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Characterizations of Tori in 3-spheres

Dong-Soo Kim, Young Ho Kim* and Dae Won Yoon

Abstract. Using the II-metric and the II-Gauss map on a surface derived from

the non-degenerate second fundamental form of a surface in the sphere, we establish

some characterizations of compact surfaces including the spheres and the tori in the

3-dimensional unit sphere.

1. Introduction

It is interesting to look at differential geometry of surfaces of the unit 3-sphere S3(1) in

the 4-dimensional Euclidean space E4. According to [5, p. 138], there are no complete

surfaces immersed in S3(1) with constant extrinsic Gaussian curvature Kext < −1 and

−1 < Kext < 0. In fact, Kext is derived from the determinant of the second fundamental

form of a surface of S3(1). There are infinitely many complete flat surfaces in S3(1), for

example, tori S1(a) × S1(b), the product of plane circles, are good examples of those,

where a2 + b2 = 1. Among them, the Clifford torus S1(1/
√

2)×S1(1/
√

2) is a unique torus

immersed in S3(1), which is minimal and allows closed geodesics of the surface mapped

onto closed curves of finite type in S3(1). The Clifford torus was studied in [3] in terms of

the notion of finite-type immersion. By definition, a finite type immersion x : M → Em of

a submanifold M in a Euclidean space Em can be represented as a decomposition of the

eigenvectors of the Laplace operator ∆ of M in the following

x = x0 + x1 + · · ·+ xk,

where x0 is a constant vector and x1, . . . , xk are non-constant vectors satisfying ∆xi = λixi,

i = 1, 2, . . . , k. In particular, if all of λ1, . . . , λk are different, it is called k-type or the

submanifold M is said to be of k-type (cf. [1, 2]).

On the other hand, it is also interesting to look at the Gauss map which satisfies some

differential equations and how it is related to characterize nice surfaces. For example, how

can we say about the surfaces of S3(1) if the Gauss map is of finite type or harmonic?
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Interestingly, there do not exist surfaces of S3(1) with harmonic Gauss map, which will

be shown in Section 3. If a surface has the non-degenerate second fundamental form, we

can define a non-degenerate metric, possibly a time-like metric induced from the shape

operator and the induced Riemannian metric. We also define a formal Gauss map which

is called the II-Gauss map and the Laplace operator associated with the metric, which is

called the II-Laplace operator.

In the present paper, we consider some obstruction theorems for surfaces in S3(1)

regarding the usual Gauss map related to the usual Laplacian and the isometric immersion

with respect to the II-Laplacian, and we find the necessary and sufficient condition for a

compact surface M in S3(1) with non-degenerate second fundamental form to be a sphere

or a torus in S3(1).

2. Preliminaries

Let E4 be the 4-dimensional Euclidean space with the canonical metric tensor 〈·, ·〉 and

S3(1) the unit hypersphere centered at the origin in E4.

Let M be a surface in S3(1). We denote the Levi-Civita connection by ∇̃ of S3(1) and

the induced connection ∇ of M and D for the normal connection of M . We use the same

notation 〈·, ·〉 as the canonical metric tensors of E4, S3(1) and M . The shape operator (or

the Weingarten map) S : TM → TM of M is defined by S(X) = −∇̃XN for a tangent

vector field X of M , where TM is the tangent bundle of M and N the unit normal frame

associated with the orientation of M in S3(1). Let H and Kext be the mean curvature and

the extrinsic Gaussian curvature of M in S3(1) defined by H = 1
2 trS and Kext = detS

of M , respectively. M is said to be flat if its Gaussian curvature K = 1 + Kext vanishes

identically and M is minimal in S3(1) if H ≡ 0. The Clifford torus S1(1/
√

2) × S1(1/
√

2)

is minimal in S3(1) and flat in E4, which is of 1-type in E4 (see [1, 2]).

The Gauss and Codazzi equations of M in S3(1) are respectively given by

∇̃XY = ∇XY + 〈SX, Y 〉N,(2.1)

(∇XS)Y = (∇Y S)X(2.2)

for the vector fields X, Y and Z tangent to M .

Suppose that p is not a flat point in M . Then, we can choose a coordinate patch x(s, t)

on a neighborhood U around p such that xs, xt are in the principal directions. Then, we

have

S =

κ1 0

0 κ2


with respect to the coordinate frame {xs, xt}. Thus, H = (κ1 + κ2)/2 and K = 1 + κ1κ2.
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We put 〈xs, xs〉 = E and 〈xt, xt〉 = G. Define a symmetric tensor h by

(2.3) h(X,Y ) = 〈SX, Y 〉 .

Suppose that h is non-degenerate. Then, h is regarded as a non-degenerate metric on

M , which is called the II-metric with representation given by

(2.4) h =

κ1E 0

0 κ2G

 .

According to [5, p. 138], if M is a compact surface with constant Gaussian curvature

K ≥ 1, M is totally umbilical in S3(1). Thus, we mainly focus on the case that κ1κ2 6= 0

on M in (2.4).

3. Obstruction theorems of surfaces in S3(1)

Let M be a surface of S3(1). Choose the isothermal coordinate system (s, t) of a point in

M such that its metric is represented by ds̃2 = λ(ds2 + dt2), where λ > 0. Then, we can

have the Gauss map G of M in E4 defined by

(3.1) G =
1

λ
(xs ∧ xt),

where x : M → S3(1) ⊂ E4 is the isometric immersion of M into S3(1), xs = ∂x/∂s and

xt = ∂x/∂t. In this case, the Laplace operator ∆ is given by

(3.2) ∆ = − 1

λ

(
∂2

∂s2
+
∂2

∂t2

)
.

It is straightforward to compute

xss =
λs
2λ
xs −

λt
2λ
xt + aλN − λx,(3.3)

xst =
λt
2λ
xs +

λs
2λ
xt + bλN,(3.4)

xtt = −λs
2λ
xs +

λt
2λ
xt + cλN − λx,(3.5)

where N is the unit normal vector field of M in S3(1) and S =
(
a b
b c

)
is the shape operator

of M with respect to N .

Then, using (3.1)–(3.5), we have

∆G = − 1

λ

{
−(a2 + 2b2 + c2 + 2)xs ∧ xt

+

(
as +

λs
2λ
a+

λt
λ
b+ bt −

λs
2λ
c

)
N ∧ xt

+

(
λt
2λ
a− bs −

λs
λ
b− ct −

λt
2λ
c

)
N ∧ xs

}
,

(3.6)
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from which, it is impossible for the Gauss map G to be harmonic, i.e., ∆G = 0. Thus, we

have

Theorem 3.1. There do not exist surfaces of S3(1) with harmonic Gauss map.

Remark 3.2. Equation (3.6) and Theorem 3.1 can be obtained from [4, Lemma 3.2].

Remark 3.3. The torus S1(r1) × S1(r2) with r21 + r22 = 1 satisfies ∆G = µG for some

non-zero real number µ.

Now, let us consider a surface M of S3(1) with non-degenerate second fundamental

form, i.e., κ1κ2 6= 0. Let x = x(s, t) be a surface patch of M such that xs and xt are in

the principal directions. Then, we have a non-degenerate metric h on M defined by (2.4).

It is easy to derive

∇xsxs =
Es

2E
xs −

Et

2G
xt,(3.7)

∇xsxt =
Et

2E
xs +

Gs

2G
xt,(3.8)

∇xtxt = −Gs

2E
xs +

Gt

2G
xt.(3.9)

Without loss of generality, we may regard as κ1 > 0. We put

(3.10) h11 = κ1E = a2, h12 = h21 = 0, h22 = κ2G = εb2

for some positive functions a and b, where ε = ±1 depending upon the signature of h22.

Then, we have the equations of Gauss

xss = ∇̃xsxxs =
Es

2E
xs −

Et

2G
xt + a2N − Ex,(3.11)

xst = ∇̃xsxt =
Et

2E
xs +

Gs

2G
xt,(3.12)

xtt = ∇̃xtxt = −Gs

2E
xs +

Gt

2G
xt + εb2N −Gx.(3.13)

We then define the II-Laplace operator ∆II with respect to the metric h by

∆II = − 1√
|deth|

{
∂

∂s

(√
|deth| 1

a2
∂

∂s

)
+
∂

∂t

(
ε
√
|deth| 1

b2
∂

∂t

)}
= − 1

ab

{
∂

∂s

(
b

a

∂

∂s

)
+ ε

∂

∂t

(
a

b

∂

∂t

)}
.

(3.14)

If we put f = b/a, then (3.14) can be written as

(3.15) ∆II = − 1

ab

{
fs
∂

∂s
+ f

∂2

∂s2
+ ε

(
1

f

)
t

∂

∂t
+ ε

(
1

f

)
∂2

∂t2

}
.

Using (3.11), (3.12) and (3.13), we have
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Lemma 3.4. Let M be a surface of S3(1) with non-degenerate second fundamental form.

Then, we have

∆IIx = − 1

ab

{(
fs + f

Es

2E
− ε

f

Gs

2E

)
xs +

(
−fEt

2G
+

(
ε

f

)
t

+
ε

f

Gt

2G

)
xt

+ 2abN −
(
fE +

εG

f

)
x

}
.

(3.16)

We then have immediately from Lemma 3.4

Proposition 3.5. There do not exist surfaces of S3(1) with non-degenerate second fun-

damental form satisfying ∆IIx = λ1x for some function λ1.

4. Some characterization of Clifford torus

First of all, we prove

Lemma 4.1. Let M be a surface in S3(1) with non-degenerate second fundamental form.

If ∆IIx is parallel to the unit normal vector field or ∆IIN is parallel to x, the induced

II-metric h is time-like.

Proof. Without loss of generality, we may assume κ1 > 0 as in the previous section.

Suppose that ∆IIx, the II-Laplacian of the immersion x, is parallel to the unit normal

vector field N , that is,

(4.1) ∆IIx = λN

for some function λ. By straightforward computation, we have

∆IIx = − 1

ab

{(
fs + f

Es

2E
− ε 1

f

Gs

2E

)
xs +

(
−f Et

2G
+

(
ε

f

)
t

+
ε

f

Gt

2G

)
xt

+ 2abN −
(
fE +

εG

f

)
x

}
,

(4.2)

where a and b are some positive functions given in the previous section by a2 = κ1E,

εb2 = κ2G and f = b/a.

Since ∆IIx is parallel to the unit normal vector field N , we have from (4.2)

fs + f
Es

2E
− ε

f

Gs

2E
= 0,(4.3)

−f Et

2G
+

(
ε

f

)
t

+
ε

f

Gt

2G
= 0,(4.4)

fE + ε
G

f
= 0.(4.5)
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Since f > 0, E > 0 and G > 0, (4.5) implies ε = −1.

Suppose that ∆IIN , the II-Laplacian of the unit normal vector field N of M in S3(1),

is parallel to the position vector x which is identified with the immersion x, that is,

(4.6) ∆IIN = µx

for some function µ. Using (3.7)–(3.9) and (3.15), we get

∆IIN = − 1

ab

{(
−(fκ1)s + fκ1

Es

2E
− ε 1

f

Gs

2E
κ2

)
xs

+

(
fκ1

Et

2G
−
(
εκ2
f

)
t

− εκ2
f

Gt

2G

)
xt

+ 2ab(κ1 + κ2)N −
(
fκ1E +

ε

f
κ2G

)
x

}
.

(4.7)

Since ∆IIN ∧ x = 0, (4.7) implies κ1 + κ2 = 0 and ε = −1.

We now prove

Theorem 4.2. Let M be a compact surface in S3(1) with non-degenerate second funda-

mental form. Then, the following are equivalent:

(1) ∆IIx is parallel to the unit normal vector field N .

(2) ∆IIN is parallel to the position vector field x.

(3) M is the Clifford torus S1(1/
√

2)× S1(1/
√

2).

(4) M is flat and of 1-type.

Proof. Due to [3], (3) and (4) are equivalent. Now, we show that (1), (2) and (3) are

equivalent.

First, we show (1) and (3) are equivalent. Suppose that ∆IIx is parallel to N . Ac-

cording to Lemma 4.1, the induced II-metric h is time-like, that is, ε = −1 and thus (4.5)

yields

(4.8) G = f2E.

Differentiating (4.8) with respect to s and putting it into (4.3), we get

fs + f
Es

2E
= 0,

which implies

(4.9) f = C1(t)/
√
E
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for some positive function C1(t) of t. Together with (4.8) and (4.9), we see that

(4.10) G = C2
1 (t),

that is, G is a function of t. If we solve (4.5) and make use of (4.9), we have

f = C2(s)
√
EG

for some positive function C2(s) of s. Together this with (4.8), we see that

(4.11) E = 1/C2(s)

is a function of s. Then, (3.12) implies

xst = 0.

So, the tangent vector field xs depends only on s. By (3.11) and (4.11), κ1N − x =(
xss − Es

2Exs
)
/E depends only on the variable s. Thus, we have

0 = (κ1N − x)t = (κ1)tN − (1 + κ1κ2)xt = (κ1)tN −Kxt.

Also, the tangent vector field xt depends only on the variable t. Similarly as before, (3.13)

and (4.10) yield

0 = (κ2N − x)s = (κ2)sN − (1 + κ1κ2)xs = (κ2)sN −Kxs.

Therefore, we have that (κ1)t = (κ2)s = 0 and K = 0. Differentiating K = 0 with

respect to s and t, and using the fact that the second fundamental form of M in S3(1) is

non-degenerate, we see that the principal curvatures κ1 and κ2 are constant. Thus, M is

isoparametric. Since M is compact, M is a torus S1(r1)× S1(r2) with r21 + r22 = 1.

Then, the immersion x of M into E4 can be written as

(4.12) x(s, t) = (r1 cos s, r1 sin s, r2 cos t, r2 sin t).

In a natural manner, we may choose a unit normal vector field N in S3(1) by

(4.13) N = (−r2 cos s,−r2 sin s, r1 cos t, r1 sin t),

from which, the shape operator S and II-metric h of M in S3(1) are respectively given by

(4.14) S =

r2/r1 0

0 −r1/r2
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and

(4.15) h =

r1r2 0

0 −r1r2

 .

Thus, we have

∆IIx =

(
1

r2
cos s,

1

r2
sin s,− 1

r1
cos t,− 1

r1
sin t

)
.

Since ∆IIx and N are parallel, it is easy to see that r1 = r2. Hence, M is represented as

the Clifford torus S1(1/
√

2)× S1(1/
√

2) which is minimal in S3(1).

It is straightforward that S1(1/
√

2)× S1(1/
√

2) satisfies

∆IIx = −2N.

Now, suppose that

(4.16) ∆IIN = µx

for some function µ. By Lemma 4.1, we have ε = −1 and κ1+κ2 = 0. From (4.7) together

with (4.16), we get

−(fκ1)s + fκ1
Es

2E
− 1

f

Gs

2E
κ1 = 0,(4.17)

fκ1
Et

2G
−
(
κ1
f

)
t

− κ1
f

Gt

2G
= 0(4.18)

because of κ1 + κ2 = 0. The solution of (4.17) is given by

(4.19) fκ1 = C̃0(t)

√
E

G

for some positive function C̃0(t) of t, or, equivalently

(4.20) G2κ21 = C0(t)E
2,

where C0(t) = C̃0(t)
2. From (4.18), we have κ1/f = C̃1(s)

√
E/G for some function C̃1(s)

of s. If we use f = b/a, we have κ21 = C1(s), where C1(s) = C̃1(s)
2. Therefore, κ1 is a

positive function of s only. Then, (4.18) reduces to

f
Et

2G
−
(

1

f

)
t

− 1

f

Gt

2G
= 0,

or,

(4.21)
ft
f
− Gt

2G
+
Et

2E
= 0,
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which yields

(4.22) f2 =
b2

a2
= C3(t)

E

G

for some positive function C3(t) of t. Together with (4.20) and (4.21), we see that κ1 is a

constant. Therefore, M is an isoparametric minimal surface in S3(1) which is the Clifford

torus S1(1/
√

2)× S1(1/
√

2).

Conversely, one can easily show that the Clifford torus S1(1/
√

2) × S1(1/
√

2) satisfies

∆IIN = −2x.

5. Spheres and tori in S3(1)

In this section we consider a compact surface M with non-degenerate second fundamental

form in S3(1). Then, we have a non-degenerate metric h induced from the Riemannian

metric and the shape operator S by (2.3).

Firstly, we prove

Theorem 5.1. Let M be a compact surface of S3(1) with non-degenerate second fun-

damental form. Then, M is a sphere S2(r) with 0 < r < 1 if and only if M satisfies

∆IIx = λ2H for some non-zero constant λ2, where H is the mean curvature vector field

in E4 defined by H = HN − x.

Proof. Suppose that a compact surface M of S3(1) is a sphere S2(r) with 0 < r < 1.

Without loss of generality, we may choose the unit normal vector field N so that the

principal curvature κ = 1/r is positive. Then, we have a2 = κE, b2 = κG and f =

b/a =
√
G/E. Putting these into equation (3.16) in Lemma 3.4, we see that ∆IIx =

−2N + (2/κ)x = λ2(κN − x) = λ2H with λ2 = −2/κ.

Suppose that M satisfies ∆IIx = λ2H for some non-zero constant λ2. It follows from

(3.16) that the mean curvature H = −2/λ2 is constant and Kext = H2 6= 0. Therefore,

the Gauss curvature K of M satisfies K = 1 + Kext > 1 and thus M is totally umbilic.

Since the second fundamental form of M is non-degenerate, the principal curvature is a

non-zero constant. Thus, M is a sphere S2(r) with 0 < r < 1.

We now define the II-Gauss map G̃ as follows

(5.1) G̃ =
xs ∧ xt√
|deth|

=
xs ∧ xt
ab

,

where κ1E = a2, κ2G = εb2, κ1 > 0 and κ2 are the principal curvatures, E = 〈xs, xs〉,
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G = 〈xt, xt〉, a > 0, b > 0 and ε = ±1. Then, (3.14) implies

∆IIG̃ =

[
f

{
gs + g

(
Es

2E
+
Gs

2G

)
− a3

bE
− E

ab

}
+ fsg +

(
ε

f

)
t

q

+
ε

f

{
qt −

G

ab
+ q

(
Et

2E
+
Gt

2G

)
− b3

aG

}]
xs ∧ xt

+

{
fs
f

+ f

(
a2g +

(
1

f

)
s

)}
N ∧ xt

+

{
−fs

E

ab
− f

(
gE +

(
E

ab

)
s

+
E

ab

Gs

2G

)
+
ε

f

G

ab

Gs

2G

}
x ∧ xt

+

{
Et

2E
− f

(
1

f

)
t

− 1

f

(
qb2 + ft + f

Et

2E

)}
N ∧ xs

+

{
−f E

ab

Et

2E
+

(
ε

f

)
t

G

ab
+
ε

f

(
qG+

(
G

ab

)
t

+
G

ab

Et

2E

)}
x ∧ xs,

(5.2)

where g = (1/ab)s + (1/2ab)(Es/E +Gs/G) and q = (1/ab)t + (1/2ab)(Et/E +Gt/G).

We now prove

Lemma 5.2. Let M be a compact surface in S3(1) with non-degenerate second fundamen-

tal form. If M admits II-harmonic II-Gauss map, then M is flat.

Proof. Suppose that the II-Gauss map G̃ is II-harmonic, that is, ∆IIG̃ = 0. Since the

vectors xs ∧ xt, N ∧ xt, x ∧ xt, N ∧ xs and x ∧ xs are linearly independent, we have from

(5.2) that

f

{
gs + g

(
Es

2E
+
Gs

2G

)
− a3

bE
− E

ab

}
+ fsg

+

(
ε

f

)
t

q +
ε

f

{
qt −

G

ab
+ q

(
Et

2E
+
Gt

2G

)
− b3

aG

}
= 0,

(5.3)

fs
f

+ f

(
a2g +

(
1

f

)
s

)
= 0,(5.4)

−fs
E

ab
− f

(
gE +

(
E

ab

)
s

+
E

ab

Gs

2G

)
+
ε

f

G

ab

Gs

2G
= 0,(5.5)

Et

2E
− f

(
1

f

)
t

− 1

f

(
qb2 + ft + f

Et

2E

)
= 0,(5.6)

−f E
ab

Et

2E
+

(
ε

f

)
t

G

ab
+
ε

f

(
qG+

(
G

ab

)
t

+
G

ab

Et

2E

)
= 0.(5.7)

It follows from (5.4) that a2g = 0. Since a is a positive function, we get

(5.8) g = 0.

Equation (5.6) yields b2q = 0 and thus

(5.9) q = 0.
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Therefore,
√
EG/ab is constant and the Gauss curvature K of M in E4 is a constant given

by K = 1 + κ1κ2 = 1 + εa
2b2

EG .

On the other hand, equation (5.3) with g = q = 0 implies

(5.10) − a2

E
− E

a2
− ε

(
b2

G
+
G

b2

)
= 0,

from which, we get ε = −1.

Equation (5.10) with ε = −1 gives

(5.11) (κ1 + κ2)(1 + κ1κ2) = K(κ1 + κ2) = 0.

Suppose that K 6= 0. Then, (5.11) implies that M is minimal and x : M → E4 is

of 1-type immersion. Since the Gauss curvature K is constant, the principal curvatures

κ1 and κ2 are constant. Thus, M is isoparametric in S3(1) and M is the Clifford torus

S1(1/
√

2)× S1(1/
√

2), a contradiction. Therefore, K = 0 and M is flat.

Together with Lemma 5.2, a compact and finite-type surface M with non-degenerate

second fundamental form and II-harmonic II-Gauss map is a torus S1(r1)× S1(r2) with

r21 + r22 = 1 (see [3]).

Conversely, we can easily verify that the II-Gauss map of a torus S1(r1)×S1(r2) with

r21 + r22 = 1 is II-harmonic.

Hence, we have

Theorem 5.3. Let M be a compact surface with non-degenerate second fundamental form

in S3(1). The following are equivalent:

(1) The II-Gauss map G̃ is II-harmonic.

(2) M is a torus S1(r1)× S1(r2) with r21 + r22 = 1.

(3) M is flat and of finite-type.

Remark 5.4. In Theorem 5.3, in case of 1-type, M is the Clifford torus S1(1/
√

2)×S1(1/
√

2).

If M is of 2-type, M is S1(r1)× S1(r2) with r21 + r22 = 1 (r1 6= 1/
√

2).
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