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An Evolutionary Property of the Bifurcation Curves for a Positone Problem

with Cubic Nonlinearity

Shao-Yuan Huang* and Shin-Hwa Wang

Abstract. We study an evolutionary property of the bifurcation curves for a positone

problem with cubic nonlinearity
u′′(x) + λf(u) = 0, −1 < x < 1,

u(−1) = u(1) = 0,

f(u) = −εu3 + σu2 + τu+ ρ,

where λ > 0 is a bifurcation parameters, ε > 0 is an evolution parameter, and σ,

ρ > 0, τ ≥ 0 are constants. In addition, we improve lower and upper bounds of the

critical bifurcation value ε̃ of the problem.

1. Introduction

In this paper we mainly study an evolutionary property of the bifurcation curves for a

positone problem with cubic nonlinearity

(1.1)


u′′(x) + λf(u) = 0, −1 < x < 1,

u(−1) = u(1) = 0,

f(u) = −εu3 + σu2 + τu+ ρ,

where λ > 0 is a bifurcation parameters, ε > 0 is an evolution parameter, and σ, ρ > 0,

τ ≥ 0 are constants. Problems about bifurcation curves have been widely studied by

many authors, cf. [1–3, 5–7, 9, 10]. For any ε > 0, it is easy to see that there exist a

positive number βε which is the unique positive zero of f(u), and a positive number

γ = σ/(3ε) < βε, which is the unique (positive) inflection point of f(u), such that cubic

polynomial f satisfies

(i) f(0) = ρ > 0 (positone), f ′(0) = τ ≥ 0, f(u) > 0 on (0, βε), and f(βε) = 0,
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(ii) f(u) is strictly convex on (0, γ) and is strictly concave on (γ, βε). (So f is convex-

concave on (0, βε).)

For any ε > 0, on the (λ, ‖u‖∞)-plane, we study the evolution of bifurcation curves Sε

of positive solutions of (1.1), defined by

Sε ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)} .

We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sε is S-shaped if Sε is a

continuous curve and there exist two positive numbers λ∗ < λ∗ such that Sε has exactly

two turning points at some points (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞), and

(i) λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞,

(ii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sε turns to the left,

(iii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sε turns to the right.

See Figure 1.1(i) for example.

Hung and Wang [6, Theorem 2.1] recently proved the global bifurcation of bifurcation

curves Sε of (1.1) and gave lower and upper bounds of the critical bifurcation value ε̃.

Figure 1.1: Global bifurcation of bifurcation curves Sε of (1.1) with varying ε > 0.

Theorem 1.1. Consider (1.1) with varying ε > 0. Then there exists a critical value

ε̃ = ε̃(σ, ρ, τ) satisfying

(1.2)

(
0.170

√
σ3

ρ
≈

)√
25σ3

864ρ
< ε̃ <

√
σ3

27ρ

(
≈ 0.192

√
σ3

ρ

)
such that the following assertions (i)–(iii) holds:

(i) (See Figure 1.1(i).) For 0 < ε < ε̃, the bifurcation curve Sε is S-shaped on the

(λ, ‖u‖∞)-plane. Let (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞) be exactly two turning points of

the bifurcation curve Sa satisfying λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞. Then uλ∗ and

uλ∗ are only two degenerate positive solutions of (1.1).
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(ii) (See Figure 1.1(ii).) For ε = ε̃, the bifurcation curve Sε̃ is monotone increasing on

the (λ, ‖u‖∞)-plane. Moreover, (1.1) has exactly one (cusp type) degenerate positive

solution u
λ̃
.

(iii) (See Figure 1.1(iii).) For ε > ε̃, the bifurcation curve Sε is monotone increasing on

the (λ, ‖u‖∞)-plane. Moreover, all positive solutions uλ of (1.1) are nondegenerate.

The paper is organized as follows: Section 2 contains the main result (Theorem 2.1).

Section 3 contains lemmas needed to prove the main result. Section 3 also contains the

proofs of lemmas in this section except Lemma 3.9 and 3.10(ii), and assertions (3.30),

(3.52) and (3.54). Note that the proofs of Lemmas 3.9 and 3.10(ii) and assertions (3.30),

(3.52) and (3.54) are easy but tedious. Thus, we omit them in this paper and put them

in [4]. Finally, Section 4 contains the proof of the main result.

2. Main result

The main result in this paper is Theorems 2.1. For 0 < ε < ε̃, let (λ∗, ‖uλ∗‖∞) and

(λ∗, ‖uλ∗‖∞) be the exactly two turning points of the S-shaped bifurcation curve Sε sat-

isfying λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞. In Theorem 2.1, we show the variation of the

values of ‖uλ∗‖∞ and ‖uλ∗‖∞ with varying parameter ε ∈ (0, ε̃). In addition, we improve

lower and upper bounds of the critical bifurcation value ε̃ given in (1.2). Notice that, for

0 < ε < ε̃, the cubic polynomial f(u) = −εu3 +σu2 + τu+ ρ has a unique inflection point

at γ = σ/(3ε) < βε, and there exist two positive numbers p1, p2 satisfying p1 < γ < p2,

which are positive zeros of cubic polynomial

(2.1) f(u)− uf ′(u) = 2εu3 − σu2 + ρ.

(The numbers p1 and p2 both exist for 0 < ε < ε̃, see Lemma 3.1 stated below.) That is,

both the y-intercepts of the tangent lines to the graph of cubic polynomial f at the points

(p1, f(p1)) and (p2, f(p2)) equal 0. These three values γ, p1 and p2 play important roles

in the variation of the values of ‖uλ∗‖∞ and ‖uλ∗‖∞ with varying parameter ε ∈ (0, ε̃).

Theorem 2.1 provides more complete structures on the global bifurcation curves Sε of

(1.1) with varying parameter ε ∈ (0, ε̃), cf. Theorem 1.1.

Theorem 2.1. (See Figures 1.1(i)–(ii) and 2.1.) Consider (1.1) with varying ε ∈ (0, ε̃).

Then there exist two positive numbers ε̂ and ε satisfying

(2.2) ε̂ <

(
0.176

√
σ3

ρ
≈

)√
31σ3

1000ρ
< ε < ε̃ <

√
83σ3

2500ρ

(
≈ 0.182

√
σ3

ρ

)
,
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Figure 2.1: Evolutionary bifurcation curves Sε with varying ε ∈ (0, ε̃). The two notations

• and N denote the two turning points (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞), respectively.

such that

p1 < ‖uλ∗‖∞ < γ < p2 < ‖uλ∗‖∞ for 0 < ε < ε̂,(2.3)

p1 < γ = ‖uλ∗‖∞ < p2 < ‖uλ∗‖∞ for ε = ε̂,(2.4)

p1 < γ < ‖uλ∗‖∞ < p2 < ‖uλ∗‖∞ for ε̂ < ε < ε,(2.5)

p1 < γ < ‖uλ∗‖∞ < ‖uλ∗‖∞ = p2 for ε = ε,(2.6)

p1 < γ < ‖uλ∗‖∞ < ‖uλ∗‖∞ < p2 for ε < ε < ε̃,(2.7)

(2.8) p1|ε=ε̃ < γ|ε=ε̃ < lim
ε→ε̃+

‖uλ∗‖∞ = lim
ε→ε̃+

‖uλ∗‖∞ =
∥∥u

λ̃

∥∥
∞ < p2|ε=ε̃,

where u
λ̃

is defined in Theorem 1.1(ii).

3. Lemmas

To prove Theorem 2.1, we develop some new time-map techniques. The time-map formula

which we apply to study (1.1) with f(u) = −εu3 +σu2 + τu+ ρ takes the form as follows:

(3.1)
√
λ =

1√
2

∫ α

0
[F (α)− F (u)]−1/2 du ≡ Tε(α) for 0 < α < βε if ε > 0,

where F (u) ≡
∫ u
0 f(t) dt = −1

4εu
4 + 1

3σu
3 + 1

2τu
2 +ρu and βε is the unique positive zero of

the cubic polynomial f(u) for ε > 0; see Laetsch [8]. Note that it can be proved that Tε(α)

is a twice differentiable function of α ∈ (0, βε) for ε > 0, and is differentiable function of

ε ∈ (0,∞) for α > 0. The proofs are easy but tedious and hence we omit them. In

addition, by (3.1) and Theorem 1.1, we note that (i) if 0 < ε < ε̃, Tε(α) has exactly two
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critical points at ‖uλ∗‖∞ < ‖uλ∗‖∞ where (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞) are exactly two

turning points of the S-shaped bifurcation curve Sε; (ii) if ε = ε̃, Tε(α) has exactly one

critical point at
∥∥u

λ̃

∥∥
∞ where (λ̃,

∥∥u
λ̃

∥∥
∞) is the unique turning point of the monotone

bifurcation curve Sε̃; (iii) if ε > ε̃, Tε(α) is a strictly decreasing function on (0,∞). See

Figure 1.1.

For the sake of convenience, we let

ε1 ≡

√
7σ3

270ρ
, ε2 ≡

√
25σ3

864ρ
, ε3 ≡

√
31σ3

1000ρ
, ε4 ≡

√
13σ3

400ρ
, ε5 ≡

√
σ3

27ρ
.

Clearly, ε1 < ε2 < ε3 < ε4 < ε5 for any σ, ρ > 0. In addition, ε̃ < ε5 =
√

σ3

27ρ by (1.2). For

Tε(α) in (3.1), we compute that

T ′
ε(α) =

1

2
√

2α

∫ α

0

θ(α)− θ(u)

[F (α)− F (u)]3/2
du,(3.2)

T ′′
ε (α) =

1

2
√

2α2

∫ α

0

− 3
2 [θ(α)− θ(u)][αf(α)− uf(u)] + [F (α)− F (u)][αθ′(α)− uθ′(u)]

[F (α)− F (u)]5/2
du,(3.3)

∂

∂ε
T ′
ε(α) =

1

96
√

2εα

∫ α

0

Aα(3Aα + 2Bα + 12Cα + 42Dα)

[F (α)− F (u)]5/2
du,

(3.4)

where Aα ≡ ε(α4 − u4), Bα ≡ σ(α3 − u3), Cα ≡ τ(α2 − u2), Dα ≡ ρ(α− u) and

(3.5) θ(u) = 2F (u)− uf(u) =
1

6
u(3εu3 − 2σu2 + 6ρ),

cf. [5, (3.4) and p. 230] and [6, p. 1946]. By (3.3) and (3.4), we obtain that
∂

∂ε
T ′ε(w(ε)) = T ′′ε (w(ε), ε)w′(ε) +

∂

∂ε
T ′ε(α)

∣∣
α=w(ε)

=
1

96
√

2εw

∫ w

0

1

[F (w)− F (u)]5/2

×
[
3A2

w + 2AwBw + 12AwCw + 42AwDw

+
4εw′(ε)

w(ε)

(
30AwD − 20BwDw − 12CwDw − 6D2

w

− 4AwBw + 3AwCw + 3A2
w + 2B2

w

)]
du,

(3.6)

where w = w(ε) is a differentiable function of ε > 0.

Lemma 3.1. (See Figure 3.1.) Consider (1.1). Assume that 0 < ε < ε5 =
√

σ3

27ρ . Then

θ′(u) = f(u)− uf ′(u) = 2εu3 − σu2 + ρ has exactly two positive zeros p1 < p2 satisfying

(3.7) p1 =
σ

6ε

[
1 + 2 sin

(
φ

3
− π

6

)]
< γ =

σ

3ε
< p2 =

σ

6ε

[
1 + 2 cos

(
φ

3

)]
< βε,

where

(3.8) φ = arccos

(
σ3 − 54ε2ρ

σ3

)
∈ (0, π).
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Furthermore, θ(u) is a strictly increasing function on (0, p1) ∪ (p2, βε), and is a strictly

decreasing function on (p1, p2).

Figure 3.1: Graphs of θ(u) on (0, βε). (i) θ(p2) ≤ 0. (ii) θ(p2) > 0.

Proof. First θ′(u) = f(u)− uf ′(u) by (3.5). By (2.1), we compute that

∂

∂u
[θ′(u)] =

∂

∂u
[f(u)− uf ′(u)] = 2(3εu− σ)u


< 0 if 0 < u < γ,

= 0 if u = γ = σ/(3ε),

> 0 if u > γ.

It follows that θ′(u) = f(u)− uf ′(u) is a strictly decreasing function of u on (0, γ), and is

a strictly increasing function of u on [γ,∞). We compute that, for 0 < ε < ε5,

θ′(γ) = f(γ)− γf ′(γ) =
ρ

ε2

(
ε2 − σ3

27ρ

)
<

ρ

ε2

(
ε25 −

σ3

27ρ

)
= 0.

It is easy to see that θ′(0) = f(0) > 0 and θ′(βε) = −βεf ′(βε) > 0. Thus, for 0 < ε < ε5,

θ′(u) = f(u)− uf ′(u) has exactly two positive zeros p1 < p2 in (0, βε). Since

(3.9) cosu = 4 cos3
(u

3

)
− 3 cos

(u
3

)
and sinu = 3 sin

(u
3

)
− 4 sin3

(u
3

)
,

and by (3.8), we compute that

θ′
(
σ

6ε

[
1 + 2 sin

(
φ

3
− π

6

)])
=

1

54ε2

{
54ε2ρ− σ3 + σ3

[
4 sin3

(
φ

3
− π

6

)
− 3 sin

(
φ

3
− π

6

)]}
=

1

54ε2

[
54ε2ρ− σ3 − σ3 sin

(
φ− 1

2
π

)]
=

1

54ε2
[
54ε2ρ− σ3 + σ3 cosφ

]
=

1

54ε2

[
54ε2ρ− σ3 + σ3

(
σ3 − 54ρε2

σ3

)]
= 0

(3.10)
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and

θ′
(
σ

6ε

[
1 + 2 cos

(
φ

3

)])
=

1

54ε2

{
54ε2ρ− σ3 + σ3

[
4 cos3

(
φ

3

)
− 3 cos

(
φ

3

)]}
=

1

54ε2
[
54ε2ρ− σ3 + σ3 cosφ

]
=

1

54ε2

[
54ε2ρ− σ3 + σ3

(
σ3 − 54ρε2

σ3

)]
= 0.

(3.11)

In addition, it is easy to see that φ ∈ (0, π) for 0 < ε < ε5. We observe that, for 0 < φ < π,

σ

6ε

[
1 + 2 cos

(
φ

3

)]
− σ

6ε

[
1 + 2 sin

(
φ

3
− π

6

)]
=

√
3σ

6ε

[√
3 cos

(
φ

3

)
− sin

(
φ

3

)]
=

√
3σ

3ε
sin

(
π

3
− φ

3

)
> 0.

(3.12)

So by (3.10)–(3.12), we see that (3.7) holds. Thus we obtain that θ(u) is a strictly

increasing function on (0, p1) ∪ (p2, βε), and is a strictly decreasing function on (p1, p2).

The proof of Lemma 3.1 is complete.

Lemma 3.2. Consider (1.1). Assume that 0 < ε < ε5. Then the following assertions (i)

and (ii) hold:

(i)

(3.13) p32 =
σp22 − ρ

2ε
and N ≡ ε

p2

(
∂

∂ε
p2

)
= − p2

3(p2 − γ)
< −1.

(ii) (See Figure 3.1(ii).) For ε2 ≤ ε < ε5, θ(p2) > 0. Moreover, for any α ∈ (p1, p2],

there exists a unique number α ∈ (0, p1) such that θ(α) = θ(α), θ(u) < θ(α) for

0 < u < α, and θ(u) > θ(α) for α < u < α.

Proof. By Lemma 3.1, we see that 2εp32 − σp22 + ρ = θ′(p2) = 0. It follows that p32 =

(σp22 − ρ)/(2ε). Since θ′(p2) = 0 and 0 < φ < π, we compute and observe that

0 =
∂θ′(p2)

∂ε
= 2p32 + 6εp22

(
∂

∂ε
p2

)
− 2σp2

(
∂

∂ε
p2

)
= 6p22(p2 − γ)

[
p2

3(p2 − γ)
+

ε

p2

(
∂

∂ε
p2

)]
.

So we obtain that N = −εp2/(3εp2−σ). In addition, since 0 < φ < π, and by Lemma 3.1,

we see that

N + 1 =
2εp2 − σ

3ε(p2 − γ)
=

2σ

9ε(p2 − γ)

[
cos

(
φ

3

)
− 1

]
< 1,
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which implies N < −1. Hence, assertion (i) holds.

We observe that the cubic polynomial 4t3 − 3t + 9/16 has exactly two positive zeros

(
√

21− 3)/8 and 3/4. By (3.9), we compute that[
4 cos3

(
φ

3

)
− 3 cos

(
φ

3

)]
ε=ε2

= cosφ
∣∣
ε=ε2

= − 9

16
.

Since cos(φ/3) > cos(π/3) = 1/2 for 0 < φ < π, we observe that

(3.14)
1

2
= cos

(π
3

)
< cos

(
φ

3

)
≤ cos

(
φ

3

)∣∣∣∣
ε=ε2

=
3

4
for ε2 ≤ ε < ε5.

By (3.13), we see that ρ = σp22 − 2εp32. So

θ(p2) =
1

6
p2(3εp

3
2 − 2σp22 + 6ρ) =

1

6
p2
[
3εp32 − 2σp22 + 6(σp22 − 2εp32)

]
=

3εp32
2

(
4σ

9ε
− p2

)
=
σp32
2

[
5

6
− cos

(
φ

3

)]
(by (3.7))

≥ σp32
2

(
5

6
− 3

4

)
=
σp32
24

> 0

by (3.14). So by Lemma 3.1, for α ∈ (p1, p2], there exists a unique α ∈ (0, p1) such that

θ(α) = θ(α), θ(u) < θ(α) for 0 < u < α, and θ(u) > θ(α) for α < u < α; see Figure 3.1.

Hence, assertion (ii) holds. The proof of Lemma 3.2 is complete.

For ε2 ≤ ε < ε5, by Lemma 3.2, there exist two numbers γ, p2 ∈ (0, p1) such that

θ(γ) = θ(γ) and θ(p2) = θ(p2). We write the formulas of γ and p2 in the following lemma.

Lemma 3.3. Consider (1.1). Assume that ε2 ≤ ε < ε5. Then

γ =
1− 4 cos(y3 + π

3 )

9

σ

ε
and p2 =

−2
√

18− 8 cos2(φ3 ) cos( z3 + π
3 )− 2 cos(φ3 ) + 3

18

σ

ε
,

where φ is defined in Lemma 3.1,

(3.15)

y = arccos

(
19σ3 − 729ε2ρ

8σ3

)
∈ (0, π) and z = arccos

 24 cos(φ3 ) + 44 cosφ√
2
[
9− 4 cos2(φ3 )

]3
 .

Proof. Since ε2 ≤ ε < ε5, we have that 0 < y < π. We let

Γγ ≡
1− 4 cos(y3 + π

3 )

9

σ

ε
and Γp2 ≡

−2
√

18− 8 cos2(φ3 ) cos( z3 + π
3 )− 2 cos(φ3 ) + 3

18

σ

ε
.

To complete the proof, we divide the proof into two steps.
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Step 1. We prove that γ = Γγ . By Lemma 3.2(ii), it is sufficient to prove that

0 < Γγ < γ and θ(Γγ) = θ(γ). We observe that 2π/3 < y < π because

cos y ≤ 19σ3 − 729ε22ρ

8σ3
= − 67

256
< −1

2
= cos

(
2π

3

)
for ε2 ≤ ε < ε5

by (3.15). So we have that

−1

2
= cos

(
2π

3

)
< cos

(y
3

+
π

3

)
< cos

(
5π

9

)
< 0 for ε2 ≤ ε < ε5.

It follows that

(3.16) 0 <
σ

9ε
< Γγ <

1− 4(−12 )

9

σ

ε
=

σ

3ε
= γ for ε2 ≤ ε < ε5.

By (3.9) and (3.15), we compute and observe that

θ(Γγ)− θ(γ)

=
16σ4

6561ε3

[
2 cos

(π
3

+
y

3

)
+ 1
] [19σ3 − 729ε2ρ

8σ3
+ 4 cos3

(π
3

+
y

3

)
− 3 cos

(π
3

+
y

3

)]
=

16σ4

6561ε3

[
2 cos

(π
3

+
y

3

)
+ 1
](19σ3 − 729ε2ρ

8σ3
− cos y

)
= 0.

So by (3.16) and Lemma 3.2(ii), we see that γ = Γγ .

Step 2. We prove that p2 = Γp2 . By Lemma 3.2(ii), it is sufficient to prove that

0 < Γp2 < p2 and θ(Γp2) = θ(p2). First, we assert that, for ε2 ≤ ε < ε5,

(3.17)
1

2
< Γ1 ≡ cos

(
φ

3

)
≤ 3

4
and − 1

2
≤ Γ2 ≡ cos

(z
3

+
π

3

)
≤ 0.

Indeed, by (3.14), the inequalities 1/2 < Γ1 ≤ 3/4 hold immediately for ε2 ≤ ε < ε5. By

(3.8), we compute and observe that cosφ ≤ cosφ
∣∣
ε=ε2

= −9/16 for ε2 ≤ ε < ε5. So by

(3.15),

(3.18)

− 1 ≤ 4 cos3
(z

3

)
− 3 cos

(z
3

)
= cos z =

24Γ1 + 44 cosφ√
2(9− 4Γ2

1)
3
≤

24(34)− 44( 9
16)√

2
[
9− 4(12)2

]3 = − 27

128
.

Clearly, the cubic polynomial 4t3 − 3t− l where l ∈ [−1,−27/128] has two positive zeros

η1 ∈ (0, 1/2] and η2 ∈ [1/2,
√

3/2]. Since cos(z/3) ≥ cos(π/3) = 1/2, and by (3.18), we

see that 1/2 ≤ cos(z/3) ≤
√

3/2. This implies that π/2 ≤ (z+π)/3 ≤ 2π/3. So we obtain

that −1/2 ≤ Γ2 ≤ 0. Thus assertion (3.17) holds. By (3.17), we observe that

p2 − Γp2 = 4Γ1 +
√

18− 8Γ2
1Γ2 > 4

(
1

2

)
+

√
18− 8

(
1

2

)2(−1

2

)
= 0,

Γp2 =

(
−2
√

18− 8Γ2
1Γ2 − 2Γ1 + 3

)
σ

18ε
≥ σ(−2Γ1 + 3)

18ε
> 0.



648 Shao-Yuan Huang and Shin-Hwa Wang

Thus, 0 < Γp2 < p2. In addition, by (3.8), (3.9) and (3.15), we observe that

4Γ3
1 − 3Γ1 = cosφ =

σ3 − 54ε2ρ

σ3
,(3.19)

4Γ3
2 − 3Γ2 = − cos z =

−4(6σ3Γ1 − 594ε2ρ+ 11σ3)

σ3(9− 4Γ2
1)
√

2(9− 4Γ2
1)

.(3.20)

By (3.19) and (3.20), we compute and find that

θ(Γp2)− θ(p2) =
σ(4Γ1 +

√
18− 8Γ2

1Γ2)

26244ε3

×
{
−10σ3(4Γ3

1 − 3Γ1) + 24σ3Γ1 − 2916ε2ρ+ 54σ3

+

[
σ3(9− 4Γ2

1)(4Γ3
2 − 3Γ2)

√
2(9− 4Γ2

1)

]}
=
σ(4Γ1 +

√
18− 8Γ2

1Γ2)

26244ε3

×
[
−10σ3

(
σ3 − 54ε2ρ

σ3

)
+ 24σ3Γ1 − 2916ε2ρ+ 54σ3

− 4
(
6σ3Γ1 − 594ε2ρ+ 11σ3

)]
= 0.

So by Lemma 3.2(ii), we see that p2 = Γp2 . The proof of Lemma 3.3 is complete.

For the sake of convenience, we let

K(ε) ≡ 1

6

[
1 + 2 sin

(
φ

3
− π

6

)]
, L(ε) ≡ 1

6

[
1 + 2 cos

(
φ

3

)]
,

R(ε) ≡ 1

18

[
−2
√

2

√
9− 4 cos2

(
φ

3

)
cos
(z

3
+
π

3

)
− 2 cos

(
φ

3

)
+ 3

]
,

where φ and z are defined in Lemmas 3.1 and 3.3 respectively. By Lemmas 3.1 and 3.3,

it is easy to see that p1 = K(ε)σ/ε, p2 = L(ε)σ/ε and p2 = R(ε)σ/ε. We estimate the

numbers p2, p1 and p2 in the following lemma.

Lemma 3.4. Consider (1.1). Assume that ε2 ≤ ε < ε5. Then the following assertions

(i)–(iv) hold:

(i) K(ε) is a strictly increasing function of ε on [ε2, ε5).

(ii) L(ε) is a strictly decreasing function of ε on [ε2, ε5).

(iii) R(ε) is a strictly increasing function of ε on [ε2, ε5).
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(iv) For ε2 ≤ ε ≤ ε4,

(3.21)
3σ

25ε
< p2 <

23σ

125ε
<

23σ

100ε
< p1 <

261σ

1000ε
<

396σ

1000ε
< p2 <

417σ

1000ε
.

Proof. Since 0 < φ/3 < π/3 and by (3.8), we compute and observe that, for ε2 ≤ ε < ε5,

∂K(ε)

∂ε
=

2 sin(2π3 −
φ
3 )

9
√
ε25 − ε2

> 0 and
∂L(ε)

∂ε
= −

2 sin(φ3 )

9
√
ε25 − ε2

< 0.

So assertions (i) and (ii) hold. We note that θ′(p2) = 0 by Lemma 3.1. Since θ(p2)−θ(p2) =

0 and 0 < p2 < p2, and by (3.5), we compute and find that

0 =
∂

∂ε
[θ(p2)− θ(p2)] = θ′(p2)

∂p2
∂ε

+
∂θ(u)

∂ε

∣∣∣∣
u=p2

− ∂θ(u)

∂ε

∣∣∣∣
u=p2

= θ′(p2)
∂p2
∂ε

+
p42
2
− p42

2
< θ′(p2)

∂p2
∂ε

.

(3.22)

Since θ′(p2) > 0 by Lemma 3.1, and by (3.22), we see that ∂p2/∂ε > 0 for ε2 ≤ ε < ε5.

By Lemma 3.3, we further see that R(ε) = εp2/σ is a strictly increasing function of ε on

[ε2, ε5). So assertion (iii) holds. Finally, by assertions (i)–(iii), we compute that(
0.232σ

ε
≈
)
K(ε2)σ

ε
≤ p1 =

K(ε)σ

ε
≤ K(ε4)σ

ε

(
≈ 0.260σ

ε

)
,(

0.3967σ

ε
≈
)
L(ε4)σ

ε
≤ p2 =

K(ε)σ

ε
≤ L(ε2)σ

ε

(
≈ 0.4166σ

ε

)
,(

0.1207σ

ε
≈
)
R(ε2)σ

ε
≤ p2 =

R(ε)σ

ε
≤ R(ε4)σ

ε

(
≈ 0.1830σ

ε

)
.

So (3.21) holds for ε2 ≤ ε ≤ ε4. That is, assertion (iv) holds. The proof of Lemma 3.4 is

complete.

Lemma 3.5. Consider (1.1). Then T ′ε(γ) < 0 for 0 < ε ≤ ε1 and T ′ε(p2) < 0 for

0 < ε ≤ ε2.

Proof. Let

G(α) ≡
∫ α

0
tθ′(t) dt =

2

5
εα5 − 1

4
σα4 +

1

2
ρα2.

Suppose that θ(γ) ≤ 0, see Figure 3.1(i). We note that θ(u) > θ(γ) for 0 < u < γ. So

by Lemma 3.1 and (3.2), T ′ε(γ) < 0. Suppose that θ(γ) > 0, see Figure 3.1(ii). Since

γ = σ/(3ε), we see that, for 0 < ε ≤ ε1,

G(γ) =
γ2

20

[
8ε
( σ

3ε

)3
− 5σ

( σ
3ε

)2
+ 10ρ

]
=
ργ2

2ε2

(
ε2 − 7σ3

270ρ

)
≤ 0.
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So by [5, (3.11)], we see that

T ′ε(γ) <
1

2
√

2γ[F (γ)− F (γ)]3/2

∫ γ

0
tθ′(t) dt =

G(γ)

2
√

2γ[F (γ)− F (γ)]3/2
≤ 0.

Thus T ′ε(γ) < 0 for 0 < ε ≤ ε1. In addition, T ′ε(p2) < 0 for 0 < ε ≤ ε2, see [6, the proof of

Lemma 3.8]. The proof of Lemma 3.5 is complete.

Lemma 3.6. Consider (1.1). Then, for 0 < u < α < βε,

Aα <
4εα

3σ
Bα, Bα <

3σ

2ε(α+ u)
Aα, Dα >

ρ

4εα3
Aα, Dα >

ρ

3σα2
Bα.

Proof. We compute and find that, for 0 < u < α < βε,

4εα

3σ
Bα −Aα =

ε

3
(α− u)2(α2 + 2uα+ 3u2) > 0,

3σ

2ε(α+ u)
Aα −Bα =

1

2
σ(α− u)3 > 0,

Dα −
ρ

4εα3
Aα =

ρ

4α3
(3α2 + 2uα+ u2)(α− u)2 > 0,

Dα −
ρ

3σα2
Bα =

ρ

3α2
(2α+ u)(α− u)2 > 0.

The proof of Lemma 3.6 is complete.

Lemma 3.7. Consider (1.1). Then there exist ε̂ ∈ (ε1, ε5) and ε ∈ (ε2, ε5) such that

(3.23) T ′ε(γ)


< 0 for 0 < ε < ε̂,

= 0 for ε = ε̂,

> 0 for ε̂ < ε < ε5

and T ′ε(p2)


< 0 for 0 < ε < ε,

= 0 for ε = ε,

> 0 for ε < ε < ε5.

Remark 3.8. We shall prove ε̂ < ε in Lemma 3.10.

Proof of Lemma 3.7. We divide the proof into five steps.

Step 1. We prove the first inequality of (3.23). By (3.6), we have that

(3.24)
∂

∂ε
T ′ε(γ) =

1

96
√

2εγ

∫ γ

0

P1(u)

[F (γ)− F (u)]5/2
du,

where P1(u) ≡ −9A2
γ + 18AγBγ − 78AγDγ − 8B2

γ + 80BγDγ + 24D2
γ + 48CγDγ . By

Lemma 3.6, we obtain that, for 0 < u < γ,

(3.25) Aγ <
4εγ

3σ
Bγ <

4

9
Bγ and Dγ >

3ε2ρ

σ3
Bγ >

3ε21ρ

σ3
Bγ =

7

90
Bγ .
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Since Cγ ≥ 0 for 0 < u < γ, and by (3.25), we observe that, for 0 < u < γ,

P1(u) > −9Aγ

(
4

9
Bγ

)
+ 18AγBγ − 78AγDγ − 8B2

γ + 80BγDγ + 24Dγ

(
7

90
Bγ

)
= 14AγBγ − 78AγDγ − 8B2

γ +
1228

15
BγDγ

> 14AγBγ − 78

(
4

9
Bγ

)
Dγ − 8B2

γ +
1228

15
BγDγ

= Bγ

(
14Aγ − 8Bγ +

236

5
Dγ

)
> Bγ

[
14Aγ − 8Bγ +

236

5

(
7

90
Bγ

)]
= Bγ

(
14Aγ −

974

225
Bγ

)
=

2Bγ
2025ε2

(γ − u)(14175ε3u3 + 342ε2σu2 + 114εσ2u+ 38σ3) > 0.

So by (3.24), ∂
∂εT

′
ε(γ) > 0 for ε1 < ε < ε5. By Lemma 3.5 and Theorem 1.1(iii), we see

that T ′ε1(γ) < 0 and T ′ε5(γ) > 0. Then there exists ε̂ ∈ (ε1, ε5) such that the first inequality

of (3.23) holds.

Step 2. We prove that V (u) > 0 where

V (u) ≡ 6(20N + 7)Ap2Dp2 + 3(1 + 4N)A2
p2 + 2(1− 8N)Ap2Bp2

− 24ND2
p2 + 8Bp2N(Bp2 − 10Dp2),

(3.26)

and N is defined in (3.13). Let u∗ ∈ (0, p2) be given. To prove that V (u∗) > 0, we discuss

two cases: (Bp2 − 10Dp2)
∣∣
u=u∗

≤ 0 and (Bp2 − 10Dp2)
∣∣
u=u∗

> 0.

Case 1. Assume that (Bp2 − 10Dp2)
∣∣
u=u∗

≤ 0. By (3.13) and Lemma 3.6, we observe

that, for u = u∗,

V (u∗) > 6(20N + 7)Ap2Dp2 + 3(1 + 4N)A2
p2 + 2(1− 8N)Ap2Bp2

− 24NDp2

(
ρ

4εp32
Ap2

)
+ 8N(Bp2 − 10Dp2)

(
3σ

4εp2
Ap2

)
= Ap2

[(
120N + 42− 60σN

εp2
− 6ρN

εp32

)
Dp2 + 3(1 + 4N)Ap2

+

(
2− 16N +

6σN

εp2

)
Bp2

]
.

(3.27)

In addition, since σp22 = 2εp32 + ρ and N < 0 by (3.13), we compute and observe that

120N + 42− 60σN

εp2
− 6ρN

εp32
=

6

εp32

[
(7ε+ 20Nε)p32 − 10N(σp22)−Nρ

]
=

6

εp32
(7εp32 − 11Nρ) > 0.

(3.28)
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By (3.13), (3.27), (3.28) and Lemma 3.6, we observe that, for u = u∗,

V (u∗)

Ap2
>

(
120N + 42− 60σN

εp2
− 6Nρ

εp32

)(
ρ

3σp22
Bp2

)
+ 3(1 + 4N)

(
4εp2
3σ

Bp2

)
+

(
2− 16N +

6σN

εp2

)
Bp2

=
2(ρ+ 4σp22 − εp32)

3εσp42(p2 − γ)
Bp2θ

′(p2) = 0.

It follows that V (u∗) > 0 because Ap2 > 0 for u = u∗ ∈ (0, p2).

Case 2. Assume that (Bp2 − 10Dp2)
∣∣
u=u∗

> 0. Since

Bp2 <
3σ

2ε(p2 + u)
Ap2 and

ρ

4εp32
Ap2 < Dp2 for 0 < u < p2

by Lemma 3.6, we observe that, for u = u∗,

V (u∗) > 6(20N + 7)Ap2Dp2 + 3(1 + 4N)A2
p2 + 2(1− 8N)Ap2Bp2

− 24NDp2

(
ρ

4εp32
Ap2

)
+ 8N(Bp2 − 10Dp2)

[
3σ

2ε(p2 + u∗)
Ap2

]
= Ap2U(u∗),

(3.29)

where

U(u) ≡
[
120N + 42− 6ρN

εp32
− 120σN

ε(p2 + u)

]
Dp2 + 3(1 + 4N)Ap2

+

[
2− 16N +

12σN

ε(p2 + u)

]
Bp2 .

We assert that

(3.30) U(u) > 0 for u ∈ (0, p2).

Indeed, by Lemmas 3.2(i) and 3.4(iv), we apply elementary analytic techniques to prove

that ∂5U(u)/∂u5 < 0 for u ∈ (0, p2), ∂
4U(u)/∂u4

∣∣
u=p2

> 0, ∂3U(u)/∂u3
∣∣
u=p2

< 0,

∂2U(u)/∂u2
∣∣
u=p2

> 0, and ∂U(u)/∂u
∣∣
u=p2

< 0. So U(u) is a strictly decreasing func-

tion of u on (0, p2). Clearly, U(p2) = 0. Thus, assertion (3.30) holds. The complete proofs

are easy but rather lengthy, and hence we put them in [4]. So by (3.29) and (3.30), we

obtain that V (u∗) >
(
Ap2
∣∣
u=u∗

)
U(u∗) > 0.

Thus, in either Cases 1 or 2, we obtain that V (u∗) > 0, which implies that V (u) > 0

for u ∈ (0, p2).

Step 3. We prove the second inequality of (3.23). We recall the function V (u) defined

in (3.26) and the number N defined in (3.13). By (3.6), we have that

(3.31)
∂

∂ε
T ′ε(p2) =

1

96
√

2εp2

∫ p2

0

P2(u)

[F (p2)− F (u)]5/2
du,
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where P2(u) ≡ V (u) + 12Cp2 [(1 +N)Ap2 − 4NDp2 ]. By Step 2, we see that V (u) ≥ 0 for

0 < u < p2. By (3.13), Lemmas 3.2 and 3.6, we observe that, for 0 < u < p2,

P2(u) ≥ 12Cp2 [(1 +N)Ap2 − 4NDp2 ] > 12Cp2

[
(1 +N)Ap2 − 4N

(
ρ

4εp32
Ap2

)]
=

12Ap2Cp2
εp32

[
(1 +N)εp32 −Nρ

]
=

12Ap2Cp2
εp32

[(
1− p2

3p2 − 3γ

)
ε

(
σp22 − ρ

2ε

)
+

(
p2

3p2 − 3γ

)
ρ

]
=

2Ap2Cp2σ

ε2p32(p2 − γ)
(2εp32 − σp22 + ρ) =

2Ap2Cp2σ

ε2p32(p2 − γ)
θ′(p2) = 0.

So ∂
∂εT

′
ε(p2) > 0 by (3.31). Thus T ′′ε (p2) is a strictly increasing function of ε on (ε2, ε5).

By Lemma 3.5 and Theorem 1.1(iii), we see that T ′ε2(p2) < 0 and T ′ε5(p2) > 0. Then the

second inequality of (3.23) holds. The proof of Lemma 3.7 is complete.

Next, in Lemmas 3.10 and 3.11 stated below, we prove that T ′ε3(γ) > 0, T ′ε3(p2) < 0,

T ′ε4(p2) > 0, and T ′′ε (p2) > 0 for some ε ∈ [ε2, ε4] satisfying T ′ε(p2) = 0. First of all, we

observe that

(3.32)
θ(α)− θ(u)

[F (α)− F (u)]3/2
= H1(u, α)H2(u, α) and

−uθ′(u)

[F (p2)− F (u)]3/2
= H3(u, p2)H4(u, p2),

where

H1(u, α) ≡ (α− u)3/2

6[F (α)− F (u)]3/2
, H2(u, α) ≡ 6[θ(α)− θ(u)]

(α− u)3/2
,

H3(u, α) ≡ u(p2 − u)3/2

[F (p2)− F (u)]3/2
, H4(u, α) ≡ −θ′(u)

(p2 − u)3/2
.

Clearly, H1(u, α) > 0 and H3(u, α) > 0 for 0 < u < α. Then we compute that

(3.33)

∫
H2(u, α) du =

√
α− uI1(u, α) and

∫
H4(u, α) du =

I2(u, α)√
α− u

,

where

I1(u, α) ≡ 2

35

[
−15εu3 − (39εα− 14σ)u2 − (87εα2 − 42σα)u− 279εα3 + 154α2σ − 210ρ

]
,

I2(u, α) ≡ 2

15

[
6au3 + (12aα− 5b)u2 + (48aα2 − 20bα)u− 96aα3 + 40bα2 − 15d

]
.

To prove Lemmas 3.10 and 3.11, in the following lemma, we further study some properties

of H1(u, α), H3(u, α), I1(u, α) and I2(u, α).

Lemma 3.9. Consider (1.1). For ε2 ≤ ε < ε5, the following assertions (i)–(vii) hold:
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(i) For 0 ≤ α ≤ 21σ
50ε , H1(u, α) is a strictly decreasing function of u on

[
0, 21σ50ε

]
.

(ii) For 0 ≤ u ≤ 21σ
50ε , H1(u, α) is a strictly decreasing function of α on

[
σ
3ε ,

21σ
50ε

]
.

(iii) For 0 ≤ α ≤ 21σ
50ε , I1(u, α) is a strictly increasing function of u on (0, û(α)) and is

strictly decreasing function of u on (û(α),∞), where

û(α) ≡ 1

45ε

[
14σ − 39εα+

√
14(−171ε2α2 + 57εσα+ 14σ2)

]
> 0.

Furthermore, û(α) is a strictly decreasing function of α on
(
σ
6ε ,

21σ
50ε

]
, and û(γ) = γ.

(iv) For u ≥ 0, I1(u, α) is a strictly decreasing function of α on
[
39σ
100ε ,

21σ
50ε

]
.

(v) For 39σ
100ε ≤ α ≤

21σ
50ε , H3(u, α) is a strictly decreasing function of u on

[
0, 27σ

100ε

]
.

(vi) For 0 ≤ u ≤ 27σ
100ε , H3(u, α) is a strictly increasing function of α on

[
39σ
100ε ,

21σ
50ε

]
.

(vii) I2(0, α) is a negative and strictly decreasing functions of α on
[
39σ
100ε ,

21σ
50ε

]
.

The proof of Lemma 3.9 is easy but rather lengthy, and hence it is given in [4]

Assume that ε2 ≤ ε < ε5 and w ∈ {γ, p2}. By Lemma 3.2, there exists w ∈ (0, p1)

such that θ(w) = θ(w). Let {αi}ni=0 and {βi}ni=0 be uniform partitions of [0, w] and [w,w],

respectively. By Lemma 3.4, we see that w ∈ {γ, p2} ⊂
[
σ
3ε ,

21σ
50ε

)
. By (3.2) and (3.33), we

observe that

T ′ε(w) =
1

2
√

2w

n−1∑
i=0

(∫ αi+1

αi

H1(u,w)H2(u,w) du+

∫ βi+1

βi

H1(u,w)H2(u,w) du

)

≥ 1

2
√

2w

n−1∑
i=0

(
H1(αi+1, w)

∫ αi+1

αi

H2(u,w) du+H1(βi, w)

∫ βi+1

βi

H2(u,w) du

)

=
1

2
√

2w

n−1∑
i=0

[
H1(αi+1, βn)

(√
βn − αi+1I1(αi+1, βn)−

√
βn − αiI1(αi, βn)

)
+ H1(βi, βn)

(√
βn − βi+1I1(βi+1, βn)−

√
βn − βiI1(βi, βn)

)]
.

(3.34)

Similarly,

T ′ε(w) ≤ 1

2
√

2w

n−1∑
i=0

[
H1(αi, βn)

(√
βn − αi+1I1(αi+1, βn)−

√
βn − αiI1(αi, βn)

)
+ H1(βi+1, βn)

(√
βn − βi+1I1(βi+1, βn)−

√
βn − βiI1(βi, βn)

)]
.

(3.35)
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We note that if αi and βi are given for i = 0, 1, . . . , n, the sums

n−1∑
i=0

[
H1(αi+1, βn)

(√
βn − αi+1I1(αi+1, βn)−

√
βn − αiI1(αi, βn)

)
+ H1(βi, βn)

(√
βn − βi+1I1(βi+1, βn)−

√
βn − βiI1(βi, βn)

)]
,

(3.36)

and

n−1∑
i=0

[
H1(αi, βn)

(√
βn − αi+1I1(αi+1, βn)−

√
βn − αiI1(αi, βn)

)
+ H1(βi+1, βn)

(√
βn − βi+1I1(βi+1, βn)−

√
βn − βiI1(βi, βn)

)](3.37)

can be computed but difficult because the numbers αi and βi for i = 0, 1, . . . , n may

be complex, see Lemmas 3.1 and 3.3. We choose suitable numbers n, α∗i , αi∗, β
∗
i , βi∗,

satisfying

0 ≤ α∗i ≤ αi ≤ αi∗ <
21σ

50ε
, and 0 ≤ β∗i ≤ βi ≤ βi∗ <

21σ

50ε
for i = 0, 1, . . . , n,

such that by Lemma 3.9(i)–(iv), it is easy to compute and obtain the upper and lower

bounds of H1(αi, βn), H1(βi, βn), I1(αi, βn), and I1(βi, βn). Then we apply these upper

and lower bounds to determinate that the sum (3.36) is positive or the sum (3.37) is

negative. So by (3.34) and (3.35), we see that T ′ε(w) > 0 or T ′ε(w) < 0. Therefore, we

have the following Lemma 3.10.

Lemma 3.10. Consider (1.1). The following assertions (i)–(iii) holds.

(i) If ε = ε4, then T ′ε4(p2) > 0.

(ii) If ε = ε3, then T ′ε3(γ) > 0 and T ′ε3(p2) < 0.

(iii) ε̂ < ε < ε̃.

Proof. We prove the assertion (i). Since the proof of assertion (ii) is similar and rather

lengthy, we put the proof in [4] and omit it here. Assertion (iii) follows immediately by

Theorem 1.1, Lemma 3.7 and assertion (ii). We note that σ/(3ε4) = γ < p2 < 21σ/(50ε4)

by Lemmas 3.1 and 3.4(iv). Let {αi}2i=0 and {βi}2i=0 be uniform partitions of [0, p2] and

[p2, p2], respectively. This implies that

α0 = 0, α1 =
p2
2
, α2 = p2 = β0, β1 =

p2 + p2
2

, β2 = p2.

By Lemma 3.4 and direct computations, we have that

σ

6ε
<

396σ

1000ε4
≡ p2∗ < p2 =

L(ε4)σ

ε4

(
≈ 0.3967σ

ε4

)
< p∗2 ≡

397σ

1000ε4
<

21σ

50ε4
,(3.38)

183σ

1000ε4
≡ p̃2∗ < p2 =

R(ε4)σ

ε4

(
≈ 0.1830σ

ε4

)
< p̃∗2 ≡

184σ

1000ε4
<

21σ

50ε4
,(3.39)
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from which it follows that, for i = 0, 1, 2,

0 ≤ ip̃2∗
2
≡ αi∗ ≤ αi ≤ α∗i ≡

ip̃∗2
2
<

21σ

50ε4
,(3.40)

0 <
ip2∗ + (1− i)p̃2∗

2
≡ βi∗ ≤ βi ≤ β∗i ≡

ip∗2 + (1− i)p̃∗2
2

<
21σ

50ε4
.(3.41)

So by Lemma 3.9(iii),

(3.42) α1 < α∗1 < û(p∗2) < û(p2) ≤ û(p2∗) < β1∗ < β1 < β∗1

because we compute and find that

û(p2) ≥ û(p∗2) =
σ

45ε4

(√
67745027

500000
− 1483

1000

)
>

23σ

250ε4
= α∗1,

û(p2) ≤ û(p2∗) =
σ

45ε4

(√
4268453

31250
− 361

250

)
<

579σ

2000ε4
= β1∗.

By Lemma 3.9, (3.34), (3.36), (3.38)–(3.42), we assert that

2
√

2p2T
′
ε4(p2) ≥ H1(α

∗
1, β
∗
2)
[√

β2∗ − α∗1I1(α
∗
1, β
∗
2)−

√
β2∗I1(0, β2∗)

]
+H1(α2∗, β2∗)

[√
β2∗ − β∗1I1(β

∗
1 , β
∗
2)−

√
β∗2 − α1∗I1(α

∗
1, β2∗)

]
−H1(β1∗, β2∗)

√
β∗2 − β1∗I1(β1∗, β2∗).

(3.43)

The proof of assertion (3.43) can be seen below. Assume that k ≡ τ/√σρ. Clearly, k ≥ 0.

We compute that

H1(α
∗
1, β
∗
2)
[√

β2∗ − α∗1I1(α
∗
1, β
∗
2)−

√
β2∗I1(0, β2∗)

]
=

1

(σρ)
1
4

a1(k),(3.44)

H1(α2∗, β2∗)
[√

β2∗ − β∗1I1(β
∗
1 , β
∗
2)−

√
β∗2 − α1∗I1(α

∗
1, β2∗)

]
=
−1

(σρ)
1
4

a2(k),(3.45)

H1(β1∗, β2∗)
√
β∗2 − β1∗I1(β1∗, β2∗) =

1

(σρ)
1
4

a3(k),(3.46)

where

a1(k) ≡ 1040
√

15(1893263429
√

19 + 11939328
√

11)

7(956758909
√

13 + 1907100000k)3/2
,

a2(k) ≡ 2
√

2(26009511424
√

47− 2857000131
√

2743)

273(5695037
√

13 + 11580000k)3/2
,

a3(k) ≡ 841661983552
√

215

7(701986729
√

13 + 142584000k)3/2
.



Evolutionary Bifurcation Curves for a Positone Problem 657

We further compute that, for k ≥ 0,[
11

40
a1(k)

]2/3
− [a2(k)]2/3

≈ 5.3× 1013k + 6.4× 1013

(956758909
√

13 + 19071× 105k)(5695037
√

13 + 11580000k)
(> 0),

[
29

40
a1(k)

]2/3
− [a3(k)]2/3 ≈ 1.4× 1015k + 1.6× 1016

(305914073
√

13 + 60964800k)(3476171
√

13 + 706875k)
(> 0),

from which it follows that by (3.43)–(3.46), for k ≥ 0,

T ′ε4(p2) ≥
a1(k)− a2(k)− a3(k)

2
√

2p2(σρ)
1
4

=

(
11
40a1(k)− a2(k)

)
+
(
29
40a1(k)− a3(k)

)
2
√

2p2(σρ)14
> 0.

So T ′ε4(p2) > 0 for ε = ε4.

Finally, we prove our assertion (3.43). Since H(u, p2) > 0 for 0 < u < p2 and

H(u, p2) < 0 for p2 < u < p2 by (3.32), we observe that

(3.47)

∫ α1

0
H2(u,w) du =

√
β2 − α1I1(α1, β2)−

√
β2I1(0, β2) > 0.

By Lemma 3.9(iii)–(iv) and (3.38)–(3.42), we observe that

I1(0, β2) ≤ I1(0, β2∗) = − 62184ρ

35546875
< 0,(3.48)

I1(α
∗
1, β2∗) ≥ I1(α1, β2) ≥ I1(α1∗, β

∗
2) =

1893263429ρ

455× 107
> 0,(3.49)

I1(β1∗, β2∗) ≥ I1(β1, β2) ≥ I1(β∗1 , β∗2) =
2857000131ρ

455× 107
> 0.(3.50)

By (3.49) and (3.50), we further observe that√
β2∗ − β∗1I1(β

∗
1 , β
∗
2)−

√
β∗2 − α1∗I1(α

∗
1, β2∗)

≤
√
β2 − β1I1(β1, β2)−

√
β2 − α1I1(α1, β2)

≤
√
β∗2 − β1∗I1(β1∗, β2∗)−

√
β2∗ − α∗1I1(α1∗, β

∗
2)

= ρ(13)3/4
(ρ
σ

)1/4 [ 3034838883

591500000000

√
215− 1893263429

147875000000

√
38

]
< 0.

(3.51)

So by (3.34) and (3.47)–(3.51), we observe that

2
√

2p2T
′
ε(p2) ≥ H1(α1, β2)

[√
β2 − α1I1(α1, β2)−

√
β2I1(0, β2)

]
+H1(α2, β)

[√
β2 − β1I1(β1, β2)−

√
β2 − α1I1(α1, β2)

]
−H1(β1, β)

√
β2 − β1I1(β, β)

≥ H1(α
∗
1, β
∗
2)
[√

β2∗ − α∗1I1(α
∗
1, β
∗
2)−

√
β2∗I1(0, β2∗)

]
+H1(α2∗, β2∗)

[√
β2∗ − β∗1I1(β

∗
1 , β
∗
2)−

√
β∗2 − α1∗I1(α

∗
1, β2∗)

]
−H1(β1∗, β2∗)

√
β∗2 − β1∗I1(β1∗, β2∗).
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So assertion (3.43) holds. The proof of Lemma 3.10 is complete.

Lemma 3.11. Consider (1.1) with ε = ε ∈ (ε2, ε5) defined in Lemma 3.7. Then T ′′ε (p2) >

0.

Proof. By Lemma 3.10(i), ε ∈ (ε2, ε4). By elementary analysis and Lemma 3.4(iv), we

assert that for ε2 < ε < ε4 and 0 < u < p2,

(3.52)
183

100
[F (p2)− F (u)] < p2f(p2)− uf(u) <

21

10
[F (p2)− F (u)].

Since the proof of assertion (3.52) is easy but rather lengthy, and hence we put the proof

in [4] and omit it here. By Lemma 3.1, we see that θ(p2) − θ(u) > 0 for 0 < u < p2 and

θ(p2)− θ(u) < 0 for p2 < u < p2. Since T ′′ε (p2) = 0, and by Lemma 3.1, (3.3) and (3.52),

we have that

2
√

2p22T
′′
ε (p2)

= −3

2

∫ p2

0

[θ(p2)− θ(u)][p2f(p2)− uf(u)]

[F (p2)− F (u)]5/2
du+

∫ p2

0

p2θ
′(p2)− uθ′(u)

[F (p2)− F (u)]3/2
du

> −3

2

(
21

10

)∫ p2

0

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du− 3

2

(
183

100

)∫ p2

p2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du

+

∫ p2

0

p2θ
′(p2)− uθ′(u)

[F (p2)− F (u)]3/2
du (by (3.52))

= −63

20

{∫ p2

0

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du−

∫ p2

p2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du

}

−
(

549

200
− 63

20

)∫ p2

p2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du+

∫ p2

0

p2θ
′(p2)− uθ′(u)

[F (p2)− F (u)]3/2
du

= −63

20
T ′′ε (p2) +

81

200

∫ p2

p2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du+

∫ p2

0

p2θ
′(p2)− uθ′(u)

[F (p2)− F (u)]3/2
du

=
81

200

∫ p2

p2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′(u)

[F (p2)− F (u)]3/2
du.

(3.53)

We assert that, for ε2 < ε < ε4,

81

200

∫ p2

p2

θ(p2)− θ(u)

[F (p2)− F (u)]3/2
du+

∫ p2

0

−uθ′(u)

[F (p2)− F (u)]3/2
du

> − 81

200
H1(p̃2∗, p2∗)

√
p∗2 − p̃2∗I1(p̃

∗
2, p2∗)−H3(p1∗ , p

∗
2)
I2(0, p2∗)√

p∗2
> 0

(3.54)

for some positive numbers p1∗ , p̃2∗, p̃
∗
2, p2∗ and p∗2 satisfying p1∗ ≤ p1 and

3σ

25ε
≤ p̃2∗ < p2 < p̃∗2 ≤

23σ

125ε
<

39σ

100ε
≤ p2∗ < p2 < p∗2 ≤

417σ

1000ε
.

Since the proof of assertion (3.54) is rather lengthy and is similar to the proof of asser-

tion (i) of Lemma 3.10, we put the proof in [4] and omit it here. So by (3.53) and (3.54),

we see that T ′′ε (p2) > 0. The proof of Lemma 3.11 is complete.
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4. Proof of the main result

By Theorem 1.1, for 0 < ε < ε̃, the S-shaped bifurcation curve Sε has exactly two

turning points (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞) satisfying λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞,

see Figure 1.1(i). Thus by (3.1), for 0 < ε < ε̃, Tε(α) has exactly two (positive) critical

points at α−ε (≡ ‖uλ∗‖∞) < α+
ε (≡ ‖uλ∗‖∞).

Proof of Theorem 2.1. Let 0 < ε < ε̃. Since θ(p1)−θ(u) > 0 for 0 < u < p1 by Lemma 3.1,

and by (3.2), we see that T ′ε(p1) > 0 for ε > 0. By Lemma 3.10(iii), ε̂ < ε < ε̃. Assume

that ε̂ < ε < ε̃. Since T ′ε(γ) > 0 by Lemma 3.7, we see that either γ < α−ε or α+
ε < γ.

By [8, Lemma 3.2], we obtain that either Tε(α) is a strictly increasing function of α on

(0, γ], or Tε(α) is a strictly increasing and then strictly decreasing function of α on (0, γ].

So we further obtain that γ < α−ε . It follows that

p1 < α−ε < γ < α+
ε for 0 < ε < ε̂,(4.1)

p1 < γ = α−ε < α+
ε for ε = ε̂,(4.2)

p1 < γ < α−ε < α+
ε for ε̂ < ε < ε̃.(4.3)

By Lemma 3.7, it is easy to see that α−ε < p2 < α+
ε for 0 < ε < ε. For ε = ε, we see that

either p2 = α−ε or p2 = α+
ε . By Lemma 3.11, we see that p2 = α+

ε . We note that α−ε and

α+
ε are continuous functions of ε on (0, ε̃) by [6, Remark 2.2]. By Lemma 3.1, it is easy

to see that p2 is a continuous function of ε on (0, ε̃). Since T ′ε(p2) > 0 for ε < ε < ε̃ by

Lemma 3.7, we observe that α−ε < α+
ε < p2 for ε < ε < ε̃. So we have that

p1 < α−ε < p2 < α+
ε for 0 < ε < ε,(4.4)

p1 < α−ε < α+
ε = p2 for ε = ε,(4.5)

p1 < α−ε < α+
ε < p2 for ε < ε < ε̃.(4.6)

Thus, by (4.1)–(4.6), inequalities (2.3)–(2.7) hold. By [6, Remark 2.2], we see that

limε→ε̃+ ‖uλ∗‖∞ = limε→ε̃+ ‖uλ∗‖∞ =
∥∥u

λ̃

∥∥
∞. Assume that p2 =

∥∥u
λ̃

∥∥
∞ for ε = ε̃.

By Theorem 1.1(iii), we see that T ′ε̃(p2) = T ′ε̃(
∥∥u

λ̃

∥∥
∞) = 0 for ε = ε̃, which is a contradic-

tion to Lemma 3.7. So p2 >
∥∥u

λ̃

∥∥
∞ for ε = ε̃. Similarly, by Lemma 3.7, we observe that

γ <
∥∥u

λ̃

∥∥
∞ for ε = ε̃. In addition, by Lemma 3.4, K(ε̃) < K(ε5) = 1/3 for ε2 ≤ ε̃ < ε5.

This implies that p1 = K(ε̃)σ/ε̃ < σ/(3ε̃) = γ for ε = ε̃. Thus, (2.8) holds.

Finally, we prove ε̃ <
√

83σ3

2500ρ . By (2.7) and (2.8), it is sufficient to prove that T ′ε(α) > 0

for 0 < α ≤ p2 and ε =
√

83σ3

2500ρ . By Lemmas 3.1 and 3.4, we compute that

p2 =
σ

ε
L

(√
332σ3

10000ρ

)(
≈ 0.391σ

ε

)
<

21σ

50ε
if ε =

√
83σ3

2500ρ
.
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By Lemma 3.9(i), H1(u, α) is a strictly decreasing function of u on [0, α] for 0 < α ≤ p2. So

by (3.2), (3.32) and Lemmas 3.1 and 3.2, we observe that, for 0 < α ≤ p2 and ε =
√

83σ3

2500ρ ,

T ′ε(α) =
1

2
√

2α2

∫ α

0
H1(u, α)H2(u, α) du

≥ 1

2
√

2α2

[
H1(α, α)

∫ α

0
H2(u, α) du+H1(α, α)

∫ α

α
H2(u, α) du

]
=
H1(α, α)

2
√

2α2

∫ α

0
H2(u, α) du

=
H1(α, α)

35
√

2α3/2

[
279εα3 − 154α2σ + 210ρ

]
≥ H1(α, α)

35
√

2α3/2

[
279εα3 − 154α2σ + 210ρ

]
α= 308σ

837ε

=
1573043

√
2ρH1(α, α)

174441681α3/2
> 0

since

∂

∂α
(279εα3 − 154α2σ + 210ρ) = α(837εα− 308σ)


< 0 if 0 < α < 308σ

837ε ,

= 0 if α = 308σ
837ε ,

> 0 if α > 308σ
837ε .

Hence, ε̃ <
√

83σ3

2500ρ , which implies that (2.2) holds. This completes the proof of Theo-

rem 2.1.
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