bowen-Dinaburg version of the definition of an entropy

of a function [5,7] (see also [10] for entropy on a subset and [6] for an arbitrary function).

Let (X, ρ) be a compact metric space and f : X → X. If ε > 0 and n ∈ N, then we

say that M ⊂ X is an (n, ε)-separated set for f if for every different points x, y ∈ M we

have that there is i ∈ {0, 1, . . . , n− 1} such that ρ(f i(x), f i(y)) > ε. The symbol sn(ε, f)

denotes the cardinality of an (n, ε)-separated set for f with maximal possible number of

points.

Putting s(ε, f) = lim supn→∞
1
n log sn(ε, f), we obtain s(ε, f) ≤ s(ε1, f) if ε1 < ε (see

Remarks in [18, p. 169]). The topological entropy of f is the number

h(f) = lim
ε→0+

s(ε, f) = lim
ε→0+

lim sup
n→∞

1

n
log sn(ε, f).

The topological entropy of f � A for any nonempty set A ⊂ X is given by the formula

h(f � A) = lim
ε→0+

lim sup
n→∞

1

n
log sAn (ε, f),

where sAn (ε, f) denotes the cardinality of an (n, ε)-separated set for f contained in A with

maximal possible number of points. Taking into account remark after Lemma 4.4 in [10]

it is easy to see that h(fn0 � A) = n0 · h(f � A).

The problem connected with the existence of F-focal entropy points will be examined

in connection with the spaces named trees. Following [2, 3], we assume the definitions

below. A continuum X is uniquely arcwise connected if for any x, y ∈ X and x 6= y, there

is a unique arc in X with endpoints x and y (from now on, by an arc we mean any space

homeomorphic to [0,1]). A tree is a compact uniquely arcwise connected space which is a

union of a finite number of arcs. If T is a tree and x ∈ T , then the number of connected

components of T \{x} is called the valance of x. We say that x ∈ T is a vertex of T if the

valance of x is different from 2. The closure of each connected component of T \ V (T ),

where V (T ) denotes the set of all vertices of T , is called an edge of T . Any continuous

map f from a tree into itself will be called a tree map. Moreover, if for any edge E of a

tree there exists m ∈ N such that E is an fm-invariant set, then f will be called an edge

periodic tree function.
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In Section 5 we will consider an m-dimensional manifold with boundary X (dim(X) =

m). Our terminology and notations related to m-dimensional manifolds will coincide

with these of [11]. We say that a topological space X is an m-dimensional topological

manifold (manifold with boundary) if X is a second countable Hausdorff space and for

every point x0 ∈ X there exist a set Wx0 ∈ O(x0), a set U open in Rm (open in the m-

dimensional upper half space Hm = {(x1, . . . , xm) ∈ Rm : xm ≥ 0}) and a homeomorphism

hx0 : Wx0 → U . From now on, writing Wx0 and hx0 for a point x0 ∈ X we will always

have in mind the set and the homeomorphism defined above. Moreover, we will write

Whx0
instead of hx0(Wx0). We will call any homeomorphism from an open subset V of

X to an open subset of Hm a chart on U . A point which belongs to the inverse image

of δHm = {(x1, . . . , xm) ∈ Rm : xm = 0} (int(Hm) = {(x1, . . . , xm) ∈ Rm : xm > 0}) under

some chart is called a boundary (interior) point of X. The boundary of X (i.e., the set of

all its boundary points) will be denoted by δX. Moreover, we will use the symbol Int(X)

to denote the set of all interior points of a manifold X.

3. F -focal entropy point: Definitions and basic properties

In this section, we will introduce a notion of an F-focal entropy point and we will give

basic properties of this kind of points. These properties will situate F-focal entropy points

among the families of other important points considered in the theory of discrete dynamical

systems. The motivation for this definition (more precisely sequence of definitions) was

discussed in detail in the introduction to this paper. For this reason, now we turn to the

basic agreements and notations.

Our main discussion will focus on established families of sets (arcs, continua). But

even easy observations lead us to the conclusion, that the considered families of sets can

be replaced with another (larger) family of sets (for example Borel sets). However, limiting

statements to fixed sets permits to avoid too complicated notations in proofs. The above

observations indicate a necessity of formulation of definitions in general case.

So let (X, ρ) be a compact metric space (from now on writing X we will always mean

such a space) and let F ⊂ exp(X)\{∅} be a family such that each open set contains some

element of F . Further, writing about family F we will always assume that it fulfils the

above condition. By ϑYF we will denote the family of all finite sequences of sets from F
contained in Y ⊂ X such that their closures are pairwise disjoint i.e., F = (A1, . . . , Am) ∈
ϑYF if and only if Ai ∈ F , Ai ⊂ Y for any i ∈ {1, . . . ,m} and cl(Ai) ∩ cl(Aj) = ∅ for any

i, j ∈ {1, . . . ,m} and i 6= j. For simplicity of notation, let ϑF stand for ϑXF . Moreover,

F|Y = {K ∩ Y : K ∈ F}.
Let n,m ∈ N, f : X → X and F = (F1, F2, . . . , Fm−1, F1), where Fi ∈ F for i ∈

{1, . . . ,m− 1}. If Fi →
fn
Fi+1 for i ∈ {1, . . . ,m− 2} and Fm−1 →

fn
F1 then we will denote
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this sequence F by [F1, F2, . . . , Fm−1, F1]fn .

We shall say that f ∈ J(F) if for any n,m ∈ N and any sequence [F1, F2, . . . , Fm−1, F1]fn

there exists x0 ∈ F1 such that fn(m−1)(x0) = x0 and fn·i(x0) ∈ Fi+1 for i ∈ {1, 2, . . . ,m−
1}, where Fm = F1. This property is closely connected with so called Itinerary Lemma [4].

If F = (A1, . . . , Am) ∈ ϑF and f : X → X is a function then we define so called

structural matrix MF,f = [aij ]
m
i,j=1 in the following way: aij = 1 if Ai →

f
Aj and aij = 0

otherwise.

A generalized entropy of f with respect to the sequence F ∈ ϑF is the number

Hf (F ) =

log σ(MF,f ) if σ(MF,f ) > 0,

0 if σ(MF,f ) = 0,

where σ(MF,f ) = lim supn→∞ n

√
tr(Mn

F,f ) (cf. [15]).

Let Y ⊂ X be a nonempty open set. An entropy of f on Y with respect to the family

F is the number

HF ,f (Y ) = sup

{
1

n
Hfn(F ) : F ∈ ϑYF , n ∈ N

}
.

The following lemma will be very useful in the proofs of theorems in further parts of

this paper.

Lemma 3.1. If f : X → X is any function, then

(3.1) Hfn(F ) ≤ h(fn) = n · h(f),

for any n ∈ N and F ∈ ϑF .1

Proof. It is sufficient to prove (e.g., [2, Lemma 4.1.2]) that

(3.2) Hfn(F ) ≤ h(fn),

for any n ∈ N and F ∈ ϑF . So, let us fix n ∈ N and F ∈ ϑF . The cases when #(F ) = 1 or

Hfn(F ) = 0 are obvious. So, let us assume that Hfn(F ) > 0 and F = (F1, . . . , Fs) ∈ ϑF ,

where s > 1. This means that σ(MF,fn) > 1. Fix β ∈ (0, σ(MF,fn)).

There exists a sequence nk of positive integers such that

(3.3) nk

√
tr(Mnk

F,fn) > β for any k ∈ N.

Let us denote the diagonal entries of a matrix Mnk
F,fn by ank1 , . . . , anks . Moreover, put

ε0 =
1

2
min {dist(cl(Fi), cl(Fj)) : i, j ∈ {1, . . . , s} , i 6= j} .

1Let us remind that according to the agreement adopted at the beginning of this section, X denotes a

compact metric space (X, ρ) and F ⊂ exp(X) \ {∅} is a family such that each open set contains some

element of F .
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Obviously, ε0 > 0. The condition (3.3) implies that

Tnk = {i ∈ {1, . . . , s} : anki 6= 0} 6= ∅,

for any k ∈ N. If i ∈ Tnk then there exist anki different sequences Fi,j = [F 1
i,j , F

2
i,j , . . . , F

nk
i,j ,

Fnk+1
i,j ]fn (j ∈ {1, . . . , anki }) such that F 1

i,j = Fnk+1
i,j = Fi and F `i,j ∈ {F1, . . . , Fs} for

` ∈ {2, . . . , nk}. Then for any i ∈ Tnk and any j ∈ {1, . . . , anki } one can find a point

xnki,j ∈ Fi such that (fn)`(xnki,j ) ∈ F
`+1
i,j for ` ∈ {1, . . . , nk}.

Note that xnki,j1 6= xnki,j2 for any j1, j2 ∈ {1, . . . , anki } and j1 6= j2. Indeed, suppose

contrary to our claim that there are j1, j2 ∈ {1, . . . , anki } and j1 6= j2 such that xnki,j1 = xnki,j2 .

Since Fi,j1 6= Fi,j2 , one can find m ∈ {2, . . . , nk} such that Fmi,j1 ∩ F
m
i,j2

= ∅. Obviously,

(fn)m−1(xnki,j1) ∈ Fmi,j1 and (fn)m−1(xnki,j1) = (fn)m−1(xnki,j2) ∈ Fmi,j2 , which is impossible.

Therefore, putting Ank =
{
xnki,j : i ∈ Tnk , j ∈ {1, . . . , a

nk
i }
}

we obtain #(Ank) = ank1 +

· · · + anks . Let xnki0,j0 , xnki1,j1 be different elements of the set Ank . Clearly, if i0 6= i1, then

ρ(xnki0,j0 , x
nk
i1,j1

) ≥ dist(cl(Fi0), cl(Fi1)) > ε0. If i0 = i1 then there exists ` ∈ {1, . . . , nk − 1}
such that F `+1

i0,j0
∩ F `+1

i0,j1
= ∅. Since (fn)`(xnki0,j0) ∈ F `+1

i0,j0
and (fn)`(xnki0,j1) ∈ F `+1

i0,j1
, we have

ρ((fn)`(xnki0,jo), (f
n)`(xnki0,j1)) > ε0. From the above consideration we get snk(ε0, f

n) ≥
#(Ank) = ank1 + · · ·+ anks . Thus for any ε ∈ (0, ε0) we have

s(ε, fn) ≥ lim sup
k→∞

log nk

√
Mnk

F,fn ≥ log β.

Therefore h(fn) = limε→0+ s(ε, f
n) ≥ log β. From arbitrariness of β we obtain h(fn) ≥

log σ(MF,fn) = Hfn(F ).

Summarizing, for any nonempty open set Y ⊂ X we have

(3.4) HF ,f (Y ) ≤ h(f).

Taking into account the possible values of HF ,f (Y ) and h(f) let us introduce the

following notation

d(F , f, Y ) =


HF,f (Y )
h(f) if h(f) ∈ (0,∞),

1 if HF ,f (Y ) =∞ or h(f) = 0,

0 if HF ,f (Y ) ∈ [0,∞) and h(f) =∞.

A density of entropy of f with respect to F at the point x0 is the number

EF ,f (x0) = inf {d(F , f, V ) : V ∈ O(x0)} .

Obviously (by (3.4) and by the definition of d), we have

0 ≤ EF ,f (x0) ≤ 1.
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We say that x0 ∈ X is an F-focal entropy point of f if EF ,f (x0) = 1. The set of all

F-focal entropy points of f will be denoted by EF (f).

In order to avoid lengthening the paper we will omit elementary properties connected

with F-focal entropy points (e.g., if F ⊂ F1 then EF (f) ⊂ EF1(f)). In this section we will

present only these properties, which permit to notice relations with some kinds of points

considered in dynamical systems theory or these which refer to further considerations.

Proposition 3.2. Let f : X → X be a function. Then the set EF (f) is closed.

Proposition 3.3. Let f : X → X be a function such that h(f) > 0. Then EF (f) ⊂ Ω(f).

Proof. Suppose, contrary to our claim, that there is x0 ∈ EF (f) \Ω(f). Thus there exists

U ∈ O(x0) such that U ∩ f i(U) = ∅ for any i ∈ N. Let F = (F1, . . . , Fm) ∈ ϑUF . Clearly,

for any n ∈ N all entries of the matrixMF,fn are equal to 0. This means that Hfn(F ) = 0

for any n ∈ N, and in consequence, we obtain HF ,f (U) = 0, so d(F , f, U) = 0. Finally we

have that EF ,f (x0) = 0, which is impossible.

Note that the assumption h(f) > 0 can not be omitted. Indeed, if we consider the

function f(x) = 1 for all x ∈ I, then it is easy to see that 0 ∈ EF (f) \ Ω(f).

Moreover, we have the following fact.

Theorem 3.4. If x0 is an F-focal entropy point of f : X → X, then

(3.5) h(f � U) = h(f) for any U ∈ O(x0).

Proof. Certainly, it is sufficient to consider the case h(f) > 0. To prove (3.5) we will show

that for any U ∈ O(x0) we have

h(f � U) ≥ β for any β ∈ (0, h(f)).

So, fix U ∈ O(x0) and let β ∈ (0, h(f)). It is easy to see that HF ,f (U) > β. Consequently,

one can find n0 ∈ N and K = (A1, . . . , Ak) ∈ ϑUF , where k > 1, such that

1

n0
Hfn0 (K) > β.

Put δ0 = min {ρ(cl(Ai), cl(Aj)) : i, j ∈ {1, . . . , k} , i 6= j} > 0 and g = fn0 . Obviously,

Hg(K) > n0 · β. Thus there exists a strictly increasing sequence {dn}n∈N of positive

integers such that

(3.6) log dn

√
tr(Mdn

K,g) > n0 · β.

Let us introduce the following notation Mdn
K,g = [ad

n

i,j ]1≤i,j≤k. Fix n∗ ∈ N. We write d∗

instead of dn∗ for short. Clearly, by (3.6), we have

(3.7) log tr(Md∗
K,g) > d∗ · n0 · β.
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Put π =
{
m ∈ {1, . . . , k} : ad∗m,m > 0

}
. The condition (3.7) implies that π 6= ∅. If m ∈ π,

then there are ad∗m,m different sequences [Am, As1 , . . . , Asd∗−1
, Am]g, where s1, . . . , sd∗−1 ∈

{1, . . . , k}. Let Sd∗m =
{
Sm1 , . . . , S

m
ad∗m,m

}
be the set of these sequences. Denote Smi =

[Am, A
i
s1 , . . . , A

i
sd∗−1

, Am]g for i ∈
{

1, . . . , ad∗m,m
}

. Then for any i ∈
{

1, . . . , ad∗m,m
}

one

can find points yip for p ∈ {0, 1, . . . , d∗} such that yi0, y
i
d∗
∈ Am, yij ∈ Aisd∗−j for j ∈

{1, . . . , d∗ − 1} and g(yij) = yij−1 for j ∈ {1, . . . , d∗}.
Putting ξm(Smi ) = yid∗ for m ∈ π and i ∈

{
1, . . . , ad∗m,m

}
we obtain a function ξm : Sd∗m →

Am for any m ∈ π. Moreover, for any m ∈ π we have

(3.8)
ξm(Smi ) ∈ Am, gj(ξm(Smi )) ∈ Aisj for any j ∈ {1, . . . , d∗ − 1}, and

gd∗(ξm(Smi )) ∈ Am,

for i ∈
{

1, . . . , ad∗m,m
}

. Furthermore, for each m ∈ π a function ξm is injective, so

(3.9) #(ξm(Sd∗m )) = ad∗m,m for m ∈ π.

Put ∆d∗ =
⋃
m∈π ξm(Sd∗m ). Obviously ∆d∗ ⊂ U . Since ξm1(Sd∗m1

) ∩ ξm2(Sd∗m2
) = ∅ for any

m1,m2 ∈ π and m1 6= m2, we obtain, by (3.9), #(∆d∗) = ad∗1,1 + · · ·+ ad∗k,k = tr(Md∗
K,g).

Moreover, we have that ∆d∗ is a (d∗, δ)-separated set for g for any δ ∈ (0, δ0). Indeed,

let x, y ∈ ∆d∗ and x 6= y. There exist mx,my ∈ π such that x ∈ ξmx(Sd∗mx) ⊂ Amx and

y ∈ ξmy(Sd∗my) ⊂ Amy . Clearly, if mx 6= my, then ρ(x, y) ≥ δ0 > δ. If mx = my = t,

then one can find ix, iy ∈
{

1, . . . , ad∗t,t

}
such that x = ξt(S

t
ix

) and y = ξt(S
t
iy

). Obviously,

Stix 6= Stiy . Thus there is p ∈ {1, . . . , d∗ − 1} such that Aixsp ∩ A
iy
sp = ∅. By (3.8) we

have gp(x) ∈ Aixsp and gp(y) ∈ A
iy
sp , so ρ(gp(x), gp(y)) ≥ δ0 > δ. Finally, we obtain

ρ(g`(x), g`(y)) > δ for some ` ∈ {0, . . . , d∗ − 1}. This means that ∆d∗ is a (d∗, δ)-separated

set for g, for any δ ∈ (0, δ0) and, in consequence, we have

log sUd∗(δ, g) ≥ log(#(∆d∗)) = log(tr(Md∗
K,g)) > d∗ · n0 · β

for any δ ∈ (0, δ0). Repeating the previous reasoning for any dn (n ∈ N), we obtain

log sUdn(δ, g) > dn · n0 · β for any δ ∈ (0, δ0). Thus

sU (δ, g) = lim sup
n→∞

1

`
log sU` (δ, g) ≥ lim sup

n→∞

1

dn
log sUdn(δ, g) ≥ n0 · β

for any δ ∈ (0, δ0). Therefore,

h(g � U) = lim
δ→0+

sU (δ, g) ≥ n0 · β,

so n0 · h(f � U) ≥ n0 · β which finishes the proof.
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It is easy to notice that the above theorem shows some kind of relation with full entropy

points considered in [19].

The following result may be proved in similar way as Theorem 3.4. Choosing the

points yip for i ∈
{

1, . . . , ad∗m,m
}

and p ∈ {0, . . . , d∗} (see the above proof) we need to make

sure that gd∗+1(yid∗) = yid∗ .

Theorem 3.5. Let f : X → X be a function such that h(f) > 0 and fn ∈ J(F) for any

n ∈ N. If x0 is an F-focal entropy point of f , then h(f � (U ∩ R(f))) = h(f) for any

U ∈ O(x0).

4. The existence of focal entropy points

In this part of the paper we will discuss the problem of existence of F-focal entropy

points for continuous functions. Chapter 5 of [2] and the monograph [3] have directed our

considerations to spaces called trees. Obviously, one can easily generalize Theorem 4.4

for example for the case of the graph-like spaces [2, 3]. The idea of the proof would stay

almost the same, so, in order to make notations more readable, we decided to leave the

theorem under the assumption of considering trees. In all the above cases, a special role

is played by arcs. That is why in this section we consider the family of all arcs as a family

F being a basis of our discussion. It is easy to notice that Theorem 4.4 will still be true

if we use other families of sets (e.g., continua, Borel sets etc.). Therefore, we formulate

lemmas as general as possible, i.e., F ⊂ exp(X) \ {∅} is a family such that each open set

contains some element of F .

Lemma 4.1. Let f : X → X be a function, E ⊂ X be an fn-invariant set for some n ∈ N,

h(f) = h(f � E), FE = {A ∈ F : A ⊂ E} and x0 ∈ E. If for any V ∈ O(x0) there is

B ∈ FE such that B ⊂ V and x0 is an FE-focal entropy point of fn � E, then x0 is an

F-focal entropy point of f .

Proof. If h(f) = 0 then the proof is obvious.

Let us first assume that 0 < h(f) < +∞ and let V ∈ O(x0). We will show that

(4.1)
HF ,f (V )

h(f)
= 1.

Let ε > 0. Since x0 is an FE-focal entropy point of fn � E, we obtain
HFE,fn�E(V ∩E)

h(fn�E) = 1.

Thus HFE ,fn�E(V ∩E) > n·h(f)−n·ε. Therefore, there exist K = (K1, . . . ,K`) ∈ ϑV ∩EFE ⊂
ϑVF and m0 ∈ N such that 1

m0
H(fn�E)m0 (K) > n ·h(f)−n · ε. Moreover, (fn � E)m0(Ki) =

fn·m0(Ki) for i ∈ {1, . . . , `}. Thus MK,fn·m0 = MK,(fn�E)m0 , so 1
m0
H(fn�E)m0 (K) =

1
m0
Hfn·m0 (K). This means that HF ,f (V ) > h(f) − ε. From arbitrariness of ε we obtain

(4.1) and, in consequence, we have that x0 is an F-focal entropy point of f .
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Now, assume that h(f) = +∞. Clearly, h(fn � E) = +∞. Let V ∈ O(x0). We will

show that

(4.2) HF ,f (V ) = +∞.

Let r > 0. Since x0 is an FE-focal entropy point of fn � E, we obtain HFE ,fn�E(V ∩E) =

+∞, so HFE ,fn�E(V ∩ E) > n · r. Thus there exist K = (K1, . . . ,K`) ∈ ϑV ∩EFE ⊂ ϑVF
and m0 ∈ N such that 1

m0
H(fn�E)m0 (K) > n · r. Analysis similar to that in the case

h(f) ∈ (0,∞) shows 1
m0
H(fn�E)m0 (K) = 1

m0
Hfn·m0 (K). Therefore HF ,f (V ) > r. Since r

was arbitrary, we obtain (4.2). This means that x0 is an F-focal entropy point of f .

Let us introduce the following notations. If L (T ) is an arc (a tree), then AL (AT ) is

the family of sets containing all arcs contained in L (T ).

Lemma 4.2. Let L be any arc, ψ : I→ L be a homeomorphism, f : L→ L be a function

and g = ψ−1 ◦ f ◦ ψ. A point x0 is an AI-focal entropy point of g if and only if ψ(x0) is

an AL-focal entropy point of f .

Proof. Note first that

if A = (A1, A2, . . . , Am) ∈ ϑAI , then ψ(A) = (ψ(A1), ψ(A2), . . . , ψ(Am)) ∈ ϑAL .

Indeed. Let A = (A1, A2, . . . , Am) ∈ ϑAI . By assumption ψ(Ai) ∈ AL. Suppose, contrary

to our claim, that ψ(A) = (ψ(A1), ψ(A2), . . . , ψ(Am)) /∈ ϑAL . Thus there exist i, j ∈
{1, 2, . . . ,m} such that cl(Ai) ∩ cl(Aj) 6= ∅, which is impossible.

By a similar argument, we obtain the following fact

if A = (A1, A2, . . . , Am) ∈ ϑAL , then ψ−1(A) = (ψ−1(A1), ψ
−1(A2), . . . , ψ

−1(Am)) ∈ ϑAI .

Obviously

MA,gn =Mψ(A),fn for any n ∈ N and A ∈ ϑAI .

Thus

(4.3) Hgn(A) = Hfn(ψ(A)) for any n ∈ N and A ∈ ϑAI .

Finally, we get

(4.4) HAL,f (V ) = HAI,g(ψ
−1(V )) for any V ∈ O(ψ(x0)).

From (4.4) it may be concluded that x0 is an AI-focal entropy point of g if and only if

ψ(x0) is an AL-focal entropy point of f .

Moreover, Lemma 4.1 in [10] gives
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Lemma 4.3. If f : X → X and X = A1 ∪A2 ∪ · · · ∪Ak, then h(f) = max{h(f � A1),

h(f � A2), . . . , h(f � Ak)}.

Now, one can prove

Theorem 4.4. Let g : T → T be an edge periodic tree function. Then there exists a point

x0 being an AT -focal entropy point of g.

Proof. If h(g) = 0, then the proof is obvious. So, let us assume that h(g) > 0.

According to Lemma 4.3 let E be an edge of T such that h(g) = h(g � E). Let

Φ: I→ E be a homeomorphism and nE ∈ N be such that gnE (E) ⊂ E.

Put gE = gnE � E : E → E and f = Φ−1 ◦ gE ◦ Φ: I→ I. We start with showing that

(4.5) there exists an AI-focal entropy point of f.

To prove (4.5) it suffices to consider the case h(f) > 0. First we will show that:

(4.6)
for any z ∈ N there is an interval U ⊂ I such that diam(U) < 1

z and

HAI,f (U) ∈ (h(f)− 1
z , h(f)] if h(f) < +∞

and

(4.7)
for any z ∈ N there is an interval U ⊂ I such that diam(U) < 1

z and

HAI,f (U) > 2 + z +
1

6z
if h(f) = +∞.

Let z0 ∈ N. Without loss of generality we can assume that 1
z0
< h(f). Moreover, put

β = h(f)− 1
z0

if h(f) < +∞ and β = 2 + z0 + 1
6z0

if h(f) = +∞. Clearly, if h(f) < +∞
one can find m0 ∈ N \ {1} such that

(4.8) m0h(f) > 2 +
1

3z0
.

To simplify further notation put: ϕ = fm0 if h(f) < +∞ and ϕ = f if h(f) = +∞.

Let for any n ∈ N, αn be a cover of I consisting of open balls in I having diameter less

than 1
n . Obviously, h(ϕ) = limn→∞ h(ϕ, αn). Therefore, there exists n0 ∈ N such that

1
n0
< 1

3z0
and

(4.9) h(ϕ, αn0) ≥ h(ϕ)− 1

3z0
if h(f) < +∞

and

(4.10) h(ϕ, αn0) ≥ 2 + z0 +
2

3z0
if h(f) = +∞.
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Now, we will show that there exists a finite cover α1 consisting of disjoint intervals

having diameter less than 1
3z0

and such that

(4.11) h∗(ϕ, α1) ≥ h(ϕ, αn0).

Let α0 be a finite subcover of the cover αn0 . Obviously, all sets from α0 are intervals.

Create a finite sequence {bi}si=1 of all endpoints of these intervals such that 0 = b1 < b2 <

· · · < bs−1 < bs = 1. We see at once that bi − bi−1 < 1
3z0

for i ∈ {2, 3, . . . , s}. Put

α1 =

{[
b1,

b2
2

)
,

[
b2
2
, b2

)
, . . . ,

[
bs−1,

bs−1 + bs
2

)
,

[
bs−1 + bs

2
, bs

]}
.

It is sufficient to show that α1 fulfills the condition (4.11).

Fix A ∈ α1. Then there is an interval BA ∈ α0 such that A ⊂ BA.

Now, fix v ∈ N. By the above, we conclude that for any sequence (A1, . . . , Av) of

sets from α1 such that A1 ∩ ϕ−1(A2) ∩ · · · ∩ ϕ−v+1(Av) 6= ∅ there are sets Bk ∈ α0 (for

k ∈ {1, . . . , v}) such that

(4.12) A1 ∩ ϕ−1(A2) ∩ · · · ∩ ϕ−v+1(Av) ⊂ B1 ∩ ϕ−1(B2) ∩ · · · ∩ ϕ−v+1(Bv).

We see at once that ϕ−i(α1) is a cover of I for i ∈ {1, . . . , v − 1} and consequently{
A1 ∩ ϕ−1(A2) ∩ · · · ∩ ϕ−v+1(Av) : Ai ∈ α1 for i = 1, 2, . . . , v

}
is a cover of I. Consider

the number cv(α1). Clearly, cv(α1) is not less than the number of nonempty sets from

the cover Λv1 = α1 ∨ ϕ−1(α1) ∨ · · · ∨ ϕ−v+1(α1). The condition (4.12) implies that for

any nonempty set E from the cover Λv1 there exists at least one set F from the cover

Λv0 = α0 ∨ ϕ−1(α0) ∨ · · · ∨ ϕ−v+1(α0) such that E ⊂ F . For each E ∈ Λv1 we assign a set

FE ∈ Λv0 such that E ⊂ FE . Putting Rv = {FE ∈ Λv0 : E ∈ Λv1 \ {∅}} we notice that Rv is

a finite subcover of the cover Λv0. Moreover, the number of elements of Rv is not greater

than the number of nonempty elements of Λv1. Thus 0 < N(Λv0) ≤ #(Rv) ≤ cv(α1), so

H(Λv0) ≤ log cv(α1). From arbitrariness of v we obtain

h(ϕ, α0) ≤ h∗(ϕ, α1).

Moreover, since αn0 < α0, we have h(ϕ, αn0) ≤ h(ϕ, α0), and in consequence (4.11).

Now, from (4.11), (4.9), [2, Lemma 4.1.2] and (4.8) we conclude that if h(f) < +∞
then

h∗(ϕ, α1) ≥ h(ϕ, αn0) ≥ m0h(f)− 1

3z0
> 2.

Moreover, if h(f) = +∞, then (4.11) and (4.10) give that h∗(ϕ, α1) ≥ h(ϕ, αn0) > 2. Thus

by (2.1), we get that there exists A1 ∈ α1 such that

lim sup
`→∞

log γ(A1, A1, `)

`
= h∗(ϕ, α1).
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Let us recall that γ(A1, A1, `) denotes the number of intervals J ∈ (α1)
?
` such that J ⊂ A1

and J −→
ϕ`

A1.

Fix τ ∈ N. For any τ ′ ∈ N such that τ ′ > τ there exists mτ ′ ∈ N such that mτ ′ > τ ′ > τ

and

log γ(A1, A1,mτ ′) ≥ mτ ′ ·
(
h∗(ϕ, α1)−

1

3z0

)
≥ mτ ′ ·

(
m0h(f)− 2

3z0

)
if h(f) < +∞

and

log γ(A1, A1,mτ ′) ≥ mτ ′ ·
(
h∗(ϕ, α1)−

1

3z0

)
≥ mτ ′ ·

(
2 + z0 +

1

3z0

)
if h(f) = +∞.

Put n = mτ ′ · m0 if h(f) < +∞ and n = mτ ′ if h(f) = +∞. Let Jn be a family of

disjoint intervals J such that J ⊂ A1 and J −→
ϕmτ ′

A1. Set pn = #(Jn). Obviously, pn is

a number greater than 1. According to the continuity of ϕ, we have that pn is a finite

number. Since the family Jn may contain intervals that do not belong to (α1)
?
mτ ′

, we have

pn ≥ γ(A1, A1,mτ ′). Therefore,

(4.13)
log pn
n
≥ log γ(A1, A1,mτ ′)

m0 ·mτ ′
> β +

2

3z0
− 2

3z0 ·m0
> β if h(f) < +∞

and

(4.14)
log pn
n
≥ log γ(A1, A1,mτ ′)

mτ ′
> 2 + z0 +

1

3z0
> β if h(f) = +∞.

In both cases we have log pn > n · β. Thus if n tends to +∞ then pn tends to +∞,

too. Without loss of generality we can assume that n is such that

(4.15) pn > 2 and n >
−3m0z0 log(1− 2

pn
)

2(m0 − 1)
if h(f) < +∞

and

(4.16) pn > 2 and

∣∣∣∣log

(
1− 2

pn

)∣∣∣∣ < 1

6z0
if h(f) = +∞.

Let {Ji}pni=1 be a sequence of all elements of Jn such that for any i ∈ {1, . . . , pn − 1} if

x ∈ Ji and y ∈ Ji+1 then x < y. Moreover, for any i ∈ {1, . . . , pn − 1} denote by ai, bi the

left and right end of the interval Ji, respectively.

Since A1 ∈ α1, so int(A1) 6= ∅ and, in consequence, int(Ji) 6= ∅ for i ∈ {1, . . . , pn}.
Taking into account (4.15) if h(f) < +∞ and (4.16) if h(f) = +∞ we infer that there are

at least 3 disjoint intervals: J1, J2 and Jpn . Note that b1, apn ∈ A1 and J2 −→
ϕmτ ′

A1. Put

U = (a1, bpn) ⊂ A1. Clearly, diam(U) < 1
z0

.
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Since ϕmτ ′ is a Darboux function, it follows that there are db1 , dapn ∈ int(J2) such

that ϕmτ ′ (db1) = b1 and ϕmτ ′ (dapn ) = apn . Let I2 be a closed interval with ends db1 ,

dapn . Then I2 −→
ϕmτ ′

[b1, apn ]. Hence ϕmτ ′ (I2) ⊃ J2 ∪ · · · ∪ Jpn−1. Moreover, we have that

I2 ⊂ int(J2) ⊂ int(ϕmτ ′ (I2)). Repeating the above reasoning for the sets J3, . . . , Jpn−1 we

obtain the sequence K = (I2, . . . , Ipn−1) of closed, disjoint intervals such that Ii ⊂ U and

(4.17) ϕmτ ′ (Ii) ⊃ int(J2 ∪ · · · ∪ Jpn−1) ⊃ I2 ∪ · · · ∪ Ipn−1 for i ∈ {2, . . . , pn − 1}.

Thus for any i, j ∈ {2, . . . , pn − 1} we have Ii −→
fn

Ij , so σ(MK,fn) = pn − 2 > 0. Hence

(4.18) Hfn(K) = log(pn − 2).

Now, we will show that

(4.19)
log(pn − 2)

n
> β.

First, consider the case h(f) < +∞. The condition (4.15) implies

log(1− 2
pn

)

n
+

2

3z0
− 2

3z0 ·m0
> 0.

From this and (4.13) it follows that

log(pn − 2)

n
=

log pn
n

+
log(1− 2

pn
)

n
> β.

If h(f) = +∞, then (4.14) and (4.16) give

log(pn − 2)

n
=

log pn
n

+
log(1− 2

pn
)

n
> β.

By (4.18) and (4.19) we may conclude that Hfn(K) > nβ. This and Lemma 3.1 give

β < 1
nHfn(K) ≤ h(f) and, in consequence, β < HAI,f (U) ≤ h(f), which finishes the

proofs of (4.6) and (4.7).

Consider a sequence {Uz}z∈N of intervals contained in I such that for any z ∈ N we

have diam(Uz) <
1
z and HAI,f (Uz) ∈ (h(f)− 1

z , h(f)] if h(f) < +∞ (HAI,f (Uz) > 2+z+ 1
6z

if h(f) = +∞). For any ν ∈ N fix xν ∈ Uν . Since I is compact then there exists a point

x0 being an accumulation point of the set {xν : ν ∈ N}. For simplicity of notation, we will

assume that limν→∞ xν = x0.

Now, we will show that

(4.20) x0 is an AI-focal entropy point of f.

Suppose, contrary to our claim, that there exists V ∈ O(x0) such that d(AI, f, V ) = θ < 1.

Without restriction of generality we can assume that V is an interval, so V = (x0−κ, x0 +

κ) ∩ I (κ > 0).



1132 Ewa Korczak-Kubiak, Anna Loranty and Ryszard J. Pawlak

Assume first that h(f) < +∞. Clearly, one can find ν0 ∈ N such that xν0 ∈ (x0 −
κ, x0 + κ) and 1

ν0
< min

{
κ
2 , (1− θ)h(f)

}
. Thus Uν0 ⊂ (x0 − κ, x0 + κ) ∩ I = V and, in

consequence,
HAI,f (Uν0)

h(f)
≤
HAI,f (V )

h(f)
= θ.

On the other hand

HAI,f (Uν0)

h(f)
>
h(f)− 1

ν0

h(f)
≥ h(f)− h(f) + θh(f)

h(f)
= θ,

which is impossible.

Assume, now that h(f) = +∞. Then HAI,f (V ) < +∞. There exists ν0 ∈ N such that

xν0 ∈ (x0 − κ, x0 + κ), 1
ν0
< κ

2 and HAI,f (V ) < ν0. Obviously,

Uν0 ⊂ (x0 − κ, x0 + κ) ∩ I = V.

Therefore, HAI,f (Uν0) ≤ HAI,f (V ) < ν0, which contradicts the fact that HAI,f (Uν0) >

2 + ν0 + 1
6ν0

. Finally, (4.20) is proved and, in consequence, we obtain (4.5).

Now, by Lemma 4.2, we conclude that

Φ(x0) is an AE-focal entropy point of gE .

Moreover, Lemma 4.1 implies that

Φ(x0) is an AT -focal entropy point of g.

If we want to consider more classical spaces, then the following corollary is an easy

consequence of the above theorem.

Corollary 4.5. Let g : [0, 1]→ [0, 1] be a function. Then there exists a point x0 being an

A[0,1]-focal entropy point of g.

Certainly, in the above corollary the family A[0,1] consists of all nodegenerated closed

intervals.

Within the context of the above considerations the questions connected with possibility

of generalizations of Theorem 4.4 for the case of other spaces or under weaker assumptions

put on considered functions (e.g., almost continuous functions [17]) seem to be interesting.

5. Improvement

A discussion regarding points focusing entropy and such that this property is independent

from the behaviour of a function on the sets which lie far from this point, in a natural way

direct our considerations to fixed points. On the other hand if we consider a continuous
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function f : I → I such that h(f) > 0, f(0) = 1, f(1) = 0, Fix(f) =
{
1
2

}
and f(x) = 1

2

for x ∈ [14 ,
3
4 ] then we obtain the example of function mapping [0, 1] into itself such that

no fixed point of this function is its A[0,1]-focal entropy point (Corollary 4.5 shows that

such functions have A[0,1]-focal entropy points). This leads us to the natural problem: Is

it possible to “improve” a given function in such a way that a given fixed point becomes a

focal entropy point with respect to a fixed family of sets? In this section we will analyze

this issue.

First, we will explain a notion of a “function improvable at a point x0”. Intuitively,

we mean a possibility of changing a function in an arbitrary neighbourhood of x0 in such

a way that a new function “differs little” from the given one. So, we assume the following

definitions.

Let (X, ρ) be a metric space. We say that a function f : X → X is improvable at a

point x0 ∈ X if for any ε > 0 there exists a function g : X → X such that x0 ∈ EF (g),

ρu(f, g) < ε and O(f, g) ⊂ Bρ(x0, ε).
It is important for us to fix a set with respect to which a given function is improvable.

This leads to the next definition.

If A ⊂ X is a set f -covering itself and x0 ∈ A, then we say that a function f is

improvable at a point x0 with respect to the set A if for any ε > 0 there exists a function

g : A→ A such that x0 ∈ EF|A(g), ρu(f � A, g) < ε and O(f � A, g) ⊂ Bρ(x0, ε).
Pointing out a set with respect to which we can improve functions is especially evident

in the case of topological manifolds. For that reason, in this section we will concentrate

on a compact metric space (X, ρ) being an m-dimensional manifold with boundary. From

now on, the symbol X will stand for such a space. Moreover, the symbol F will denote

the family of all nonsingletons continuums in X. In addition, we assume that all functions

considered in this section are continuous.

Theorem 5.1. If f : X → X and x0 ∈ Fix(f) then the function f is improvable at x0.

Moreover,

(i) if x0 ∈ Int(X) and Int(X) is a set f -covering itself, then f is improvable at the point

x0 with respect to Int(X),

(ii) if dim(X) > 1, x0 ∈ δX and δX is a set f -covering itself, then f is improvable at

the point x0 with respect to δX.

Proof. Assume first that x0 ∈ Int(X). Let ε > 0. Without loss of generality we can

assume that Wx0 ⊂ B(x0,
ε
2). Additionally, to make notations shorter put h = hx0 .

Let xh = h(x0) = (x1h, x
2
h, . . . , x

m
h ). Choose a number αh > 0 such that C[xh, αh] ⊂

Whx0
. There exist positive integers m0 ≥ n0 ≥ 2 such that cl(B(x0,

ε
m0

)) ⊂ B(x0,
ε
n0

) ⊂
h−1(int(C[xh, αh])) ⊂ h−1(C[xh, αh]) ⊂Wx0 and f(cl(B(x0,

ε
m0

))) ⊂ B(x0,
ε
n0

).
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Let α ∈ (0, αh) be a number such that C[xh, α] ⊂ h(B(x0,
ε
m0

)). Choose a positive

number α0 < α and put W x = h−1(C[xh, α0]) ⊂ h−1(C[xh, α]). It is easy to notice that

h−1(R[xh, α0]) = δ(W x) and

(5.1) W x is closed in X.

Let us now turn to the appropriate construction of the required function. Fix εh ∈
(0, α0) and consider sequences {sn}n∈N and {rn}n∈N such that 0 < · · · < rn+1 < sn+1 <

rn < sn < · · · < r1 < s1 < εh and sn → 0. Put A[xh, rn, sn] =
⋃
t∈[rn,sn]R[xh, t].

Now, for each n ∈ N choose 2n+1 numbers dn1 , d
n
2 , . . . , d

n
n+1 such that rn = dn1 < dn2 <

· · · < dn2n+1−1 < dn2n+1 = sn. Define the function f∗n : [rn, sn] → [rn, sn] in the following

way: f∗n(dn2i−1) = rn, f∗n(dn2i) = sn for i = 1, . . . , 2n and f∗n linear on the intervals [dni , d
n
i+1]

for i = 1, . . . , 2n+1 − 1.

Let x ∈ R[xh, t] (where t ∈ [rn, sn] for fixed n ∈ N) and lx denote the half-line with

initial point at xh and such that x belongs to it. Then, let fh(x) be the intersection

point of lx and R[xh, f
∗
n(t)]. Continuing in this fashion we define the function fh on the

set
⋃∞
n=1A[xh, rn, sn]. Now, if x ∈ R[xh, α0] ∪ (C[xh, εh] \

⋃∞
n=1A[xh, rn, sn]), then put

fh(x) = x.

It is easy to see that fh : C[xh, εh] ∪ R[xh, α0] → C[xh, α0] is continuous. Denote

Qx = h−1(C[xh, εh]), Qα0 = h−1(R[xh, α0]) and put Q = Qx ∪Qα0 . Clearly, Qx and Qα0

are disjoint sets contained in W x and int(Qx) is a neighbourhood of x0. Moreover, Q is

closed in W x, so by (5.1), it is closed in X.

Consider fQ = fh ◦ h : Q → C[xh, α0]. There exists a function f∗ : W x → C[xh, α0]

being a continuous extension of fQ.

Put

g(x) =

h−1(f∗(x)) if x ∈W x,

f(x) if x ∈ h−1(R[xh, α]).

Clearly g : W x∪h−1(R[xh, α])→ h−1(C[xh, αh]) and there exists a function g∗ : h−1(C[xh,

α])→ h−1(C[xh, αh]) being a continuous extension of g.

Putting

fX(x) =

g∗(x) if x ∈ h−1(C[xh, α]),

f(x) if x /∈ h−1(C[xh, α])

we notice that fX : X → X is continuous. Obviously fX ∈ B(f, ε) and O(f, fX) ⊂
Bρ(x0, ε).

We will show that

x0 is an F-focal entropy point of fX .
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Let δ > 0 be such that B(x0, δ) ⊂ Wx0 . Obviously, there exists n0 ∈ N such that

A[xh, rn, sn] ⊂ h(B(x0, δ)) for n > n0. Fix n > n0 and put Fn = (An1 , . . . , A
n
2n),

where Ani = h−1(A[xh, d
n
2i−1, d

n
2i]) for i = 1, . . . , 2n. Obviously, Fn ∈ ϑ

B(x0,δ)
F . It is

easy to see that Ani →
fX

Anj for any i, j ∈ {1, 2, . . . , 2n}, so all the elements of the matrix

MFn,fX are equal to 1. Hence σ(MFn,fX ) = 2n which gives HfX (Fn) = n log 2. Thus

HF ,fX (B(x0, δ)) =∞ which implies that x0 is an F-focal entropy point of fX .

For x0 ∈ δ(X), the proof runs in an analogous way. Moreover, similar arguments apply

to the condition (i). To prove (ii), it suffices to note that δ(X) is an (m− 1)-dimensional

manifold and x0 ∈ Int(δ(X)). The condition (i) implies that f is improvable at x0 with

respect to δ(X).

It is worth noting that the assumption x0 ∈ Fix(f) in the above theorem is essential.

Indeed, consider the function f : [0, 1]→ [0, 1] such that f(1) = 1 and for any i ∈ {1, 2, 3, 4}
we have that f(x) = −2x+ i+1

2 for x ∈ [2(i−1)8 , 2i−18 ) and f(x) = 2x+ 2−i
2 for x ∈ [2i−18 , 2i8 ).

Corollary 4.3.13 in [2] implies h(f) > 0. Moreover, it is easy to see that fn(A) ⊂ [34 , 1]

for any n ∈ N and any nonempty set A ⊂ (14 ,
3
4). Since (14 ,

3
4) ∈ O(12), so we deduce

immediately that f is not improvable at 1
2 .

We will say, that a function f : X → X is c-improvable at a point x0 ∈ X, if there

exists a function g being improvable at x0 such that f and g are conjugate (i.e., there

exists a homeomorphism h : X → X such that h ◦ g = f ◦ h).

Theorem 5.2. If X is a connected space having a fixed point property in Int(X) and

f : X → X, then f is c-improvable at x0, for any x0 ∈ Int(X).

Proof. Let x0 ∈ int(X) and y0 ∈ Fix(f)∩ Int(X). There exists a homeomorphism h : X →
X such that h(x0) = y0. Consider function g = h−1◦f◦h. It is easy to see that x0 ∈ Fix(g).

By Theorem 5.1 the function g is improvable at x0 which completes the proof.
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[10] S. Kolyada and Ĺ. Snoha, Topological entropy of nonautonomous dynamical systems,

Random Comput. Dynam. 4 1996, no. 2-3, 205–233.

[11] J. M. Lee, Introduction to Topological Manifolds, Graduate Texts in Mathematics

202, Springer-Verlag, New York, 2000. http://dx.doi.org/10.1007/b98853

[12] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér.

Sci. Math. 27 (1979), no. 2, 167–169.

[13] Z. H. Nitecki, Topological entropy and the preimage structure of maps, Real Anal.

Exchange 29 (2003/04), no. 1, 9–41.

[14] R. J. Pawlak, On the entropy of Darboux functions, Colloq. Math. 116 (2009), no. 2,

227–241. http://dx.doi.org/10.4064/cm116-2-7

[15] R. J. Pawlak and A. Loranty, The generalized entropy in the generalized topological

spaces, Topology Appl. 159 (2012), no. 7, 1734–1742.

http://dx.doi.org/10.1016/j.topol.2011.05.043

[16] R. J. Pawlak, A. Loranty and A. Bakowska, On the topological entropy of continuous

and almost continuous functions, Topology Appl. 158 (2011), no. 15, 2022–2033.

http://dx.doi.org/10.1016/j.topol.2011.06.049

http://dx.doi.org/10.1007/bfb0084762
http://dx.doi.org/10.1090/s0002-9947-1971-0274707-x
http://dx.doi.org/10.1090/s0002-9947-1973-0320271-8
http://dx.doi.org/10.1112/blms/3.2.176
http://dx.doi.org/10.1007/978-94-017-1748-9
http://dx.doi.org/10.1007/b98853
http://dx.doi.org/10.4064/cm116-2-7
http://dx.doi.org/10.1016/j.topol.2011.05.043
http://dx.doi.org/10.1016/j.topol.2011.06.049


On Focusing Entropy at a Point 1137

[17] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959),

249–263.

[18] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79,

Springer-Verlag, New Yourk-Berlin, 1982.

http://dx.doi.org/10.1007/978-1-4612-5775-2

[19] X. Ye and G. Zhang, Entropy points and applications, Trans. Amer. Math. Soc. 359

(2007), no. 12, 6167–6186. http://dx.doi.org/10.1090/s0002-9947-07-04357-7

Ewa Korczak-Kubiak, Anna Loranty and Ryszard J. Pawlak
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