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On Constraint Qualification for an Infinite System of Quasiconvex

Inequalities in Normed Linear Space

Xiaopeng Zhao

Abstract. The constraint qualification Q-CCCQ plays an important role in quasi-

convex programming and has been developed by many authors to investigate the set

containment problem, duality and optimality conditions for quasiconvex program-

ming. In this paper, we consider an infinite quasiconvex inequality system defined by

a family of proper lower semicontinuous quasiconvex functions {hi : i ∈ I} and estab-

lish some sufficient conditions for ensuring the Q-CCCQ in terms of the interior-point

condition together with approximate continuity assumption of the function i 7→ hi(x).

1. Introduction

Let X be a real normed linear space, D ⊆ X be a closed convex set, I be an arbitrary

index set, {hi : i ∈ I} be a family of proper lower semicontinuous quasiconvex functions

on X and h be a proper convex function on X. Consider the following inequality system:

(1.1) x ∈ D; hi(x) ≤ 0 for each i ∈ I,

and the minimization problem:

Minimize h(x) subject to hi(x) ≤ 0, i ∈ I, x ∈ D.

These two types of problems are important in quasiconvex programming. Since the con-

straint qualifications play an important role in the study of these two problems, the con-

straint qualifications for quasiconvex programming and their applications were widely

studied and extensively developed, see, e.g., [12–14] and the references therein. Among

these constraint qulifications, the closed cone constraint qualification (Q-CCCQ) for qua-

siconvex programming is a kind of constraint qualification that of much importance.

The Q-CCCQ was introduced in [12] for a finite quasiconvex system in a locally convex

Hausdorff topological space to study the Lagrange-type duality and the authors showed
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that the Q-CCCQ is the weakest constraint qualification for the duality. Then, this con-

dition was extended in [14] to the general case when the involved functions are infinitely

many.

In view of the importance of this constraint qualification, it is not only natural but

also useful to investigate the sufficient conditions for ensuring it. However, to our best

knowledge, very few papers are devoted to discussing when the Q-CCCQ holds except the

work in [14], where Suzuki and Kuroiwa established a necessary and sufficient condition

for one lower semicontinuous quasiconvex function to satisfy the Q-CCCQ; further, by

applying that equivalent condition, they provided some sufficient conditions for ensuring

that function to satisfy the Q-CCCQ in the special case when X = Rn.

Note that in convex programming, to establish and develop the sufficient conditions

for ensuring the constraint qualifications have attracted a lot of attention from many

mathematicians in recent years, and one of the most well-known conditions is the Slater

type condition. The Slater condition was introduced in [8] for the semi-infinite convex

inequality system in the Euclidean space. Then, Li and Ng in [4] introduced the concepts

of Slater condition and weak Slater condition for an infinite system of convex continuous

functions on a Banach space, and the authors applied these conditions to provide some

sufficient conditions to ensure the basic constraint qualification. Particularly, to meet much

broader class of problems, in our recent work [9], we introduced the concept of quasi-Slater

condition for a family of continuous convex functions on Rn, which is much weaker than the

weak Slater condition; moreover, we showed in [9] that the quasi-Slater condition implies

the Farkas-Minkowski (FM) qualification under some appropriate continuity assumption.

In the special case when each of the involved function in the convex inequality system is

the indicator function of a closed convex set, Li, Ng and Pong [6] provided some sufficient

conditions for the closed convex sets system to satisfy the sum of epigraphs constraint

qualification (SECQ) in terms of the interior-point conditions together with appropriate

continuity of the associated set-valued function on the (topologized) index set. However,

as far as we know, in quasiconvex programming, not many results are known to provide

sufficient conditions for Q-CCCQ in terms of interior-point condition.

The main objective of this paper is to establish some sufficient conditions of the Q-

CCCQ in the normed linear space in terms of the interior-point condition. Note that

the Q-CCCQ for quasiconvex programming is closely related to the FM qualification for

convex programming. By applying these relations, we will study the property of the Q-

CCCQ in Section 3 and will give some alternative form of the Q-CCCQ, which extends

the known results.

Furthermore, note that in the special case when each function in the convex inequality

system is the indicator function of a closed convex set, the FM qualification reduces to the
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SECQ. Thus, by applying the sufficient conditions that originally proposed in [6] to ensure

the SECQ, we will provide some sufficient conditions for ensuring the Q-CCCQ in Section 4

in terms of the interior-point condition together with suitable continuity assumption of

the function i 7→ hi(x) and some property of some finite subsystems of (1.1).

2. Notations and preliminary results

The notations used in the present paper are standard (cf. [2, 15]). Throughout the whole

paper, we assume that X is a real normed linear space, and we let X∗ denote the dual space

of X, and 〈x∗, x〉 denote the value of a functional x∗ in X∗ at x ∈ X, i.e., 〈x∗, x〉 = x∗(x).

The dual X∗ is endowed with the weak∗-topology. Thus, if W ⊆ X∗, then clW denotes

the weak∗ closure of W . We use B(x, ε) to denote the closed ball with center x and radius

ε. Let C be a nonempty subset of X. The interior (resp. relative interior, convex cone

hull, linear hull, affine hull) of C is denoted by intC (resp. riC, coneC, spanC, aff C). We

shall adopt the convention that coneC = {0} when C is an empty set. Consider a closed

convex nonempty subset Z of X. The interior of C relative to Z is denoted by rintZ C

and defined to be the interior of the set aff Z ∩C in the metric space aff Z. Thus, a point

z ∈ rintZ C if and only if there exists ε > 0 such that

z ∈ aff Z ∩B(z, ε) ⊆ C,

and riC = rintC C. The indicator function δC and the support function σC of C are,

respectively, defined by

δC(x) :=

0, x ∈ C,

+∞, otherwise,

and

σC(x∗) := sup
x∈C
〈x∗, x〉 for each x∗ ∈ X∗.

The distance function of C, denoted by d(·, C) : X → R, is defined by

d(x,C) := inf {‖x− c‖ | c ∈ C} for each x ∈ X.

Let {Ai : i ∈ I} be a system of subsets of X. The set
∑

i∈I Ai is defined by

∑
i∈I

Ai :=


{∑

i∈I0 ai : ai ∈ Ai, I0 ⊆ I being finite
}
, I 6= ∅,

{0} , I = ∅.

In particular, we adopt the convention that
∑

i∈I ai = 0 if I = ∅. For a proper convex

function f : X → R := R ∪ {±∞}, the effective domain of f is denoted by dom f :=



688 Xiaopeng Zhao

{x ∈ X : f(x) < +∞}. The epigraph and conjugate of a function f on X, denoted by

epi f and f∗, are defined respectively by

epi f := {(x, r) ∈ X × R : f(x) ≤ r}

and

f∗(x∗) := sup {〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗.

If f and g are proper lower semicontinuous (l.s.c. in short) extended real-valued convex

functions on X, then we have

f ≤ g ⇐⇒ f∗ ≥ g∗ ⇐⇒ epi f∗ ⊆ epi g∗.

In particular, for closed convex sets A and B, the following assertions are well-known and

easy to verify:

σA = δ∗A,

and

(2.1) epi δ∗A ⊆ epi δ∗B ⇐⇒ A ⊇ B.

Recall that a function f : X → R is said to be quasiconvex if for all x1, x2 ∈ X, and

α ∈ [0, 1],

f((1− α)x1 + αx2) ≤ max {f(x1), f(x2)} .

Then, one has that any convex function is quasiconvex, but the opposite is not true. A

function is said to be quasiaffine if it is quasiconvex and quasiconcave. In the present

paper, we denote

Q =
{
k : R→ R | k is l.s.c. and non-decreasing

}
.

Then, by the result in [10], one has that a function f is l.s.c. quasiaffine if and only if there

exist k ∈ Q and ω ∈ X∗ such that f = k ◦ ω. The following characterization theorem of

the quasiconvex function was also proved by Penot and Volle in [10], which indicates that

a l.s.c. quasiconvex function f consists of a supremum of some family of l.s.c. quasiaffine

functions.

Theorem 2.1. [10] Let f be a function from X to R. Then, the following statements are

equivalent:

(i) f is l.s.c. quasiconvex;

(ii) there exist a set I, {ki} ⊆ Q and {ωi} ⊆ X∗ such that f = supi∈I ki ◦ ωi.



Constraint Qualification for Quasiconvex Inequalities 689

Based on this result, Suzuki and Kuroiwa [12] defined the notion of a generator for

quasiconvex functions, that is, G = {(ki, ωi) | i ∈ I} ⊆ Q×X∗ is said to be a generator of f

if f = supi∈I ki ◦ωi. Then, by Penot and Volle’s result, one has that any l.s.c. quasiconvex

function has at least one generator. Moreover, Penot and Volle [10] studied generalized

concepts of the inverse of non-decreasing functions. For a function k ∈ Q, the hypo-epi-

inverse of k is defined by

k−1(r) = inf {t ∈ R | r < k(t)} = sup {s ∈ R | k(s) ≤ r} .

In the present paper, we denote the hypo-epi-inverse of k by k−1, since if k has an inverse

function, the inverse function and the hypo-epi-inverse of k are the same.

3. The Q-CCCQ

Throughout this paper, we consider the following quasiconvex inequality system:

(3.1) x ∈ D; hi(x) ≤ 0 for each i ∈ I,

where D ⊆ X is a closed convex set in the normed linear space X, I is an arbitrary

index set and {hi : i ∈ I} are a family of proper l.s.c. quasiconvex functions on X. For

each i ∈ I, let
{

(k(i,j), ω(i,j)) | j ∈ Ji
}
⊆ Q × X∗ be a generator of hi and let T =

{t = (i, j) | i ∈ I, j ∈ Ji}. We use A to denote the feasible solution set of the system (3.1),

that is,

A := {x ∈ D : hi(x) ≤ 0, ∀ i ∈ I} ,

and we always assume that A 6= ∅.
The following constraint qualification for quasiconvex programming extends the one

introduced in [14], where the authors only considered the case when D is the whole space.

For convenience, we set

T̃ :=
{
t ∈ T : k−1

t (0) ∈ R
}

and we always assume that T̃ 6= ∅.

Definition 3.1. The system {hi : i ∈ I} is said to satisfy the closed cone constraint qual-

ification for quasiconvex programming (the Q-CCCQ) w.r.t. {(kt, ωt) | t ∈ T} relative to

D if

epi δ∗D +
∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
is closed.

For each t ∈ T , we define ft : X → R by

(3.2) ft(x) = 〈ωt, x〉 − k−1
t (0) for each x ∈ X,
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then, the system (3.1) can be rewritten as the following convex system

(3.3) x ∈ D; ft(x) ≤ 0 for each t ∈ T

and thus the feasible solution set of (3.1) reduces to

A = {x ∈ D : ft(x) ≤ 0 for all t ∈ T} .

Note that the assumption A 6= ∅ ensures that k−1
t (0) > −∞ for each t ∈ T . Thus,

T∞ :=
{
t ∈ T : k−1

t (0) = +∞
}

is the complementary set of T̃ in T , that is, T = T̃ ∪ T∞.

Moreover, the convex system (3.3) is equivalent to

(3.4) x ∈ D; ft(x) ≤ 0 for each t ∈ T̃

and the set A can be rewritten as A =
{
x ∈ D : ft(x) ≤ 0 for all t ∈ T̃

}
.

Following [3], we define the characteristic cone K of (3.4) by

K := cone

(epi δ∗D) ∪
⋃
t∈T̃

epi f∗t

 .

Since each ft with t ∈ T̃ is an affine function, it can be verified by definition that

epi f∗t = {ωt} × [k−1
t (0),+∞).

Granting this and taking into account that epi δ∗D is a convex cone, one has that

K = epi δ∗D +
∑
t∈T̃

cone(epi f∗t ) = epi δ∗D +
∑
t∈T̃

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
.

Furthermore, it follows from [7, Proposition 4.1] (applied to the system
{
δD, ft : t ∈ T̃

}
)

that

(3.5) epi δ∗A = clK = cl

epi δ∗D +
∑
t∈T̃

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

} ;

see also [3, (3.1)]. Recall that the family
{
D; ft : t ∈ T̃

}
is said to be Farkas-Minkowski

(FM) if K is closed (see [3] for example). By (3.5) and note that K ⊆ epi δ∗A, one has the

following equivalences for the system
{
D; ft : t ∈ T̃

}
:

(3.6)
{
D; ft : t ∈ T̃

}
is FM ⇐⇒ K is closed ⇐⇒ epi δ∗A ⊆ K.

Note that for each t ∈ T∞, epi f∗t = ∅. Thus, we further have

K = epi δ∗D +
∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
.

Consequently, combining this and (3.6), we can obtain the following theorem, which gives

the alternative form of Q-CCCQ. The first equivalence in the following theorem was given

in [14] for the case when D is the whole space.
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Theorem 3.2. For each t ∈ T , let ft : X → R be defined by (3.2). Then the following

equivalences are true:

{hi : i ∈ I} satisfies the Q-CCCQ w.r.t. {(kt, ωt) | t ∈ T} relative to D

⇐⇒ epi δ∗A ⊆ epi δ∗D +
∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
⇐⇒

{
D; ft : t ∈ T̃

}
is FM.

4. Sufficient conditions for Q-CCCQ

Recall that D is a closed convex subset of the normed linear space X, I is an index

set, {hi : i ∈ I} are a family of proper l.s.c. quasiconvex functions on X, for each i ∈ I,{
(k(i,j), ω(i,j)) | j ∈ Ji

}
⊆ Q×X∗ is a generator of hi, the index set T = {t = (i, j) | i ∈ I,

j ∈ Ji} and the feasible solution set A = {x ∈ D : hi(x) ≤ 0 for each i ∈ I} 6= ∅. Further-

more, throughout the remainder of this section, we always assume that I is a compact

metric space. The main objective of this section is to provide sufficient conditions for

ensuring the Q-CCCQ. Before going further, we give some notation and definition which

will be used in the rest of this paper.

Consider the metric space I. Recall that a function f : I 7→ R is upper semicontinuous

at i0 ∈ I if for any ε > 0, there exists a neighborhood U(i0) of i0 such that

f(i) < f(i0) + ε for all i ∈ U(i0),

and that f is upper semicontinuous on I if it is upper semicontinuous at each i ∈ I.

Let |J | denote the cardinality of the set J . The following interior-point condition was

introduced in [6].

Definition 4.1. Let {D,Ci : i ∈ I} be a system of closed convex sets in X and let m be a

positive integer. Then the system {D,Ci : i ∈ I} is said to satisfy the m-D-interior-point

condition if, for any subset J of I with |J | ≤ m,

D ∩
⋂
j∈J

rintD Cj 6= ∅.

For the following notion of semicontinuity of set-valued maps, readers may refer to

standard texts such as [1, 11].

Definition 4.2. Let F : I → 2X \ {∅} be a set-valued mapping and i0 ∈ I. The mapping

F is said to be

(i) lower semicontinuous at i0 if, for any x0 ∈ F (i0) and any ε > 0, there exists a

neighborhood U(i0) of i0 such that B(x0, ε) ∩ F (i) 6= ∅ for each i ∈ U(i0);
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(ii) lower semicontinuous on I if it is lower semicontinuous at each i ∈ I.

The following proposition, which was given in [5, Proposition 3.1], provides some useful

reformulations regarding the lower semicontinuity.

Proposition 4.3. Let F : I → 2X \ {∅} be a set-valued mapping and let i0 ∈ I. Then the

following statements are equivalent:

(i) F is lower semicontinuous at i0.

(ii) For any x0 ∈ F (i0), there exists xi ∈ F (i) for each i ∈ I such that limi→i0 xi = x0.

(iii) For any x0 ∈ F (i0), limi→i0 d(x0, F (i)) = 0.

Now, we give the following useful lemma. For this, we write

Ci := {x ∈ X : hi(x) ≤ 0} for each i ∈ I.

For any proper function f : X → R and x ∈ X, let [f(x)]+ := max {f(x), 0}.

Lemma 4.4. Let i0 ∈ I. Suppose that for each x ∈ aff D, the function i 7→ hi(x) is

upper semicontinuous at i0. Suppose further that at least one of the following conditions

is satisfied:

(a) ∅ 6= rintD Ci0 ⊆ {x ∈ X : hi0(x) < 0}.

(b) For each x ∈ X, there exists τx > 0 such that

d(x, aff D ∩ Ci) ≤ τx[hi(x)]+ for each i ∈ I.

Then the set-valued mapping i 7→ (aff D) ∩ Ci is lower semicontinuous at i0.

Proof. Let x ∈ aff D ∩ Ci0 . By Proposition 4.3, it suffices to show that

lim
i→i0

d(x, aff D ∩ Ci) = 0.

Given ε > 0. We need to show that there exits a neighborhood U(i0) of i0 such that

(4.1) d(x, aff D ∩ Ci) ≤ ε for each i ∈ U(i0).

We now assume that (a) holds. By [15, Theorem 1.1.2(iv)], we can take a point y ∈
rintD Ci0 such that ‖x− y‖ ≤ ε. Moreover, by (a), one has hi0(y) < 0. Let 0 < ε <

−hi0(y). By the assumption, the function i 7→ hi(y) is upper semicontinuous at i0. Then,

there exists a neighborhood U(i0) of i0 such that for each i ∈ U(i0),

hi(y) < hi0(y) + ε < 0;
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and hence y ∈ aff D ∩ Ci. Thus,

d(x, aff D ∩ Ci) ≤ ‖x− y‖ ≤ ε for each i ∈ U(i0).

Therefore, (4.1) holds and we establish the result under assumption (a).

Below we assume that (b) holds. Then there exists τx > 0 such that

(4.2) d(x, aff D ∩ Ci) ≤ τx[hi(x)]+ for each i ∈ I.

On the other hand, by the assumption, the function i 7→ hi(x) is upper semicontinuous at

i0. Then, there exists a neighborhood U(i0) of i0 such that

hi(x) < hi0(x) +
ε

τx
≤ ε

τx
for each i ∈ U(i0).

This, together with (4.2), implies that

d(x, aff D ∩ Ci) ≤ τx[hi(x)]+ ≤ ε for each i ∈ U(i0).

Thus (4.1) holds and the proof is complete.

Now we are going to state and prove the main result of this section.

Theorem 4.5. Let m be a positive integer. Suppose that 0 ∈ D and consider the following

conditions:

(a) D is of finite dimension m.

(b) For each x ∈ aff D, the function i 7→ hi(x) is upper semicontinuous on I.

(c) Either for each i ∈ I, ∅ 6= rintD Ci ⊆ {x ∈ X : hi(x) < 0} or for each x ∈ X, there

exists τx > 0 such that

d(x, aff D ∩ Ci) ≤ τx[hi(x)]+ for each i ∈ I.

(d) The system {D,Ci : i ∈ I} satisfies the (m+ 1)-D-interior-point condition.

(e) For each i ∈ I, hi satisfies the Q-CCCQ w.r.t. {(ki,j , ωi,j) | j ∈ Ji} relative to D,

that is,

epi δ∗D∩Ci
⊆ epi δ∗D + cone

⋃
j∈Ji

{
(ωi,j , δ) ∈ X∗ × R | k−1

i,j (0) ≤ δ
} .

(d∗) The system {D,Ci : i ∈ I} satisfies the m-D-interior-point condition.
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(e∗) For each finite subset J of I with |J | = min {m+ 1, |I|}, the subsystem {hi : i ∈ J}
satisfies the Q-CCCQ w.r.t. {(kt, ωt) | t ∈ TJ} relative to D, where TJ = {t = (i, j) |
i ∈ J, j ∈ Ji}, that is,

epi δ∗D∩(∩i∈JCi)
⊆ epi δ∗D + cone

 ⋃
t∈TJ

{
(ωt, δ) ∈ X∗ × R | k−1

t (0) ≤ δ
} .

Then the following assertions hold:

(i) If (a), (b), (c), (d), (e) are satisfied, then the system {hi : i ∈ I} satisfies the Q-

CCCQ w.r.t. {(kt, ωt) | t ∈ T} relative to D.

(ii) If D is bounded and (a), (b), (c), (d∗), (e∗) are satisfied, then the system {hi : i ∈ I}
satisfies the Q-CCCQ w.r.t. {(kt, ωt) | t ∈ T} relative to D.

Proof. (i) Since 0 ∈ D, we have aff D = spanD. Then, by Lemma 4.4, the conditions (b)

and (c) ensure that the set-valued mapping i 7→ (spanD)∩Ci is lower semicontinuous on

I. Moreover, the condition (d) implies that for each finite subset J of I with |J | ≤ m+ 1,

D ∩
⋂
j∈J

rintD Cj 6= ∅.

Thus, by applying [6, Theorem 5.3(i)], we know that the conditions (a)–(d) imply that

the system {D, (spanD) ∩ Ci : i ∈ I} satisfies the SECQ, that is,

epi δ∗D∩(∩i∈I(spanD∩Ci))
= epi δ∗A = epi δ∗D +

∑
i∈I

epi δ∗(spanD)∩Ci
.

Granting this and the condition (e), we obtain that

epi δ∗A ⊆ epi δ∗D +
∑
i∈I

epi δ∗D∩Ci
⊆ epi δ∗D +

∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
,

where the first inclusion holds thanks to (2.1) and the fact that D ⊆ spanD. By Theo-

rem 3.2, this shows that the system {hi : i ∈ I} satisfies the Q-CCCQ w.r.t. {(kt, ωt) | t ∈ T}
relative to D.

(ii) Now suppose that (a), (b), (c), (d∗), (e∗) are satisfied. Without loss of generality,

we may assume that |I| > m+ 1, otherwise, the conclusion follows from assumption (e∗).

Note that the conditions (b) and (c) ensure that the set-valued mapping i 7→ (spanD)∩Ci

is lower semicontinuous on I and the condition (d∗) implies that for each finite subset J

of I with |J | ≤ m,

D ∩
⋂
j∈J

rintD Cj 6= ∅.
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Moreover, one can verify by definition that for each i ∈ I,

cone

⋃
j∈Ji

{
(ωi,j , δ) ∈ X∗ × R | k−1

i,j (0) ≤ δ
} ⊆ epi δ∗Ci

.

Thus, the condition (e∗) implies that for each finite subset J of I with |J | = min{m+ 1,

|I|}, the system {D,Ci : i ∈ J} satisfies the following condition

epi δ∗D∩(∩i∈JCi)
⊆ epi δ∗D +

∑
i∈J

epi δ∗Ci
.

Consequently, by applying [6, Theorem 5.3(iii)], we know that the conditions (a), (b), (c),

(d∗), (e∗) assert that

(4.3) epi δ∗A ⊆ epi δ∗D +
∑
i∈I

epi δ∗Ci
.

Let i ∈ I and let J be any subset of I such that i ∈ J and |J | = m + 1. Then, by

assumption (e∗), we have that

epi δ∗Ci
⊆ epi δ∗D∩(∩i∈JCi)

⊆ epi δ∗D + cone

 ⋃
t∈TJ

{
(ωt, δ) ∈ X∗ × R | k−1

t (0) ≤ δ
} .

Combining this with (4.3) yields that

epi δ∗A ⊆ epi δ∗D +
∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
,

which shows that the system {hi : i ∈ I} satisfies the Q-CCCQ w.r.t. {(kt, ωt) | t ∈ T}
relative to D thanks to Theorem 3.2. The proof is complete.

Remark 4.6. The assumption 0 ∈ D that required in Theorem 4.5 can be dropped. Indeed,

we can take an arbitrary element x0 ∈ D. Define

D̂ := D − x0, ĥi(·) := hi(·+ x0) for each i ∈ I.

Then,

Ĉi :=
{
x ∈ X : ĥi(x) ≤ 0

}
= Ci − x0 for each i ∈ I

and

Â :=
{
x ∈ D : ĥi(x) ≤ 0

}
= A− x0.

It can be checked that the conditions (a)–(d) and (d∗) are also satisfied by replacing

D, {Ci : i ∈ I}, respectively, {hi : i ∈ I} by D̂,
{
Ĉi : i ∈ I

}
, respectively,

{
ĥi : i ∈ I

}
.

Moreover, we define the following conditions:
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(ê) For each i ∈ I, the pair
{
D̂; ĥi

}
has the property

epiσ
D̂∩Ĉi

⊆ epiσ
D̂

+ cone

⋃
j∈Ji

{
(ωi,j , δ) ∈ X∗ × R | k−1

i,j (0)− 〈ωi,j , x0〉 ≤ δ
} .

(ê∗) For each finite subset J of I with |J | = min {m+ 1, |I|}, the family
{
D̂; ĥi : i ∈ J

}
has the property

epiσ
D̂∩(∩i∈J Ĉi)

⊆ epiσ
D̂

+ cone

 ⋃
t∈TJ

{
(ωt, δ) ∈ X∗ × R | k−1

t (0)− 〈ωt, x0〉 ≤ δ
} ,

where TJ = {t = (i, j) | i ∈ J, j ∈ Ji}.
Then, it is easy to check that the condition (e), respectively, (e∗) is equivalent to (ê),

respectively, (ê∗). Consequently, by using the similar argument as that in the proof of

Theorem 4.5, one can obtain that the system
{
D̂; ĥi : i ∈ I

}
satisfies the following prop-

erty

epi δ∗
Â
⊆ epi δ∗

D̂
+
∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0)− 〈ωt, x0〉 ≤ δ

}
,

which is equivalent to that

epi δ∗A ⊆ epi δ∗D +
∑
t∈T

cone
{

(ωt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ

}
.

Thus, the system {hi : i ∈ I} satisfies the Q-CCCQ w.r.t. {(kt, ωt) | t ∈ T} relative to D.
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