Erratum to: Total Scalar Curvature and Harmonic Curvature

[Taiwanese Journal of Mathematics Vol. 18, No. 5, pp. 1439-1458, 2014]

Gabjin Yun, Jeongwook Chang and Seungsu Hwang*

It has been realized that the proof of Theorem 5.1 in Section 5 is imcomplete. It was pointed out by Professors Jongsu Kim and Israel Evangelista. Here we give a correct proof of Theorem 5.1. All other results of the paper remain unaffected and the equations are numbered as in the paper.

First, we list some results of the paper:

$$
\begin{gather*}
(n-2) \widetilde{i}_{\nabla f} \mathcal{W}=(n-1) d f \wedge z+i_{\nabla f} z \wedge g \tag{7}\\
i_{\nabla f} z=\alpha d f \tag{10}\\
\delta\left(i_{\nabla f} z\right)=-(1+f)|z|^{2} \tag{12}\\
(1+f)|z|^{2}=-\frac{s_{g} f}{n-1} \alpha+\langle\nabla \alpha, \nabla f\rangle \tag{13}\\
|z|^{2}=\frac{n}{n-1} \alpha^{2}+\left(\frac{n-2}{n-1}\right)^{2}\left|\mathcal{W}_{N}\right|^{2} \tag{15}
\end{gather*}
$$

where $N=\nabla f /|\nabla f|$ and $\alpha=z(N, N)$.
Now, we prove Theorem 5.1.
Theorem 5.1. Let (g, f) be a non-trivial solution of the CPE. Assume also that (M, g) has harmonic curvature. Then $\mathcal{W}_{N}=0$ on M.

For the proof, we need the following results.
Lemma 1. On M, we have

$$
\begin{equation*}
\frac{1}{2} \nabla f\left(|z|^{2}\right)=2(1+f) \alpha|z|^{2}+\frac{s f}{n-1} \alpha^{2}-(1+f) \operatorname{tr}\left(z^{3}\right)+\frac{s f}{n(n-1)}|z|^{2} \tag{28}
\end{equation*}
$$

Proof. Since (M, g) has harmonic curvature and s_{g} is constant, we have

$$
\begin{equation*}
0=d^{D} z\left(E_{i}, E_{j}, E_{k}\right)=D_{E_{i}} z_{j k}-D_{E_{j}} z_{i k} \tag{29}
\end{equation*}
$$

[^0]Thus, by (10) we have

$$
\begin{aligned}
\frac{1}{2} \nabla f\left(|z|^{2}\right) & =\sum_{i, j} D_{\nabla f} z\left(E_{i}, E_{j}\right) z\left(E_{i}, E_{j}\right)=\sum_{i, j} D_{E_{i}} z\left(\nabla f, E_{j}\right) z\left(E_{i}, E_{j}\right) \\
& =\sum_{i, j}\left[E_{i}\left(z\left(\nabla f, E_{j}\right)\right)-z\left(D_{E_{i}} d f, E_{j}\right)\right] z_{i j} \\
& =\sum_{i, j}\left[E_{i}\left(\alpha d f\left(E_{j}\right)\right)-(1+f) z \circ z\left(E_{i}, E_{j}\right)\right] z_{i j}+\frac{s f}{n(n-1)}|z|^{2} \\
& =z(\nabla \alpha, \nabla f)+(1+f) \alpha|z|^{2}-(1+f) \operatorname{tr}\left(z^{3}\right)+\frac{s f}{n(n-1)}|z|^{2} .
\end{aligned}
$$

Here, by (13)

$$
z(\nabla \alpha, \nabla f)=\langle\nabla \alpha, \nabla f\rangle \alpha=(1+f) \alpha|z|^{2}+\frac{s f}{n-1} \alpha^{2}
$$

Let $a=(n-2) /(n-1)$. By (13), 15) and Lemma 1, we have
Corollary 2. On M,

$$
\frac{a^{2}}{2} \nabla f\left(\left|\mathcal{W}_{N}\right|^{2}\right)=\frac{n-2}{n-1}(1+f) \alpha|z|^{2}-(1+f) \operatorname{tr}\left(z^{3}\right)+\frac{a^{2} s f}{n(n-1)}\left|\mathcal{W}_{N}\right|^{2} .
$$

Lemma 3. On M, we have

$$
\operatorname{div}\left(a\left|\mathcal{W}_{N}\right|^{2} d f\right)=-(1+f)\left\langle\mathcal{W}_{z}, z\right\rangle
$$

Proof. First we claim that $\delta \mathcal{\mathcal { W }} z(\nabla f)=0$. Let $\left\{E_{i}\right\}, i=1,2, \ldots, n$, be a local geodesic frame field. By (29), since $\delta \mathcal{W}=0$,

$$
\begin{aligned}
-\delta \mathcal{W} z(\nabla f) & =\sum_{i, j} D_{E_{i}} \mathcal{W} z\left(E_{i}, E_{j}\right)\left\langle\nabla f, E_{j}\right\rangle=\sum_{i, j} E_{i}\left(\mathcal{W} z\left(E_{i}, E_{j}\right)\right)\left\langle\nabla f, E_{j}\right\rangle \\
& =-\sum_{k, l} \delta \mathcal{W}\left(E_{k}, \nabla f, E_{l}\right) z_{k l}+\sum_{i, k, l} \mathcal{W}\left(E_{i}, E_{k}, \nabla f, E_{l}\right) D_{E_{i}} z_{k l} \\
& =\sum_{i, k, l} \mathcal{W}\left(E_{k}, E_{i}, E_{l}, \nabla f\right) D_{E_{i}} z_{k l} \\
& =\frac{n-1}{n-2}\left(\sum_{i, k, l} d f\left(E_{k}\right) z_{i l} D_{E_{i}} z_{k l}-\frac{1}{2} \nabla f\left(|z|^{2}\right)\right)=0 .
\end{aligned}
$$

Here, the fifth equality comes from (7) with $\delta z=0$, and the last equation from 29 .
Therefore, we have

$$
\begin{aligned}
0=-\delta \mathcal{W} z(\nabla f) & =\sum_{i} D_{E_{i}}(\dot{\mathcal{W}} z)\left(E_{i}, \nabla f\right) \\
& =\operatorname{div}(\mathcal{W} z(\nabla f, \cdot))-\sum_{i} \mathcal{W} z\left(E_{i}, D_{E_{i}} d f\right) \\
& =\operatorname{div}(\dot{\mathcal{W}} z(\nabla f, \cdot))-(1+f)\langle\dot{\mathcal{W}} z, z\rangle .
\end{aligned}
$$

Now, by (7) we have

$$
\begin{aligned}
\mathcal{W} z(\nabla f, \xi) & =\mathcal{W}\left(\nabla f, E_{i}, \xi, E_{k}\right) z\left(E_{i}, E_{k}\right) \\
& =\mathcal{W}\left(E_{k}, \xi, E_{i}, \nabla f\right) z\left(E_{i}, E_{k}\right) \\
& =\frac{n-1}{n-2}\left(z \circ z(\nabla f, \xi)-d f(\xi)|z|^{2}\right)+\frac{\alpha}{n-2} z(\xi, \nabla f) .
\end{aligned}
$$

Thus, by (10) and (15)

$$
i_{\nabla f} \mathcal{W} z=-a\left|\mathcal{W}_{N}\right|^{2} d f
$$

proving our lemma.
Now, we will prove Theorem 5.1. Let $Q=\langle\mathcal{W} z, z\rangle$. By Lemma 3 .

$$
\begin{equation*}
a \nabla f\left(\left|\mathcal{W}_{N}\right|^{2}\right)-\frac{a s f}{n-1}\left|\mathcal{W}_{N}\right|^{2}=-(1+f) Q \tag{30}
\end{equation*}
$$

By combining Corollary 2 and (30),

$$
\begin{equation*}
\frac{a}{2}(1+f) Q=(1+f)\left(\operatorname{tr}\left(z^{3}\right)-a \alpha|z|^{2}\right)+\frac{a^{3} s f}{2 n}\left|\mathcal{W}_{N}\right|^{2} \tag{31}
\end{equation*}
$$

In particular, $\left|\mathcal{W}_{N}\right|^{2}=0$ on $B=f^{-1}(-1)$. As a result, $Q=0$ on B; by Cauchy-Schwarz inequality with the fact that $|z|^{2}=\frac{n}{n-1} \alpha^{2}$,

$$
z_{i i}=-\frac{\alpha}{n-1}
$$

and $z_{i j}=0$ for $i \neq j, z_{i n}=0$ with $z_{n n}=\alpha$, which implies that

$$
Q=-\frac{\alpha}{n-1} \sum_{i=1}^{n-1} \mathcal{W}\left(E_{i}, E_{j}, E_{i}, E_{j}\right) z_{j j}=-\frac{\alpha}{n-1} \sum_{i=1}^{n} \mathcal{W}\left(E_{i}, E_{j}, E_{i}, E_{j}\right) z_{j j}=0
$$

Now, we are going to prove that $Q=0$ on M. Let $M_{0}=\{x \in M \mid f(x)<-1\}$. If M_{0} is empty, Theorem 5.1] still holds by Lemma 1 of [2]. Thus, we may assume that M_{0} is not empty. Consider a sufficiently small neighborhood U of $B=f^{-1}(-1)$ and take the intersection $V=U \cap M_{0}$. Thus, $x \in V$ satisfies $f(x)=-1-\epsilon$ for small $\epsilon>0$. We may assume that $\mathcal{W}_{N} \neq 0$ in V, otherwise $\mathcal{W}_{N}=0$ on M since g is analytic on M by [1].

First, we claim that $Q \geq 0$ on V. For an arbitrary $\epsilon>0$, by (30)

$$
\begin{equation*}
\operatorname{div}\left(\left(\epsilon+\left|\mathcal{W}_{N}\right|^{2}\right) d f\right)=\left(\epsilon+\left|\mathcal{W}_{N}\right|^{2}\right)\left(\left\langle\nabla \log \left(\epsilon+\left|\mathcal{W}_{N}\right|^{2}\right), \nabla f\right\rangle-\frac{s f}{n-1}\right) \tag{32}
\end{equation*}
$$

Note that $\left|\mathcal{W}_{N}\right|^{2}(x)$ is constant on each level set of f and is decreasing to 0 as x tends to B. Thus, $\left.\left.\langle\nabla f, \nabla| \mathcal{W}_{N}\right|^{2}\right\rangle_{x}$ and $\left\langle\nabla \log \left(\epsilon+\left|\mathcal{W}_{N}\right|^{2}\right), \nabla f\right\rangle_{x}$ go to 0 as x tends to B. Therefore, by (32), $\operatorname{div}\left(\left(\epsilon+\left|\mathcal{W}_{N}\right|^{2}\right) d f\right)_{x}$ goes to $\frac{s}{n-1} \epsilon$ as x tends to B, and so

$$
\operatorname{div}\left(\left(\epsilon+\left|\mathcal{W}_{N}\right|^{2}\right) d f\right)>0
$$

on V. This implies that $\operatorname{div}\left(\left|\mathcal{W}_{N}\right|^{2} d f\right) \geq 0$; otherwise, $\operatorname{div}\left(\left|\mathcal{W}_{N}\right|^{2} d f\right)<0$ for some $f^{-1}(-1-\epsilon)$ and so for a sufficiently small $\epsilon^{\prime}>0$,

$$
\operatorname{div}\left(\left(\epsilon^{\prime}+\left|\mathcal{W}_{N}\right|^{2}\right) d f\right)_{x}=\epsilon^{\prime} \nabla f+\operatorname{div}\left(\left|\mathcal{W}_{N}\right|^{2} d f\right)_{x}<0
$$

for $x \in f^{-1}(-1-\epsilon) \subset V$, which is a contradiction. This implies that $Q \geq 0$ on V.
Now, since $\mathcal{W}_{N}=0$ on B, by Lemma 3, for an arbitrary small $\epsilon>0$

$$
\int_{-1-\epsilon<f<-1}(1+f) Q=\int_{f=-1-\epsilon} a\left|\mathcal{W}_{N}\right|^{2}|\nabla f| \geq 0
$$

which goes to zero as ϵ tends to 0 . Since $(1+f) Q \leq 0$ by the previous claim, we may conclude that $Q=0$ on V. Hence, for an arbitrary small $\epsilon>0$

$$
a \int_{f^{-1}(-1-\epsilon)}\left|\mathcal{W}_{N}\right|^{2}|\nabla f|=\int_{-1-\epsilon<f<-1}(1+f) Q=0
$$

by Stokes's theorem. In other words, $\mathcal{W}(\cdot, \nabla f, \cdot, \nabla f)=0$ on V. Since the metric g and f are analytic in harmonic coordinates on M by [1], we may conclude that $\mathcal{W}(\cdot, \nabla f, \cdot, \nabla f)=$ 0 on M. So, $\mathcal{W}_{N}=0$ on M. This completes the proof of Theorem5.1.

Acknowledgments

The authors would like to express their gratitude to the referee for several valuable comments.

References

[1] D. DeTurck and H. Goldschmidt, Regularity theorems in Riemannian geometry II: Harmonic curvature and the Weyl tensor, Forum Math. 1 (1989), no. 1, 377-394. http://dx.doi.org/10.1515/form.1989.1.377
[2] S. Hwang, Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature, Manuscripta Math. 103 (2000), no. 2, 135-142. http://dx.doi.org/10.1007/pl00005857

Gabjin Yun
Department of Mathematics, Myong Ji University, San 38-2 Namdong, Yongin, Gyeonggi 449-728, Korea
E-mail address: gabjin@mju.ac.kr

Jeongwook Chang
Department of Mathematics Education, Dankook University, 126 Jukjeon-dong, Suji-gu Yongin, Gyeonggi 448-701, Korea
E-mail address: jchang@dankook.ac.kr

Seungsu Hwang
Department of Mathematics, Chung-Ang University, 84 HeukSeok-ro DongJak-gu, Seoul, Korea

E-mail address: seungsu@cau.ac.kr

[^0]: *Corresponding author.

