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Abelian Category of Cominimax and Weakly Cofinite Modules

Moharram Aghapournahr

Abstract. Let R be a commutative Noetherian ring, I an ideal of R and M an

arbitrary R-module. Let S be a Serre subcategory of the category of R-modules. It

is shown that the R-module ExtiR(R/I,M) belongs to S, for all i ≥ 0, if and only if

the R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ ara(I). As an immediate

consequence, we prove that if R is a Noetherian (resp. (R,m) is a Noetherian local)

ring of dimension d, then the R-module ExtiR(R/I,M) belongs to S, for all i ≥ 0 if

and only if the R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ d+1 (resp. for all

0 ≤ i ≤ d). Also it is shown that if I is a principal ideal up to radical, then the category

of I-cominimax (resp. I-weakly cofinite) modules is an Abelian full subcategory of the

category of R-modules.

1. Introduction

Throughout this paper R is a commutative Noetherian ring with non-zero identity and I

an ideal of R. Hartshorne in [8] defined a module M to be I-cofinite if SuppR(M) ⊆ V (I)

and ExtiR(R/I,M) is finitely generated for all i ≥ 0. He asked:

Question 1.1. Whether the category M (R, I)cof of I-cofinite modules forms an Abelian

subcategory of the category of all R-modules? That is, if f : M → N is an R-homomorphism

of I-cofinite modules, are Ker f and Coker f I-cofinite?

With respect to this question, Hartshorne with an example showed that this is not true

in general. However, he proved that if I is a prime ideal of dimension one in a complete

regular local ring R, then the answer to his question is yes. In [5], Delfino and Marley

extended this result to arbitrary complete local rings. Recently, Kawasaki [11], by using a

spectral sequence argument, generalized the Delfino and Marley’s result for an arbitrary

ideal I of dimension one in a local ring R. Finally, in [15] it is shown that Hartshorne’s

question is true for all ideals of dimension one of any arbitrary Noetherian ring R. Also

Melkersson in [14] (resp. Kawasaki in [10, Theorem 2.1]), proved that the Hartshorne’s
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question is true for all Noetherian rings with dimension at most 2 (resp. for all principal

ideals up to radical).

Recall that an R-module M is a minimax module if there exists a finitely generated

submodule N of M such that the quotient module M/N is Artinian. Minimax modules

have been studied in [17]. Recall too that an R-module M is called weakly Laskerian if

AssR(M/N) is a finite set for each submodule N of M . The category of weakly Laskerian

modules introduced in [6]. Note that these two class of R-modules are Serre subcategory

of R-modules, in other words, they are closed under taking submodules, quotients and

extensions. Let S be a Serre subcategory of R modules and I an ideal of R. As a

generalization of I-cofinite modules in [1], the authors, introduced the concept of cofinite

modules with respect to I and S or (I,S)-cofinite modules. An R-module M is (I,S)-

cofinite module if SuppR(M) ⊆ V (I) and ExtiR(R/I,M) belongs to S for all i ≥ 0. Note

that when S is the category of minimax module (resp. weakly Laskerian) R-module, it is

the same as I-cominimax (resp. I-weakly cofinite) modules, see also [2] and [7]. In this

paper with a different method of proof from Kawasaki [10, Theorem 2.1] and using Koszul

complex, when I is a principal ideal up to radical, we prove that for each S as a full

Serre subcategory of R-modules, the category of (I,S)-cofinite modules is a full Abelian

subcategory of R-modules. In particular the category of I-cominimax (resp. I-weakly

cofinite) modules has the same property. More precisely we prove the following theorem.

Theorem 1.2. Let R be a Noetherian ring, I be an ideal of R and M be a non-zero

R-module. Let S be a Serre subcategory of R-modules. Then the following conditions are

equivalent:

(i) The R-module ExtiR(R/I,M) belongs to S, for all i ≥ 0.

(ii) The R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ ara(I).

Throughout this paper, R will always be a commutative Noetherian ring with non-zero

identity and I will be an ideal of R. We denote {p ∈ SpecR : p ⊇ I} by V (I). The radical

of I, denoted by Rad(I), is defined to be the set {x ∈ R : xn ∈ I for some n ∈ N}. For

any unexplained notation and terminology we refer the reader to [4] and [12].

2. Main results

We begin with a useful lemma.

Lemma 2.1. Let R be a Noetherian ring, I be an ideal of R and S be a Serre subcategory

of R-modules. Then for any R-modules T and any integer k ≥ 0, the following conditions

are equivalent:
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(i) ExtnR(R/I, T ) belongs to S for all 0 ≤ n ≤ k.

(ii) ExtnR(N,T ) belongs to S for all 0 ≤ n ≤ k and for any finitely generated R-module

N for which SuppR(N) ⊆ V (I).

Proof. It follows from the method of the proof of [9, Lemma 1].

The following lemma is a generalization of [15, Theorem 2.1] in the sense of Serre

subcategory of the category of R-modules.

Lemma 2.2. Let R be a Noetherian ring and I = (x1, . . . , xn) be an ideal of R and let

M be an R-module. Let S be a Serre subcategory of the category of R-modules. Then the

following statements are equivalent:

(i) The R-module ExtiR(R/I,M) belongs to S, for all integers i ≥ 0,

(ii) The R-module TorRi (R/I,M) belongs to S, for all integers i ≥ 0,

(iii) The Koszul cohomology module Hi(x1, . . . , xn;M) belongs to S, for all integers i =

0, . . . , n.

Proof. This lemma follows from the method of the proof of [16, Theorem 2].

The next remark is needed in the proof of the next lemma.

Remark 2.3. Let I be an ideal of R and S a full Serre subcategory of R-modules. Let

M be a finitely generated R-module and N belong to S. As R is Noetherian and M is

finitely generated, it follows that M possesses a free resolution

F• : · · · −→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ 0

whose free modules have finite ranks. Thus ExtiR(M,N) = Hi(HomR(F•, N)) is a sub-

quotient of a direct sum of finitely many copies of N . Therefore, since S is full Serre

subcategory of R-modules, it follows that ExtiR(M,N) belongs to S for all i ≥ 0.

The next results are of assistance in the proof of the main theorems in this paper.

Lemma 2.4. Let R be a Noetherian ring, I := Rx1 + · · ·+ Rxn (n ≥ 1) be an ideal of R

and M be a non-zero R-module. Then for each S as a full Serre subcategory of R-modules,

the following conditions are equivalent:

(i) The R-module ExtiR(R/I,M) belongs to S, for all i ≥ 0.

(ii) The R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ n.
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Proof. (i) ⇒ (ii): It’s clear.

(ii) ⇒ (i): Let

K•(x,M) : 0 −→M
f0−→

C1
n⊕

k=1

M
f1−→

C2
n⊕

k=1

M −→ · · · −→
Cn−1

n⊕
k=1

M
fn−1−→ M −→ 0

be the Koszul complex of M with respect to x = x1, . . . , xn. Then by the definition we

have

H0(x;M) = Ker(f0) = 0 :M I ∼= HomR(R/I,M)

and so it follows from the hypothesis that the R-module H0(x;M) belongs to S. Consider

the following exact sequence

0 −→ Ker(f0) −→M −→ Im(f0) −→ 0.

Using the hypothesis and Remark 2.3, it follows from this exact sequence that the

R-module ExtiR(R/I, Im(f0)) belongs to S, for each 0 ≤ i ≤ n. Now the following exact

sequence

(2.1) 0 −→ Im(f0) −→ Ker(f1) −→ H1(x;M) −→ 0

induces the exact sequence

(2.2) HomR(R/I,Ker(f1)) −→ HomR(R/I,H1(x;M)) −→ Ext1
R(R/I, Im(f0)).

Now as by hypothesis the R-module HomR(R/I,M) belongs to S, it is easy to see

that the R-module HomR(R/I,Ker(f1)) also belongs to S. Therefore, the exact sequence

(2.2) implies that the R-module HomR(R/I,H1(x;M)) also belongs to S, (note that n ≥
1). By the definition of Koszul complex I H1(x;M) = 0. Consequently, the R-module

H1(x;M) = 0 :H1(x;M) I belongs to S. Now it follows from exact sequence (2.1) that the

R-module ExtiR(R/I,Ker(f1)) also belongs to S for all 0 ≤ i ≤ n. Now the following exact

sequence

0 −→ Ker(f1) −→
C1

n⊕
k=1

M −→ Im(f1) −→ 0

implies that the R-module ExtiR(R/I, Im(f1)) belongs to S for each 0 ≤ i ≤ n − 1. So

proceeding in the same way we can see the Koszul cohomoloy modules Hi(x;M) belong

to S for all 0 ≤ i ≤ n. Now the assertion follows from Lemma 2.2.

Now we are ready to state and prove the first main result of this paper.

Before bringing this main result, recall that, for any proper ideal I of R, the arithmetic

rank of I, denoted by ara(I), is the least number of elements of I required to generate an

ideal which has the same radical as I, i.e.,

ara(I) := min {n ≥ 0 : ∃x1, . . . , xn ∈ I with Rad((x1, . . . , xn)) = Rad(I)} .
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Theorem 2.5. Let R be a Noetherian ring, I be an ideal of R and M be a non-zero

R-module. Let S be a Serre subcategory of R-modules. Then the following conditions are

equivalent:

(i) The R-module ExtiR(R/I,M) belongs to S, for all i ≥ 0.

(ii) The R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ ara(I).

Proof. The assertion follows immediately from Lemmas 2.4 and 2.1.

Corollary 2.6. Let R be a Noetherian (resp. (R,m) be a Noetherian local) ring of dimen-

sion d, I be an ideal of R and M be a non-zero R-module. Then for each S as a full Serre

subcategory of R-modules, the following statements are equivalent:

(i) The R-module ExtiR(R/I,M) belongs to S, for all i ≥ 0.

(ii) The R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ d + 1 (resp. for all

0 ≤ i ≤ d).

Proof. The assertion follows immediately from Theorem 2.5 and [13, Corollaries 2.7 and

2.8].

Corollary 2.7. Let R be a Noetherian ring, I := Rx1 + · · ·+ Rxn (n ≥ 1) be an ideal of

R and M be a non-zero R-module with support in V (I). Then for each S as a full Serre

subcategory of R-modules, the following conditions are equivalent:

(i) M is (I,S)-cofinite.

(ii) The R-module ExtiR(R/I,M) belongs to S, for all 0 ≤ i ≤ n.

Proof. The assertion follows from Lemma 2.4.

Theorem 2.8. Let I be an ideal of a Noetherian ring R such that ara(I) = 1. Let

M (R, I,S)cof denote the category of (I,S)-cofinite R-modules. Then M (R, I,S)cof is an

Abelian category.

Proof. Let M,N ∈ M (R, I,S)cof and let f : M → N be an R-homomorphism. It is

enough to show that the R-modules Ker f and Coker f are (I,S)-cofinite.

To this end, the exact sequence

0 −→ Ker f −→M −→ Im f −→ 0

induces an exact sequence

0 −→ HomR(R/I,Ker f) −→ HomR(R/I,M) −→ HomR(R/I, Im f)

−→ Ext1
R(R/I,Ker f) −→ Ext1

R(R/I,M)
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that implies the R-modules HomR(R/I,Ker f) and Ext1
R(R/I,Ker f) are finitely gen-

erated. Therefore it follows from Theorem 2.5 that Ker f is (I,S)-cofinite. Now, the

assertion follows from the following exact sequences

0 −→ Ker f −→M −→ Im f −→ 0

and

0 −→ Im f −→ N −→ Coker f −→ 0.

Kawasaki in [10, Theorem 2.1] proved the following corollary by using Noetherian

property but our method of proof is quite different and use Koszul cohomology.

Corollary 2.9. Let I be an ideal of a Noetherian ring R such that ara(I) = 1. Let

M (R, I)cof denote the category of I-cofinite R-modules. Then M (R, I)cof is an Abelian

category.

The following corollary is our last main result in this paper.

Corollary 2.10. Let I be an ideal of a Noetherian ring R such that ara(I) = 1. Let

M (R, I)comin (resp. M (R, I)wcof) denote the category of I-cominimax (resp. the category

of I-weakly cofinite) R-modules. Then M (R, I)comin (resp. M (R, I)wcof) is an Abelian

category.

Corollary 2.11. Let R be a Noetherian ring and I a proper ideal of R. Let M be a non-

zero I-cominimax (resp. I-weakly cofinite) R-module. Then, the R-modules ExtiR(N,M)

and TorRi (N,M) are I-cominimax (resp. I-weakly cofinite) R-modules, for all finitely gen-

erated R-modules N and all integers i ≥ 0.

Proof. Since N is finitely generated, it follows that N has a free resolution of finitely

generated free modules. Now the assertion follows using Theorem 2.8 and computing the

modules ExtiR(N,M) and TorRi (N,M), by this free resolution.

If ara(I) = 1 then cd I = 1 but the converse is not true in general. We close this

paper by offering a question and problem for further research. The following question is

at present far from being solved.

Question 2.12. Let R be a commutative Noetherian ring with non-zero identity and I

an ideal of R with cd I = 1. Is M (R, I)cof an Abelian full subcategory of R-modules?
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