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One Generalized Critical Point Theorem and its Applications on

Super-quadratic Hamiltonian Systems

Qin Xing, Fei Guo* and Xiaofei Zhang

Abstract. In this paper, we prove a generalized critical point theorem under the

condition (C), which is weaker than the (PS) condition. As its applications, we obtain

the existence of the solutions for the Hamiltonian systems with a new super-quadratic

conditions generalizing one in papers [2] and [12].

1. Introduction

Let p, q ∈ C1(R,Rn), z = (p, q) and H ∈ C1(R×R2n,R), then we consider the Hamiltonian

system

(1.1)

ṗ = −H ′q(t, z),

q̇ = H ′p(t, z),

which also can be written as ż = JH ′z(t, z), where H ′z = ∂H
∂z = (H ′p, H

′
q) = (∂H∂p ,

∂H
∂q ) and

J =
(

0 −In
In 0

)
with In being the n× n identity matrix. For simplicity of notations, we de-

note (p, q) = (p1, . . . , pn, q1, . . . , qn), (pi, qi) = (0, . . . , pi, . . . , 0, . . . , qi, . . . , 0), and whenever

without confusion we use the same symbols pi, qi to represent the vectors (0, . . . , pi, . . . , 0),

(0, . . . , qi, . . . , 0) and the numbers pi, qi.

In the pioneer work of paper [10], using minimax method, Rabinowitz established the

existence of periodic solutions of the autonomous Hamiltonian systems with a classical

super-quadratic condition, that is,

(S) there exist constants θ̂ ∈ (0, 1
2) and R > 0 such that

θ̂H ′z(t, z) · z ≥ H(t, z) > 0, (t, z) ∈ R× R2n with |z| ≥ R.
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Besides the minimax method, several different methods have been introduced to study

system (1.1). In paper [1], Ambrosetti and Mancini got the solutions of minimal period

for convex super-quadratic Hamiltonian systems via the “Fenche dual” of Hamiltonian

functions introduced by Clarke in [4]. The Maslov-type index theory was applied to study

the minimal periodic solutions of the classical super-quadratic Hamiltonian system in [5,7].

Meanwhile, generalized super-quadratic conditions covering the condition (S) raised in

many literatures, such as [2,6,8,12] and references therein. Zhang and Guo [12] considered

the existence of periodic solutions of the Hamiltonian systems with the super-quadratic

condition (S1), that is,

(S1) there exist constants c1, c2, σ, τ > 0 and β, µ, ν > 1 with 1
µ + 1

ν < 1 such that

1

µ
H ′p(t, z) · p+

1

ν
H ′q(t, z) · q −

(
1

µ
+

1

ν

)
H(t, z) ≥ c1 |z|β − c2, (t, z) ∈ R× R2n,

(1.2)

H(t, z)

|p|1+σ
τ + |q|1+ τ

σ

→ +∞, as |z| → ∞ uniformly in t.(1.3)

An and Wang [2] considered the existence and multiplicity of periodic solutions of the

Hamiltonian systems with the super-quadratic condition (S2), that is,

(S2) there exists a vector field V̂ (z) with form

V̂ (z) =



1
α̂1
· · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 1
α̂n

0 · · · 0

0 · · · 0 1

β̂1
· · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 1

β̂n


z

and a constant R > 0 such that for |z| ≥ R, t ∈ R, 0 < H(t, z) ≤ H ′z(t, z) · V̂ (z),

where αi and βi are positive numbers satisfying 1
αi

+ 1
βi

= ε < 1, i = 1, 2, . . . , n.

An and Wang [2, Lemma 2.2] also showed that condition (S2) implies that there exist

constants a1, a2 > 0 such that

(1.4) H(t, z) ≥ a1

n∑
i=1

(
|pi|α̂i + |qi|β̂i

)
− a2, (t, z) ∈ R× R2n.

The (PS) condition plays an important role in the critical point theory, and has a

weaker version called the condition (C). We recall the (PS) condition and the condition (C)

as follows.
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Definition 1.1. Let E be a real Banach space, I ∈ C1(E,R), we shall say a functional I

satisfies the (PS) condition, if any sequence {zm} satisfying that {I(zm)} is bounded and

I ′(zm)→ 0 has a convergent subsequence as m→ +∞.

Definition 1.2. Let E be a real Banach space, I ∈ C1(E,R), we shall say a functional

I satisfies the condition (C), if any sequence {um}, such that {I(um)} is bounded and

‖I ′(um)‖ (1 + ‖um‖)→ 0, has a convergent subsequence as m→ +∞.

The second and third authors proved the existence results via a Generalized Mountain

Pass Theorem under (PS) condition in [12]. In Section 2, we will prove a generalized

critical point theorem under the condition (C) instead of the (PS) condition. In Section 3,

as the applications of the generalized critical point theorem to Hamiltonian systems, we

generalize the existence results of periodic solutions for system (1.1) in [12] with the

following conditions.

Theorem 1.3. The system (1.1) possesses a nontrivial T -periodic solution, if H satisfies

(H1) H ∈ C1(R× R2n, [0,+∞)) is T -periodic with respect to t;

(H2) there exist constants σ1, . . . , σn, τ1, . . . , τn > 1 such that

H(t, z)
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

) → 0, as |z| → 0 uniformly in t;

(H3)
H(t, z)

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

) → +∞, as |z| → +∞ uniformly in t;

(H4) there exist a vector field V (z) and constants c1, c2 > 0 and β > 1 such that

H ′z(t, z) · V (z)−H(t, z) ≥ c1 |z|β − c2, (t, z) ∈ R× R2n,

where

V (z) =



1
α1
· · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 1
αn

0 · · · 0

0 · · · 0 1
β1
· · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 1
βn


z

with αi, βi > 0 satisfying 1
αi

+ 1
βi

= 1 (i = 1, 2, . . . , n);
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(H5) there exists a constant λ ∈
(

max
{
σ1
τ1
, . . . , σnτn ,

τ1
σ1
, . . . , τnσn

}
, 1 + β

)
such that∣∣H ′z(t, z)∣∣ ≤ c2(|z|λ + 1), (t, z) ∈ R× R2n,

where σ1, . . . , σn, τ1, . . . , τn and c2 are as above.

Remark 1.4. Suppose min {σ1, . . . , σn, τ1, . . . , τn} ≥ max {σ′1, . . . , σ′n, τ ′1, . . . , τ ′n} > 0 and

σ > 0, then we have

(1.5)
n∑
i=1

(|pi|σi + |qi|τi) ≥
1

2n

n∑
i=1

(|pi|σ
′
i + |qi|τ

′
i ), where |z| ≥

√
2n,

and

(1.6)
1

2n

n∑
i=1

(|pi|σ + |qi|σ) ≤ |z|σ ≤ (2n)σ
n∑
i=1

(|pi|σ + |qi|σ),

both of which will be used later.

Proof. Set L = max {|p1| , . . . , |pn| , |q1| , . . . , |qn|}. By |z| >
√

2n, it is obvious that L ≥ 1,

so we have that

1

2n

n∑
i=1

(|pi|σ
′
i + |qi|τ

′
i ) ≤ Lmax{σ′1,...,σ′n,τ ′1,...,τ ′n} ≤

n∑
i=1

(|pi|σi + |qi|τi).

Similarly, we get that

1

2n

n∑
i=1

(|pi|σ + |qi|σ) ≤ |z|σ ≤ (2n)
σ
2

n∑
i=1

(|pi|σ + |qi|σ).

Remark 1.5. (1) If αi = βi, σi = τi (i = 1, 2, . . . , n), then αi = βi = 2, so (H4) and (H3)

become the super-quadratic condition in [6], that is, there exist constants d1, d2 > 0 and

β̂ > 1 such that

H ′z(t, z) · z − 2H(t, z) ≥ d1 |z|β̂ − d2, (t, z) ∈ R× R2n,

H(t, z)

|z|2
→ +∞, as |z| → +∞.

(2) If σ1 = · · · = σn = σ, τ1 = · · · = τn = τ , by (1.6), we have that

1

max
{
n1+σ

τ , n1+ τ
σ

} (|p|1+σ
τ + |q|1+ τ

σ

)
≤

n∑
i=1

(
|pi|1+σ

τ + |qi|1+ τ
σ

)
≤ n

(
|p|1+σ

τ + |q|1+ τ
σ

)
,

which implies that (H3) is equivalent to (1.3). At the same time, (H4) becomes (1.2) if

αi = µ
µ+ν , βi = ν

µ+ν (i = 1, 2, . . . , n), so (S1) is a special case of (H3) and (H4), and

Theorem 1.3 is an improvement of [12, Theorem 1.1].
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Claim 1.6. Function

H(t, z) =

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
lnη(1 + |z|ξ)

satisfies (H1)–(H5), but dissatisfies (S1) and (S2), where ξ, η, σi, τi > 1, σi, τi satisfy that
1
σi

+ 1
τi

= ε (i = 1, 2, . . . , n) and max
{∣∣∣σ1τ1 − τ1

σ1

∣∣∣ , . . . , ∣∣∣σnτn − τn
σn

∣∣∣} < 2, and there exist two

integers i1 and i2 (1 ≤ i1, i2 ≤ n) such that
σi1
τi1
6= σi2

τi2
, V (z) = diag

{
1 + σ1

τ1
, . . . , 1 + σn

τn
, 1 +

τ1
σ1
, . . . , τnσn

}
.

Proof. It is obvious that H satisfies (H1)–(H3).

Set β = min
{

1 + σ1
τ1
, . . . , 1 + σn

τn
, 1 + τ1

σ1
, . . . , 1 + τn

σn

}
and b = max{σ1τ1 , . . . ,

σn
τn
, τ1σ1 , . . . ,

τn
σn
}, it is obvious that b < 1 + β and 1 < β < 2.

Step 1. We will check that H satisfies (H4). Set αi = 1 + σi
τi

and βi = 1 + τi
σi

(i = 1, 2, . . . , n), for (t, z) ∈ R× R2n with |z| ≥
√

2n, by (1.5) and (1.6), we have that

H ′z(t, z) · V (z)−H(t, z)

=
n∑
i=1

[
1

αi

((
1 +

σi
τi

)
|pi|

σi
τi
−1

lnη(1 + |z|ξ)

+
ξη |z|ξ−2

1 + |z|ξ
lnη−1(1 + |z|ξ)

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

))
· |pi|2

+
1

βi

((
1 +

τi
σi

)
|qi|

τi
σi
−1

lnη(1 + |z|ξ)

+
ξη |z|ξ−2

1 + |z|ξ
lnη−1(1 + |z|ξ)

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

))
· |qi|2

]

−
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
lnη(1 + |z|ξ)

= ξη lnη−1(1 + |z|ξ) |z|ξ

1 + |z|ξ

n∑
i=1

(
1

αi
|pi|2 +

1

βi
|qi|2

)
|z|2

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
≥ ξη

b+ 1
lnη−1(1 + |z|ξ) |z|ξ

1 + |z|ξ
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
≥ ξη

b+ 1
· 1

2n
· (ln 2)η−1 · 1

2

n∑
i=1

(|pi|β + |qi|β)

≥ ξη(ln 2)η−1

(2n)β+1(2b+ 2)
|z|β ,

so (H4) is proved.
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Step 2. We will check that H satisfies (H5). Choosing λ ∈ (b, 1 + β), by Remark 1.4,

we have that

n∑
i=1

(
|pi|

σi
τi + |qi|

τi
σi

)
lnη(1 + |z|ξ)

|z|λ
=

n∑
i=1

(
|pi|

σi
τi + |qi|

τi
σi

)
|z|b

· lnη(1 + |z|ξ)
|z|λ−b

≤

n∑
i=1

(
|pi|

σi
τi + |qi|

τi
σi

)
4n2

n∑
i=1

(
|pi|

σi
τi + |qi|

τi
σi

) · lnη(1 + |z|ξ)
|z|λ−b

≤ lnη(1 + |z|ξ)
4n2 |z|λ−b

→ 0, as |z| → +∞.

(1.7)

Similarly, we also have

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
lnη−1(1 + |z|ξ) |z|

ξ−1

1 + |z|ξ

|z|λ

=

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
lnη−1(1 + |z|ξ)

|z|1+λ
· |z|

ξ

1 + |z|ξ

→ 0, as |z| → +∞.

(1.8)

Assuming R is sufficiently large, if |z| > R, (1.7) and (1.8) imply that

∣∣H ′z(t, z)∣∣ ≤ n∑
i=1

[(
1 +

σi
τi

)
|pi|

σi
τi lnη(1 + |z|ξ) +

(
1 +

τi
σi

)
|qi|

τi
σi lnη(1 + |z|ξ)

]

+ 2nξη

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
lnη−1(1 + |z|ξ) |z|

ξ−1

1 + |z|ξ

≤ (1 + b)

n∑
i=1

(
|pi|

σi
τi + |qi|

τi
σi

)
lnη(1 + |z|ξ)

+ 2nξη
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
lnη−1(1 + |z|ξ) |z|

ξ−1

1 + |z|ξ

≤ c2 |z|λ ,

thus (H5) is proved.

Step 3. We will check H dissatisfies (S1). Choosing arbitrary constants µ, ν > 1, we

know that there exists an integer i0 such that µ
ν 6=

σi0
τi0

. Without loss of generality, we may
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assume µ
ν >

σ1
τ1

. Set p = (p1, 0, . . . , 0), q = (0, . . . , 0) and z = (p, q), then we have

1

µ
H ′p(t, z) · p+

1

ν
H ′q(t, z) · q −

(
1

µ
+

1

ν

)
H(t, z)

=
1

µ

(
1 +

σ1

τ1

)
|p1|

1+
σ1
τ1 lnη(1 + |p1|ξ) + ξη |p1|

1+
σ1
τ1 lnη−1(1 + |p1|ξ)

|p1|ξ

1 + |p1|ξ

−
(

1

µ
+

1

ν

)
|p1|

1+
σ1
τ1 lnη(1 + |p1|ξ)

= |p1|
1+

σ1
τ1 lnη−1(1 + |p1|ξ)

[(
σ1

µτ1
− 1

ν

)
ln(1 + |p1|) + ξη

|p1|ξ

1 + |p1|ξ

]
→ −∞, as |z| → +∞,

which violates (S1).

Step 4. We will check H disstatisfies (S2). Choose constants α̂1, . . . , α̂n, β̂1, . . . , β̂n

with 1
α̂i

+ 1

β̂i
= ε < 1 (i = 1, 2, . . . , n). Without loss of generality, we assume α̂1 ≥ β̂1.

If σ1+τ1
α̂1τ1

− 1 < 0, set p = (p1, 0, . . . , 0), q = (0, . . . , 0) and z = (p, q), then we have

H ′z(t, z) · V̂ (z)−H(t, z)

=
1

α̂1

[(
1 +

σ1

τ1

)
|p1|

1+
σ1
τ1 lnη(1 + |p1|ξ) + ξη |p1|

1+
σ1
τ1 lnη−1(1 + |p1|ξ)

|p1|ξ

1 + |p1|ξ

]
− |p1|

1+
σ1
τ1 lnη(1 + |p1|ξ)

= |p1|
1+

σ1
τ1 lnη−1(1 + |p1|ξ)

[(
σ1 + τ1

α̂1τ1
− 1

)
ln(1 + |p1|) + ξη

|p1|ξ

1 + |p1|ξ

]
→ −∞, as |z| → +∞,

which violates (S2).

If σ1+τ1
α̂1τ1

− 1 ≥ 0, which implies that σ1+τ1
σ1
≤ α̂1

α̂1−1 , then we have

σ1 + τ1

β̂1σ1

− 1 =

(
ε− 1

α̂1

)
σ1 + τ1

σ1
− 1 ≤

(
ε− 1

α̂1

)
α̂1

α̂1 − 1
− 1 < 0.

Similarly, set p = (0, . . . , 0), q = (q1, 0, . . . , 0) and z = (p, q), then we have

H ′z(t, z) · V̂ (z)−H(t, z)

= |q1|
1+

τ1
σ1 lnη−1(1 + |q1|ξ)

[(
σ1 + τ1

β̂1τ1

− 1

)
ln(1 + |q1|) + ξη

|q1|ξ

1 + |q1|ξ

]
→ −∞, as |z| → +∞,

which violates (S2). Thus we complete the proof.
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Claim 1.7. Condition (S2) implies (H3) and (H4). That is, the super-quadratic conditions

are generalized in our paper.

Proof. Set σi = α̂i, τi = β̂i, let

ω(z) =
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
and ω̂(z) =

n∑
i=1

(
|pi|α̂i + |qi|β̂i

)
,

we claim that ω̂(z)
ω(z) → +∞, as |z| → +∞. If not, we have that

lim inf
|z|→+∞

ω̂(z)

ω(z)
= a < +∞.

Then there exist a constant R ∈ N∗ and a consequence {zm} such that |zm| → +∞ as

m → +∞, and ω̂(zm) < (a + 1)ω(zm) for m > R. Meanwhile, note that 1
α̂i

+ 1

β̂i
< 1

(i = 1, 2, . . . , n), we have that 1 + α̂i
β̂i

= α̂i

(
1
α̂i

+ 1

β̂i

)
< α̂i, 1 + β̂i

α̂i
< β̂i (i = 1, 2, . . . , n).

Set zm = (pm1 , . . . , p
m
n , q

m
1 , . . . , q

m
n ), it is obvious that

0 > ω̂(zm)− (a+ 1)ω(zm)

=

n∑
i=1

[(
|pmi |

α̂ − (a+ 1) |pmi |
1+

α̂i
β̂i

)
+

(
|qmi |

β̂i − (a+ 1) |qmi |
1+

β̂i
α̂i

)]
→ +∞, as m→ +∞,

which is a contradiction. So (S2) implies (H3).

Next, set αi = α̂i+β̂i
β̂i

, βi = α̂i+β̂i
α̂i

and β = min
{
α̂1, . . . , α̂n, β̂1, . . . , β̂n

}
, by (1.4), (1.5)

and (1.6), note that 1
ε = α̂iβ̂i

α̂i+β̂i
(i = 1, 2, . . . , n), we have that

H ′z(t, z) · V (z)−H(t, z) =
1

ε

(
H ′z(t, z) · V̂ (z)− εH(t, z)

)
≥ 1− ε

ε
H(t, z)

≥ a1(1− ε)
ε

n∑
i=1

(
|pi|α̂i + |qi|β̂i

)
− a2(1− ε)

ε

≥ a1(1− ε)
2nε

n∑
i=1

(
|pi|β + |qi|β

)
− a2(1− ε)

ε

≥ a1(1− ε)
ε(2n)β+1

|z|β − a2(1− ε)
ε

,

for (t, z) ∈ R× R2n with |z| ≥
√

2n. So, (S2) indicates (H4).
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2. One deformation theorem and generalized critical point theorem

Firstly, we introduce some notations. We denote by E a real Banach space, by E∗ its

dual, and by (·, ·) the pairing between E∗ and E. Let BR(u) denote the open ball in

E centered at u with radius R > 0. For some c ∈ R, we set Ac = {u ∈ E | I(u) ≤ c},
Kc = {u ∈ E | I ′(u) = 0, I(u) = c} and E = {u ∈ E | I ′(u) 6= 0}.

Lemma 2.1. [3] If functional I ∈ C1(E,R), then there exists a locally Lipschitzian con-

tinuous mapping φ : E → E satisfying the conditions

(2.1) ‖φ(u)‖ ≤ 2

‖I ′(u)‖
and (I ′(u), φ(u)) ≥ 1, ∀u ∈ E.

Remark 2.2. From the proof of [3, Lemma 2.4], we know that the above mapping φ is odd

in u, if I(u) is even in u.

The following Theorem 2.3 is similar to [11, Theorem A.4] except for condition (C),

also similar to [3, Theorem 2.1] except for the following result (4) and (8).

Theorem 2.3. Let I ∈ C1(E,R) and satisfy the condition (C). If c ∈ R, ε > 0 small

enough, and N is any neighborhood of Kc, then there exists an ε ∈ (0, ε) and η ∈ C([0, 1]×
E,E) such that

(1) η(0, u) = u, ∀u ∈ E,

(2) η(t, u) = u, ∀ t ∈ [0, 1] and I(u) /∈ [c− ε, c+ ε],

(3) η(t, u) is a homeomorphism of E onto E for each t ∈ [0, 1],

(4) ‖η(t, u)− u‖ ≤ k1 + k2 ‖u‖, where t ∈ [0, 1], k1 > 0 and k2 > 0 are constants

independent of u, thus η : [0, 1]× E → E is a bounded mapping,

(5) I(η(t, u)) ≤ I(u), ∀ t ∈ [0, 1] and u ∈ E,

(6) η(1, Ac+ε \N) ⊂ Ac−ε,

(7) if Kc = ∅, then η(1, Ac+ε) ⊂ Ac−ε,

(8) if I(u) is even in u, then η(t, u) is odd in u.

Proof. The idea comes from [8] and [11, pp. 82–85]. We assume Kc 6= ∅.

First of all, we observe that Kc is compact via condition (C). Let Mσ denote the σ-

neighborhood of Kc, i.e., Mσ = {u ∈ E | ‖u−Kc‖ < σ}. We choose σ suitable small such

that Mσ ⊂ N , therefore it suffices to prove (6) with N replaced by Mσ. Choosing R > 0
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large enough such that (Ac+ε̂ \ Ac−ε̂) ∩ (BR(0) \Mσ/8) 6= ∅, from the condition (C), we

can claim that there exist constants b > 0 and ε̂ > 0 such that

(2.2)
∥∥I ′(u)

∥∥ > b, u ∈ (Ac+ε̂ \Ac−ε̂) ∩ (BR(0) \Mσ/8).

If (2.2) does not hold, then there exists a sequence {um} such that

um ∈ (Ac+1/m \Ac−1/m) ∩ (BR(0) \Mσ/8) and
∥∥I ′(um)

∥∥→ 0 as m→ +∞.

Therefore we can get that {I(um)} is bounded and (1+‖um‖) ‖I ′(um)‖ → 0 as m→ +∞.

By the condition (C), there exists a subsequence of {um} converging to u ∈ Kc \Mσ/8.

But Kc \Mσ/8 = ∅, hence (2.2) holds. Similarly, we can get

(2.3)
∥∥I ′(u)

∥∥ > b, u ∈ (Ac+ε̂ \Ac−ε̂) ∩ (Mσ \Mσ/8)

and ∥∥I ′(u)
∥∥ > 0, u ∈ (Ac+2ε̂ \Ac−2ε̂) \Mσ/10.(2.4)

Since (2.2), (2.3) and (2.4) still hold if ε̂ decreases, we can assume

(2.5) 0 < ε̂ < min

{
bσ

8
, σ, ε,

1

2

}
.

Choosing any ε ∈ (0, ε̂), we set A = {u ∈ E | I(u) ≥ c+ ε̂ or I(u) ≤ c− ε̂}, B =

{u ∈ E | c− ε ≤ I(u) ≤ c+ ε}, and the function

f(u) =
‖u−A‖

‖u−A‖+ ‖u−B‖
,

then f = 0 on A, f = 1 on B, and 0 ≤ f(u) ≤ 1, ∀u ∈ E. It is obvious that f

is locally Lipschitzian continuous. Similarly, there is a Lipschitzian continuous function

g(u) =
‖u−Mσ/8‖

‖u−Mσ/8‖+‖u−E\Mσ/4‖ with 0 ≤ g(u) ≤ 1, ∀u ∈ E. Note that if I is even, sets A,

B and Mσ will be symmetric with respect to the origin, so f and g are even functions.

Set Ψ(u) = f(u) · g(u), ∀u ∈ E then

(2.6) Ψ(u) =

0, if u /∈ I−1((c− ε̂, c+ ε̂)) or u ∈Mσ/8,

1, if u ∈ I−1([c− ε, c+ ε]) and u /∈Mσ/4.

Furthermore, consider the mapping V0 : E → E defined by

V0(u) =

−Ψ(u)φ(u), u ∈ E,

0, u /∈ E,
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where φ is defined by Lemma 2.1. Obviously, V0 is locally Lipschitzian continuous in E

and V0 is odd if I is even. By the first inequality in (2.1), we have

(2.7) ‖V0(u)‖ ≤ 2

‖I ′(u)‖
, ∀u ∈ E.

Next, we shall show that there exist two constants k1 > 0 and k2 > 0 such that

(2.8) ‖V0(u)‖ ≤ k1 + k2 ‖u‖ .

If u /∈ I−1((c − ε̂, c + ε̂)) \ Mσ/8, then V0(u) = 0, so (2.8) is trivial. Thus, we can

suppose that u ∈ I−1((c − ε̂, c + ε̂)) \Mσ/8. For R in (2.2), if ‖u‖ ≤ R, then ‖V0(u)‖
is bounded via (2.3) and (2.7). If ‖u‖ ≥ R, we can claim that there exists a constant

δ > 0 such that ‖I ′(u)‖ ≥ δ/‖u‖. Otherwise, there exists a sequence {um} such that

um ∈ I−1((c− ε̂, c+ ε̂)) \Mσ/8, ‖um‖ > m and ‖um‖ ‖I ′(um)‖ < 1/m (m large enough),

we can get that the sequence {um} has a convergent subsequence via the condition (C),

which contradicts to ‖um‖ > m. So we get ‖V0(u)‖ ≤ 2
δ ‖u‖ via (2.7). So we conclude

that (2.8) holds everywhere.

Consider the following initial value problem,

(2.9)


dη(t, u)

dt
= V0(η(t, u)),

η(0, u) = u.

The basic existence-uniqueness theorem for ordinary differential equations implies that for

each u ∈ E, (2.9) has a unique solution defined for t in a maximal interval (t−, t+). As

usual argument, we have t± = ±∞.

The continuous dependence of solution of (2.9) on the initial value u implies η ∈
C([0, 1] × E,E) and (2.9) implies (1) holds. Since ε > ε̂, V0(u) = 0 on A, so (2) is true.

The semigroup property for solutions of (2.9) gives (3). Integrating (2.9) on [0, t] ⊆ [0, 1],

using (2.8) and (1), we have

‖η(t, u)− η(0, u)‖ ≤ (k1 + k2 ‖u‖) |t| ≤ k1 + k2 ‖u‖ .

Hence (4) holds. An argument similar to that in the proof of [3, Theorem 2.1] shows

that (5) and (6) hold. If I(u) is even in u, we know that V0(u) is odd in u. We can get

η(t, u) is also odd in u via the basic existence-uniqueness theorem for ordinary differential

equations, hence (8) holds.

Remark 2.4. (2.1) can be replaced by

‖φ(u)‖ ≤ α

‖I ′(u)‖
,(2.10)

(I ′(u), φ(u)) ≥ β,(2.11)
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where α > β > 0. Moreover, the proof of Theorem 2.3 is essentially unchanged aside from

replacing (2.5) by 0 < ε̂ < min
{
ε, σ, bσ4α ,

1
α

}
.

The following result is similar to [11, Proposition A.18], the difference is the (PS) con-

dition replaced by the condition (C).

Lemma 2.5. Suppose E is a real Hilbert space, I ∈ C1(E,R) satisfies the condition (C),

where I(u) = 1
2(Lu, u) + ϕ(u), L is self-adjoint and ϕ′ is compact. Then

η(t, u) = exp(θ(t, u)L)u+K(t, u),

where θ ∈ C([0, 1]× E, [0, 1/b2]) and K : [0, 1]× E → E is compact.

Proof. The idea comes from [11]. Because the (PS) condition is replaced with the condi-

tion (C), we must modify the proof in [11].

The mapping η is determined as the solution of the initial value problem

(2.12)
dη

dt
= −Ψ(η)φ(η), η(0, u) = u,

where Ψ is the mapping defined in (2.6), 0 ≤ Ψ(η) ≤ 1 and φ is the mapping defined in

Remark 2.4 with α = 2, β = 1/2.

Case 1. If u /∈ D :=
{
u ∈ E | I(u) ∈ [c− ε̂, c+ ε̂] and u /∈Mσ/8

}
, then Ψ(u) = 0.

From the basic existence-uniqueness theorem for ordinary differential equations, we know

that η(t, u) ≡ u /∈ D, ∀ t ∈ R. Thus, the orbit η(t, u) cannot enter D for t ∈ R.

Case 2. If u ∈ D, we can claim that the orbit η(t, u) cannot leave D for t ∈ R.

Otherwise, for some t0, η(t0, u) /∈ D. Setting η(t0, u) = u0, we can check that η(t, u) ≡ u0

is a solution to the ordinary differential equation
dη

dt
= −Ψ(η)φ(η),

η(t0, u) = u0.

From the basic existence-uniqueness theorem for ordinary differential equations, we have

the solution η(t, u) ≡ u0 /∈ D, ∀ t ∈ R. This contradicts to the fact that η(0, u) = u ∈ D.

Considering Case 2, φ need only be defined on D. We note that ‖I ′(u)‖ > 0 on D via

(2.4). We claim such a φ can be chosen so that

(2.13) φ(u) =
Lu+W (u)

‖I ′(u)‖2
, ∀u ∈ D,

where W : E → E is compact. We will prove (2.13) in Lemma 2.7 later. Assuming this

for the moment, (2.12) becomes

dη

dt
+ Ψ(η)

Lη

‖I ′(η)‖2
= −Ψ(η)

W (η)

‖I ′(η)‖2
.
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Considering η in the argument of Ψ, I ′ andW as being known, η satisfies an inhomogeneous

linear equation and therefore it can be represented as

η(t, u) = exp

((
−
∫ t

0

Ψ(η(s, u))

‖I ′(η(s, u))‖2
ds

)
L

)
u+K(t, u), ∀u ∈ D,

where K : [0, 1]×D → E is defined by

K(t, u) = − exp

((
−
∫ t

0

Ψ(η(s, u))

‖I ′(η(s, u))‖2
ds

)
L

)
×
∫ t

0

[
exp

((∫ τ

0

Ψ(η(s, u))

‖I ′(η(s, u))‖2
ds

)
L

)
Ψ(η(τ, u))W (η(τ, u))

‖I ′(η(τ, u))‖2

]
dτ.

Now, we define a functional ψ on [0, 1]× E as follows:

ψ(t, u) =


Ψ(η(t, u))

‖I ′(η(t, u))‖2
, u ∈ D,

0, otherwise.

By the definition of Ψ and (2.4), it is obvious that ψ ∈ C([0, 1]× E,E).

So we have that η(t, u) has the following form

η(t, u) = exp

((∫ t

0
−ψ(s, u) ds

)
L

)
u+K(t, u), u ∈ E,

where K : [0, 1]× E → E is defined by

K(t, u) = − exp

((∫ t

0
−ψ(s, u) ds

)
L

)
×
∫ t

0

[
exp

((∫ τ

0
ψ(τ, u) ds

)
L

)
ψ(τ, u)W (η(τ, u))

]
dτ.

To see that K : [0, 1] × E → E is compact, suppose F ⊂ E is bounded. Without loss

of generality, we may assume F = BR1(0) for every fixed R1 > 0. From Theorem 2.3(4),

η([0, 1]×BR1(0)) ⊂ BR2(0), where R2 = R1+k1+k2R1. Therefore W (η([0, 1]×BR1(0))) ⊂
W (BR2(0)) ⊂W (BR2(0)).

(i) If D ∩BR1(0) = ∅, we know that K(t, BR1(0)) = 0.

(ii) If D∩BR1(0) 6= ∅, from (i), we have that K(t, BR1(0)) = K(t,D∩BR1(0))∪{0},
we only need check K(t,D ∩BR1(0)) is compact. It is similar to (2.2), we can get

(2.14)
∥∥I ′(u)

∥∥ ≥ b, ∀u ∈ D ∩BR1(0).

For any fixed t ∈ [0, 1], we set Yt =
{

exp((γ − γt)L)wz
∣∣ γ,w ∈ [0, 1/b2], z ∈W (BR2(0))

}
,

where γt is a constant and γt ∈ [0, 1/b2]. Since the mapping

(γ,w, z)→ exp((γ − γt)L)wz
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is a continuous function on the compact set [0, 1/b2]2×W (BR2(0)), its range Yt is compact.

Therefore the closed convex hull Ŷt of Yt is also compact. For every fixed u ∈ D ∩BR1(0)

and ∀ τ ∈ [0, t], we have
∫ τ

0 ϕ(s, u) ds ∈ [0, 1/b2] and
∫ t

0 ϕ(s, u) ds ∈ [0, 1/b2] via the

definition of the functional Ψ and (2.14), we can get

zt,u(τ) := exp

((∫ τ

0
ψ(s, u) ds−

∫ t

0
ψ(s, u) ds

)
L

)
ψ(τ, u)W (η(τ, u)) ∈ Yt.

Hence,
∫ t

0 zt,u(τ) dτ ∈ Ŷt. From (i) and (ii), we can get K is compact.

Finally, we can choose θ(t, u) = −
∫ t

0 ψ(s, u) ds, it is obvious that θ ∈ C([0, 1] ×
E, [0, 1/b2]).

Next, we will prove that (2.13) holds, to this end, we first prove the following lemma.

Lemma 2.6. Let E be a real Hilbert space and operator T : E → E be compact. Then

given any γ, there exists a mapping T̂ : E → E such that T̂ is compact, locally Lipschitzian

continuous, and ∥∥∥T (u)− T̂ (u)
∥∥∥ ≤ γ

1 + ‖u‖
, ∀u ∈ E.

Proof. The proof is similar to [11, Proposition A.23], except that we need replace the

open covering {Su | u ∈ E} with the open covering
{
Su | u ∈ E

}
, where Su := B1(u) ∩{

v ∈ E
∣∣ ‖T (u)− T (v)‖ < γ

1+Ru
, Ru = supv∈B1(u) {‖v‖}

}
.

To complete the proof of Lemma 2.5, we need the following lemma.

Lemma 2.7. Suppose E is a real Hilbert space, I ∈ C1(E,R) satisfies the condition (C),

I(u) = 1
2(Lu, u) + ϕ(u), L is self-adjoint and ϕ′ is compact. Then there exists a locally

Lipschitzian continuous mapping φ : D → E defined by

φ(u) =
Lu+W (u)

‖I ′(u)‖2
,

where W : E → E is compact and φ satisfies (2.10) and (2.11) with α = 2 and β = 1/2.

Proof. It is similar to (2.2), there exist constants h > 0 and ε̂0 > 0 such that

(2.15) (1 + ‖u‖)
∥∥I ′(u)

∥∥ ≥ h, ∀u ∈ (Ac+ε̂0 \Ac−ε̂0) \Mσ/8.

Since (2.15) still holds if ε̂0 decreases, we can set ε̂0 = ε̂, so we have that

(2.16) (1 + ‖u‖)
∥∥I ′(u)

∥∥ ≥ h, ∀u ∈ D.

Next, we will check φ(u) = Lu+W (u)

‖I′(u)‖2 satisfies (2.10) and (2.11) with α = 2 and β = 1/2

on D. Set T (u) = ϕ′(u) and γ = h/2, from Lemma 2.6, we know that there exists a

mapping W : E → E such that W is compact, locally Lipschitzian continuous, and∥∥ϕ′(u)−W (u)
∥∥ ≤ h

2(1 + ‖u‖)
, ∀u ∈ E.
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From the definition of φ, we know that φ is Lipschitzian continuous. For every u ∈ D,

using (2.16), we know that

‖φ(u)‖ =
‖Lu+W (u)‖
‖I ′(u)‖2

≤ ‖Lu+ ϕ′(u)‖
‖I ′(u)‖2

+
‖ϕ′(u)−W (u)‖
‖I ′(u)‖2

≤ 1

‖I ′(u)‖
+

h

2(1 + ‖u‖) ‖I ′(u)‖2
≤ 2

‖I ′(u)‖

and

(I ′(u), φ(u)) =

(
I ′(u),

Lu+ ϕ′(u)− ϕ′(u) +W (u)

‖I ′(u)‖2

)
= 1−

(
I ′(u),

ϕ′(u)−W (u)

‖I ′(u)‖2

)
≥ 1− 1

2

h

(1 + ‖u‖) ‖I ′(u)‖
≥ 1− 1

2
=

1

2
.

Thus we complete the proof.

We have completed the proof of Lemma 2.5 via Lemmas 2.6 and 2.7. Next, we will give

a generalized critical point theorem under the condition (C) weaker than (PS) condition.

Theorem 2.8. Let E be a real Hilbert space with E = E1 ⊕ E2. Suppose I ∈ C1(E,R)

with I(z) = 1
2(Lz, z) + ϕ(z) satisfying the condition (C) and

(I1) L is a linear, bounded and self-adjoint operator,

(I2) ϕ′ is compact,

(I3) B(v) = P2B
−1
1 exp(vL)B2 : E2 → E2 is invertible for any v ∈ [0,+∞), where

P2 : E → E2 is the projective operator, Bk : E → E (k = 1, 2) is linear, bounded

and invertible.

(I4) there exists a constant κ > 0 such that

(i) S = {B1z | z ∈ E1, ‖z‖ = %} and I|S ≥ κ,

(ii) Q = {B2(se+ z) | 0 ≤ s ≤ r, ‖z‖ ≤M, z ∈ E2} and I|∂Q ≤ 0, where e = (p+,

q+) ∈ E1, e 6= 0, r > %

‖B−1
1 B2e‖ , M > % and ∂Q refers to the boundary of Q

relative to {B2(se+ z) | s ∈ R, z ∈ E2}, % > 0 is a certain constant.

Then I possesses a critical value c = infh∈Γ supz∈Q I(h(1, z)) ≥ κ, where Γ is defined as

Γ := {h ∈ C([0, 1]× E,E) | h satisfies (Γ1)–(Γ3)} ,

where

(Γ1) h(0, z) = z, z ∈ Q,

(Γ2) h(t, z) = z, z ∈ ∂Q,

(Γ3) h(t, z) = exp(θ(t, z)L)z + K(t, z), where θ ∈ C([0, 1] × E, [0,+∞)) transforms

bounded sets into bounded sets and K : [0, 1]× E → E is compact.
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Proof. The idea comes from [11].

Paper [8] shows that (I3) and (I4) imply

(2.17) h(1, Q) ∩ S 6= ∅, ∀h ∈ Γ.

By (2.17) and (i) of (I4), we have that c ≥ κ. Book [11, p. 33] shows that (I2) and (I4)

imply c < +∞.

Next, we claim that Γ is an invariant set under η(t, ·), where η(t, ·) : E → E is the

mapping in Theorem 2.3. Because the (PS) condition is replaced by the (C) condition,

we must first show that η ∈ Γ. In fact, η satisfies (Γ1) and (Γ3) via Theorem 2.3(1) and

Lemma 2.5. From the choice of ε, Theorem 2.3(2), the condition (ii) of (I4) and the fact

c ≥ κ > 0, we know that (Γ2) holds. If h ∈ Γ, [11, p. 33] shows that η(t, h(t, u)) ∈ Γ.

Using the usual arguments and the above claim, we can prove that c is a critical value

of the functional I. The proof can be found in [11, p. 33], so we omit it.

3. Applications to the Hamiltonian systems

After making change of variables ς = t/ω with ω = T/(2π), we seek T -periodic solutions

of the system (1.1) which correspond to 2π-periodic solutions of the systemṗ(ς) = −ωH ′q(ως, z),

q̇(ς) = ωH ′p(ως, z).

We can hence-force focus our attention on 2π-periodic solutions of the system (1.1).

We introduce some notations and conclusions which are used later:

E := W
1
2
,2(S1,R2n) =

z ∈ L2(S1,R2n)
∣∣ ‖z‖2 = π

∑
j∈Z
|j| |aj |2 + |a0|2 < +∞

 ,

where S1 := R/2πZ, z(t) =
∑

j∈Z aj exp(i jt), aj ∈ C2n.

E+ := spanE {(sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n, j ∈ N∗, 1 ≤ k ≤ n} ,

E0 := R2n,

E− := spanE {(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n, j ∈ N∗, 1 ≤ k ≤ n} ,

where {ek}1≤k≤2n is the canonical basis in R2n. Set

B[z, ζ] :=

∫ 2π

0
ζ · (−Jż) dt and A(z) :=

1

2
B[z, z] =

∫ 2π

0
p · q̇ dt,

for z = (p, q), ζ ∈ C∞(S1,R2n), both of which can be continuously extended onto E. So

B is a bounded bilinear form.
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Set E1 = E+, E2 = E0 ⊕ E− and Lk : Ek → Ek, (Lkz, ζ) = B[z, ζ] (k = 1, 2), where

(·, ·) denotes the induced inner product. References [10] and [11] indicate the following

conclusions. E = E+ ⊕ E0 ⊕ E− = E1 ⊕ E2, and E+, E0 and E− are orthogonal

and B-orthogonal respectively. A is positive on E+, null on E0 and negative on E−. If

z = z++z0+z−, then A(z) = 1
2(Lz, z) = A(z+)+A(z−) and ‖z‖2 = A(z+)+

∣∣z0
∣∣2−A(z−),

where Lz := L1P1z + L2P2z and Pk : E → Ek (k = 1, 2) is the projective operator.

Lemma 3.1. [11, Proposition 6.6] E can be compactly embedded into Ls(S1,R2n) (s ≥ 1),

in particular, there exists a constant Cs > 0 such that ‖z‖Ls ≤ Cs ‖z‖ holds for z ∈ E.

Set I(z) = A(z) −
∫ 2π

0 H(t, z) dt = 1
2(Lz, z) + ϕ(z), book [11] tells us that finding

2π-periodic solutions of the system (1.1) is equivalent to finding critical points of the

functional I(z) in E. Also, book [11] indicates that I ∈ C1(E,R) satisfies (I1) and (I2) in

Theorem 2.8, if H satisfies (H1) and (H5).

Choose a fixed

e = (p+, q+) = (p+
1 , . . . , p

+
n , q

+
1 , . . . , q

+
n ) ∈ E+

satisfying ‖e‖ = 1, set Ê = span {e} ⊕ E2 and W = {z ∈ Ê | 1 ≤ ‖z‖ ≤ 2 and ‖z−‖ ≤∥∥z+ + z0
∥∥}.

Lemma 3.2. [12] There exists a constant ε1 > 0 such that

measure {t ∈ [0, 2π] | |z(t)| ≥ ε1} ≥ ε1, z ∈W.

Lemma 3.3. Functional I satisfies the condition (C), if function H satisfies (H1), (H4)

and (H5).

Proof. The idea comes from [9].

Condition (H4) implies that

I(z)− I ′(z) · V (z)

= A(z)−
∫ 2π

0
(−Jż) · V (z) dt+

∫ 2π

0

(
H ′z(t, z) · V (z)−H(t, z)

)
dt

= A(z)−
∫ 2π

0

n∑
i=1

q̇i · pi dt+

∫ 2π

0

(
H ′z(t, z) · V (z)−H(t, z)

)
dt

= A(z)−
∫ 2π

0
p · q̇ dt+

∫ 2π

0

(
H ′z(t, z) · V (z)−H(t, z)

)
dt

=

∫ 2π

0

(
H ′z(t, z) · V (z)−H(t, z)

)
dt

≥ c1

∫ 2π

0
|z|β dt− 2πc2.

(3.1)



1110 Qin Xing, Fei Guo and Xiaofei Zhang

Let {zm} be a (C) sequence, that is, {I(zm)} is bounded and (1 + ‖zm‖) ‖I ′(zm)‖ → 0 as

m→ +∞. We first claim that {zm} is bounded. If not, there exists a subsequence {zmk}
of sequence {zm} such that ‖zmk‖ → +∞ as k → +∞. For simplicity of notations, we use

sequence {zm} represent subsequence {zmk}, so we have ‖I ′(zm)‖ → 0 as m→ +∞.

Inequality (3.1) implies that

(3.2)

∫ 2π

0
|zm|β dt ≤ d1,

where d1 is a positive constant. For β, λ in (H4) and (H5), set p = 2β+1
2λ−1 > 1 and

q = p
p−1 = 2β+1

2(β+1−λ) , then we have λ − β
p = λ+β

2β+1 and 2q(λ − β
p ) = λ+β

β−λ+1 . Hölder’s

inequality, Lemma 3.1 and (3.2) imply that∫ 2π

0
|zm|λ

∣∣z+
m

∣∣ dt

=

∫ 2π

0
|zm|

β
p |zm|λ−

β
p
∣∣z+
m

∣∣ dt

≤
(∫ 2π

0

(
|zm|

β
p

)p
dt

) 1
p
(∫ 2π

0
|zm|(λ−

β
p

)q ∣∣z+
m

∣∣q dt

) 1
q

≤
(∫ 2π

0
|zm|β dt

) 1
p
(∫ 2π

0

(
|zm|λ−

β
p

)2q

dt

) 1
2q
(∫ 2π

0

∣∣z+
m

∣∣2q dt

) 1
2q

≤ d
1
p

1 ‖zm‖
β+λ
2β+1

L
β+λ
β−λ+1

∥∥z+
m

∥∥
L2q

≤ d
1
p

1 C ‖zm‖
β+λ
2β+1

∥∥z+
m

∥∥ ,

(3.3)

where C > 0 is the product of two powers of embedding constant in Lemma 3.1. Lemma 3.1,

(3.3) and (H5) imply that

∥∥I ′(zm)
∥∥∥∥z+

m

∥∥ ≥ I ′(zm) · z+
m = A′(zm) · z+

m −
∫ 2π

0
H ′z(t, zm) · z+

m dt

= (Lzm, z
+
m)−

∫ 2π

0
H ′z(t, zm) · z+

m dt

≥ 2
∥∥z+

m

∥∥2 −
∫ 2π

0

∣∣H ′z(t, zm)
∣∣ · ∣∣z+

m

∣∣ dt

≥ 2
∥∥z+

m

∥∥2 −
∫ 2π

0
(c2 |zm|λ + c2)

∣∣z+
m

∣∣ dt

≥ 2
∥∥z+

m

∥∥2 − c2d
1
p

1 C ‖zm‖
β+λ
2β+1

∥∥z+
m

∥∥− c2C1

∥∥z+
m

∥∥ ,

(3.4)

where C1 is the embedding constant in Lemma 3.1. (3.4) implies that

(3.5)
∥∥z+

m

∥∥ ≤ ∥∥I ′(zm)
∥∥+ c2d

1
p

1 C ‖zm‖
β+λ
2β+1 + c2C1.
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Since 0 < β+λ
2β+1 < 1 and ‖I ′(zm)‖ → 0 as m→ +∞, (3.5) implies that

(3.6)
‖z+
m‖
‖zm‖

→ 0, as m→ +∞.

Similarly for z−m, we can obtain that

(3.7)
‖z−m‖
‖zm‖

→ 0, as m→ +∞.

Since E0 is finite-dimensional, there exists d2 > 0 such that

(3.8) ‖u‖ ≤ d2 ‖u‖L2 , for all u ∈ E0.

(3.8), Hölder’s inequality, (3.2) and Lemma 3.1 imply that

1

d2
2

∥∥z0
m

∥∥2 ≤
∫ 2π

0

∣∣z0
m

∣∣2 dt ≤
∫ 2π

0
|zm|2 dt =

∫ 2π

0
|zm|

β
β+1 |zm|

β+2
β+1 dt

≤
(∫ 2π

0
|zm|β dt

) 1
β+1
(∫ 2π

0
|zm|

β+2
β dt

) β
β+1

≤ d
1

β+1

1 Cβ+2
β
‖zm‖

β+2
β+1 ,

(3.9)

where Cβ+2
β

is embedding constant in Lemma 3.1. (3.9) implies that

(3.10)

∥∥z0
m

∥∥
‖zm‖

→ 0, as m→ +∞.

Hence, (3.6), (3.7) and (3.10) imply that

1 =
‖z+
m‖

2
+
∥∥z0

m

∥∥2
+ ‖z−m‖

2

‖zm‖2
→ 0 as m→ +∞,

which is a contradiction. Hence {zm} must be bounded.

Now we show that {zm} has a convergent subsequence. We may suppose that zm ⇀ z

in E as m → +∞. Since 2 ‖z+
m − z+‖2 = (I ′(zm) − I ′(z)) · (z+

m − z+) +
∫ 2π

0 (H ′z(t, zm) −
H ′z(t, z)) · (z+

m − z+) dt, which implies that z+
m → z+ in E as m → +∞. Similarly,

z−m → z− in E as m → +∞. Furthermore, the fact that E0 has finite dimension implies

that z0
m → z0 in E as m→ +∞. Thus {zm} has a convergent subsequence.

Set M = max {σ1 + τ1, . . . , σn + τn}, then there exist positive constants µi ≥ σi, νi ≥
τi, xi ≥ 1 (i = 1, 2, . . . , n) such that µi = xiσi, νi = xiτi and µi + νi = M (i = 1, 2, . . . , n).

Define operator B1 : E → E as B1(p1, . . . , pn, q1, . . . , qn) = (%ν1−1p1, . . . , %
νn−1pn, %

µ1−1qn,

. . . , %µn−1qn), where (p1, . . . , pn, q1, . . . , qn) ∈ E, and constant % is determined in Lemma 3.4.

Then B1 is linear, bounded, invertible. Set S = {B1z | ‖z‖ = % and z ∈ E1}.

Lemma 3.4. There exist constants % > 0 and κ > 0 such that I|S ≥ κ, if H satisfies

(H1), (H2) and (H5).
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Proof. The idea comes from [12]. (H5) implies that there exist constants c5 > 0 and c6 > 0

such that

(3.11) H(t, z) ≤ c5 + c6 |z|λ+1 , (t, z) ∈ R× R2n.

For arbitrary ε > 0 and using (H2), there exists a constant δε > 0 such that

(3.12) H(t, z) ≤ ε
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
, (t, z) ∈ R× R2n with |z| ≤ δε.

Choosing Mε > max
{

2c5δ
−λ−1
ε , 2c6

}
, and using (3.11), (3.12) and (1.6), we see

H(t, z) ≤ ε
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
+Mε |z|λ+1

≤ ε
n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
+Mε(2n)λ+1

n∑
i=1

(
|pi|λ+1 + |qi|λ+1

)
, (t, z) ∈ R× R2n.

(3.13)

For z = (%ν1−1p1, . . . , %
νn−1pn, %

µ1−1q1, . . . , %
µn−1qn) ∈ S, note that µi

νi
= σi

τi
(i =

1, 2, . . . , n), (3.13) and Lemma 3.1 imply that

I(z) =

∫ 2π

0

(%ν1−1p1, . . . , %
νn−1pn) · (%µ1−1q̇1, . . . , %

µn−1q̇n) dt−
∫ 2π

0

H(t, z) dt

≥
n∑
i=1

∫ 2π

0

%µi+νi−2pi · q̇i dt

− ε
n∑
i=1

∫ 2π

0

(
%
(νi−1)(1+

µi
νi

) |pi|1+
µi
νi + %

(µi−1)(1+
νi
µi

) |qi|1+
νi
µi

)
dt

−Mε(2n)
λ+1
2

n∑
i=1

∫ 2π

0

(
%(λ+1)(νi−1) |pi|1+λ + %(λ+1)(µi−1) |qi|1+λ

)
dt

≥ %M−2

∫ 2π

0

p · q̇ dt

− ε
n∑
i=1

C(µi, νi)
[
%
(νi−1)(1+

µi
νi

) ‖(pi,0)‖1+
µi
νi + %

(µi−1)(1+
νi
µi

) ‖(0, qi)‖1+
νi
µi

]
−Mε(2n)

λ+1
2 Cλ+1

n∑
i=1

(
%(λ+1)(νi−1) ‖(pi,0)‖1+λ + %(λ+1)(µi−1) ‖(0, qi)‖1+λ

)
≥ %M − ε

n∑
i=1

C(µi, νi)(%
M + %M )−Mε2

λ+1
2 Cλ+1

n∑
i=1

(
%(λ+1)νi + %(λ+1)µi

)
= %M

(
1− 2ε

n∑
i=1

C(µi, νi)−Mε(2n)
λ+1
2 Cλ+1

n∑
i=1

(
%(λ+1)νi−M + %(λ+1)µi−M

))

(3.14)

where C(µi, νi) > 0 and Cλ+1 > 0 are embedding numbers.
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Note that λ > max
{
σ1
τ1
, . . . , σnτn ,

τ1
σ1
, . . . , τnσn

}
, so we have that (λ + 1)µi −M > ( τiσi +

1)µi −M = 0 and (λ + 1)νi −M > (σiτi + 1)νi −M = 0 (i = 1, 2, . . . , n). If we choose

ε, % ∈ (0, 1) satisfying that

2ε
n∑
i=1

C(µi, νi) <
1

3
, Mε(2n)λ+1Cλ+1

n∑
i=1

(
%(λ+1)νi−M + %(λ+1)µi−M

)
<

1

3
,

then (3.14) implies that I|S ≥ κ = %M/3 > 0.

Define operator B2 : E → E as

B2(p1, . . . , pn, q1, . . . , qn) = (rν1−1p1, . . . , r
νn−1pn, r

µ1−1q1, . . . , r
µn−1qn),

where (p1, . . . , pn, q1, . . . , qn) ∈ E, and constant r > 0 is determined in following Lemma 3.5.

Then B2 is linear, bounded, invertible. For s ∈ R, z± = (p±1 , . . . , p
±
n , q

±
1 , . . . , q

±
n ) ∈ E±

and z0 = (p0
1, . . . , p

0
n, q

0
1, . . . , q

0
n) ∈ E0, define

f(s, e, z, z0) = s(rν1−1p+
1 , . . . , r

νn−1p+
n , r

µ1−1q+
1 , . . . , r

µn−1q+
n )

+ (rν1−1p−1 , . . . , r
νn−1p−n , r

µ1−1q−1 , . . . , r
µn−1q−n )

+ (rν1−1p0
1, . . . , r

νn−1p0
n, r

µ1−1q0
1, . . . , r

µn−1q0
n).

Set Q =
{
f(s, e, z−, z0) | 0 ≤ s ≤ r,

∥∥z− + z0
∥∥ ≤ r}, ∂Q refers to the boundary of Q

relative to
{
f(s, e, z−, z0) | s ∈ R, z− ∈ E−, z0 ∈ E0

}
.

Lemma 3.5. There exists a constant r > %

‖B−1
1 B2e‖ such that I|∂Q ≤ 0, if H satisfies

(H1) and (H3).

Proof. The idea comes from [12].

Setm = min1≤i≤n

{(
ε1√

2

)1+
σi
τi ,
(
ε1√

2

)1+
τi
σi

}
andA1 =

√
2n

ε1m
, where ε1 is as in Lemma 3.2.

Condition (H3) implies that there exists a constant A2 >
√

2n such that

(3.15) H(t, z) ≥ A1

n∑
i=1

(
|pi|

1+
σi
τi + |qi|

1+
τi
σi

)
, (t, z) ∈ R× R2n with |z| ≥ A2.

Fix r ≥ max

{
A2
ε1

+ 1, %

‖B−1
1 B2e‖

}
, for any z = f(s, e, z−, z0) ∈ ∂Q, we have

A(z) =

∫ 2π

0

n∑
i=1

(
rµi+νi−2sp+

i · sq̇
+
i + rµi+νi−2p−i · q̇

−
i

)
dt

= rM−2

∫ 2π

0

(
sp+ · sq̇+ + p− · q̇−

)
dt

= rM−2
[
A(s(p+, q+)) +A((p−, q−))

]
= rM

∥∥∥s
r

(p+, q+)
∥∥∥2
− rM

∥∥∥∥1

r
(p−, q−)

∥∥∥∥2

.

(3.16)
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We will check I(z) ≤ 0. The process is divided into several cases.

Case 1. If s = 0, then (3.16) and (H1) imply that I(z) ≤ 0.

Case 2. If s 6= 0, then z ∈ ∂Q indicates that either s = r and
∥∥z− + z0

∥∥ ≤ r or

0 < s ≤ r and
∥∥z− + z0

∥∥ = r. Whatever the case is, we have 1 ≤ ‖z̃‖ ≤ 2, where

z̃ = (p̃1, . . . , p̃n, q̃1, . . . , q̃n)

=
1

r
(sp+

1 + p−1 + p0
1, . . . , sp

+
n + p−n + p0

n, sq
+
1 + q−1 + q0

1, . . . , sq
+
n + q−n + q0

n).

Next, we will consider two subcases below.

Subcase 1. If
∥∥(sp+ + p0, sq+ + q0)

∥∥ < ‖(p−, q−)‖, then (3.16) and (H1) imply that

I(z) ≤ 0.

Subcase 2. If
∥∥(sp+ + p0, sq+ + q0)

∥∥ ≥ ‖(p−, q−)‖, set Ωz̃ = {t ∈ [0, 2π] | |z̃(t)| ≥ ε1},
then Lemma 3.2 implies that measure(Ωz̃) ≥ ε1. For t ∈ Ωz̃, we have

∣∣∣√2n
ε1
z̃(t)

∣∣∣ ≥ √2n

and

|z(t)| =
∣∣(rν1−1(sp+

1 (t) + p−1 (t) + p0
1), . . . , rν1−1(sp+

n (t) + p−n (t) + p0
n),

rµ1−1(sq+
1 (t) + q−1 (t) + q0

1), . . . , rµn−1(sq+
n (t) + q−n (t) + q0

n))
∣∣

= r |z̃(t)| ≥ rε1 > A2.

(3.17)

Using (3.17), (3.15), (1.5) and the choice of A1, we have

H(t, z(t))

≥ A1

n∑
i=1

(∣∣rνi−1(sp+i (t) + p−i (t) + p0i (t))
∣∣1+σi

τi +
∣∣rµi−1(sq+i (t) + q−i (t) + q0i (t))

∣∣1+ τi
σi

)
= A1

n∑
i=1

[
rM
(
|p̃i|1+

σi
τi + |q̃i|1+

τi
σi

)]

= A1r
M

n∑
i=1

( ε1√
2n

)1+
σi
τi

∣∣∣∣∣
√

2n

ε1
p̃i

∣∣∣∣∣
1+

σi
τi

+

(
ε1√
2n

)1+
τi
σi

∣∣∣∣∣
√

2n

ε1
p̃i

∣∣∣∣∣
1+

τi
σi


≥ A1r

M min
1≤i≤n

{(
ε1√

2

)1+
σi
τi

,

(
ε1√

2

)1+
τi
σi

}
n∑
i=1

∣∣∣∣∣
√

2n

ε1
p̃i

∣∣∣∣∣
1+

σi
τi

+

∣∣∣∣∣
√

2n

ε1
p̃i

∣∣∣∣∣
1+

τi
σi


≥ rM

√
2n

ε1
· 1

2n

n∑
i=1

(∣∣∣∣∣
√

2n

ε1
p̃i

∣∣∣∣∣+

∣∣∣∣∣
√

2n

ε1
p̃i

∣∣∣∣∣
)

≥ rM
√

2n

ε1
· 1

2n

∣∣∣∣∣
√

2n

ε1
z̃(t)

∣∣∣∣∣ ≥ rM

ε1
, t ∈ Ωz̃(t).

(3.18)

So (3.16), (3.18) and (H1) imply that

I(z) = A(z)−
∫ 2π

0
H(t, z) dt ≤ rM −

∫
Ωz̃

H(t, z) dt ≤ 0.



One Generalized Critical Point Theorem and its Applications on Super-quadratic Hamiltonian Systems 1115

Lemma 3.6. If H satisfies (H1)–(H3) and (H5), then (I3) in Theorem 2.8 holds for I.

Proof. As [2, Lemma 2.8] demonstrates, for % and r as in Lemmas 3.4–3.5, B(v) (v ≥ 0)

has an explicit formula, that is,

B(v)
(
(p−, q−) + (p0, q0)

)
= P2B

−1
1 exp(vl)B2

(
(p−, q−) + (p0, q0)

)
=

n∑
i=1

mi(%, r, s)(p
−
i , q

−
i ) +

((
r

%

)νi−1

p0,

(
r

%

)µi−1

q0

)
,

where (p−, q−) ∈ E−, (p0, q0) ∈ E0 and

2mi(%, r, s) =

[(
r

%

)νi−1

+

(
r

%

)µi−1
]

cosh(v)−

(
rµi−1

%νi−1
+
rνi−1

%µi−1
i

)
sinh(v).

We note that % < 1 and r > 1, thus we have

2mi(%, r, s) =

[(
r

%

)νi−1

+

(
r

%

)µi−1

− rµi−1

%νi−1
+
rνi−1

%µi−1
i

]
exp(v)

2

+

[(
r

%

)νi−1

+

(
r

%

)µi−1

+
rµi−1

%νi−1
+
rνi−1

%µi−1
i

]
exp(−v)

2

=

(
r

%

)νi−1

(rµi−νi − 1)

[(
1

%

)µi−νi
− 1

]
exp(v)

2

+

[(
r

%

)νi−1

+

(
r

%

)µi−1

+
rµi−1

%νi−1
+
rνi−1

%µi−1
i

]
exp(−v)

2
> 0.

So B̂(v) : E2 → E2 is linear, bounded and invertible for v ≥ 0.

Finally, we shall give the proof of Theorem 1.3.

Proof of Theorem 1.3. Book [11] and Lemmas 3.3–3.6 imply that I ∈ C1(E,R) satisfies

all conditions of Theorem 2.8, if H satisfies (H1)–(H5). So there exists a critical point z of

I which is a weak solution of the system (1.1) and I(z) ≥ κ > 0. [11, pp. 40–41] indicate

that z is a nontrivial classical 2π-periodic solution of the system (1.1).
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