On the r-th Root Partition Function

Ya-Li Li and Yong-Gao Chen*

Abstract

The well known partition function $p(n)$ has a long research history, where $p(n)$ denotes the number of solutions of the equation $n=a_{1}+\cdots+a_{k}$ with integers $1 \leq a_{1} \leq \cdots \leq a_{k}$. In this paper, we investigate a new partition function. For any real number $r>1$, let $p_{r}(n)$ be the number of solutions of the equation $n=\left\lfloor\sqrt[r]{a_{1}}\right\rfloor+\cdots+$ $\left\lfloor\sqrt[r]{a_{k}}\right\rfloor$ with integers $1 \leq a_{1} \leq \cdots \leq a_{k}$, where $\lfloor x\rfloor$ denotes the greatest integer not exceeding x. In this paper, it is proved that $\exp \left(c_{1} n^{r /(r+1)}\right) \leq p_{r}(n) \leq \exp \left(c_{2} n^{r /(r+1)}\right)$ for two positive constants c_{1} and c_{2} (depending only r).

1. Introduction

Let $f(n)$ be a real valued arithmetic function and $q_{f}(n)$ be the number of solutions to the equation

$$
\begin{equation*}
n=\left\lfloor f\left(a_{1}\right)\right\rfloor+\left\lfloor f\left(a_{2}\right)\right\rfloor+\cdots+\left\lfloor f\left(a_{k}\right)\right\rfloor \tag{1.1}
\end{equation*}
$$

with integers $1 \leq a_{1} \leq \cdots \leq a_{k}$, where $\lfloor x\rfloor$ denotes the greatest integer not exceeding x. We call (1.1) a f-partition of n and $q_{f}(n)$ the f-partition function. For $f(n)=\sqrt[r]{n}$ (where $\sqrt[r]{n}$ stands for $\left.n^{1 / r}\right)$, let $p_{r}(n)=q_{f}(n)$, where r is a positive real number. That is, $p_{r}(n)$ is the number of solutions to the equation

$$
\begin{equation*}
n=\left\lfloor\sqrt[r]{a_{1}}\right\rfloor+\cdots+\left\lfloor\sqrt[r]{a_{k}}\right\rfloor \tag{1.2}
\end{equation*}
$$

with integers $1 \leq a_{1} \leq \cdots \leq a_{k}$. We call 1.2 an r-th root partition of n and $p_{r}(n)$ the r-th root partition function. It is known that, when $r=2$, there exist two explicit positive constants c_{1}^{\prime} and c_{2}^{\prime} such that

$$
\exp \left(c_{1}^{\prime} n^{2 / 3}\right) \leq p_{2}(n) \leq \exp \left(c_{2}^{\prime} n^{2 / 3}\right)
$$

for all integers $n \geq 1$ (see (1) and [2).
In this paper, the following results are proved.

[^0]Theorem 1.1. Let $f(n)$ be a real valued arithmetic function and

$$
\begin{equation*}
w(z)=1+\sum_{n=1}^{\infty} q_{f}(n) z^{n}, \quad 0<z<1 \tag{1.3}
\end{equation*}
$$

Suppose that the series in 1.3) is convergent. Then

$$
w(z)=\prod_{n=1}^{\infty}\left(1-z^{n}\right)^{-\Delta_{f}(n)}
$$

where $\Delta_{f}(n)=\#\{m:\lfloor f(m)\rfloor=n\}$.
Theorem 1.2. For any real number $r>1$, there exist two explicit positive constants c_{1} and c_{2} (depending only r) such that

$$
\exp \left(c_{1} n^{r /(r+1)}\right) \leq p_{r}(n) \leq \exp \left(c_{2} n^{r /(r+1)}\right)
$$

for all integers $n \geq 1$.
Theorem 1.2 is mentioned in [2]. We believe that the f-partition will bring extensive study as $p(n)$.

Throughout this paper, the numbers n, k, m, etc. are positive integers.

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.
A partition \boldsymbol{b} of n is

$$
\begin{equation*}
n=b_{1}+b_{2}+\cdots+b_{k} \tag{2.1}
\end{equation*}
$$

with integers $1 \leq b_{1} \leq \cdots \leq b_{k}$. Now we consider the f-partitions of n corresponding to (2.1)

$$
n=\left\lfloor f\left(a_{1}\right)\right\rfloor+\left\lfloor f\left(a_{2}\right)\right\rfloor+\cdots+\left\lfloor f\left(a_{k}\right)\right\rfloor
$$

with integers $1 \leq a_{1} \leq \cdots \leq a_{k}$ such that $b_{1}=\left\lfloor f\left(a_{i_{1}}\right)\right\rfloor, \ldots, b_{k}=\left\lfloor f\left(a_{i_{k}}\right)\right\rfloor$, where $i_{1}, i_{2}, \ldots, i_{k}$ is a permutation of $1,2, \ldots, k$.

For a partition \boldsymbol{b} of n, it is possible that there is more than one vector ($a_{1}, a_{2}, \ldots, a_{k}$) corresponding to \boldsymbol{b}. Fix a partition \boldsymbol{b} of n. If m occurs h_{m} times in the partition \boldsymbol{b} of n, then there exist some integers $j_{1}<j_{2}<\cdots<j_{h_{m}}$ such that

$$
\left\lfloor f\left(a_{j_{1}}\right)\right\rfloor=\left\lfloor f\left(a_{j_{2}}\right)\right\rfloor=\cdots=\left\lfloor f\left(a_{j_{h_{m}}}\right)\right\rfloor=m .
$$

Then $a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{h_{m}}} \in\{t:\lfloor f(t)\rfloor=m\}$ are integers which are subjected to $1 \leq a_{j_{1}} \leq$ $a_{j_{2}} \leq \cdots \leq a_{j_{h_{m}}}$. So the number of vectors $\left(a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{h_{m}}}\right)$ corresponding to \boldsymbol{b} is equal to the number of nonnegative integral solutions to the equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{\Delta_{f}(m)}=h_{m} . \tag{2.2}
\end{equation*}
$$

Let $R\left(\Delta_{f}(m), h_{m}\right)$ denote the number of nonnegative integral solutions to 2.2). If $h_{m} \neq 0$ and $\Delta_{f}(m)=0$, let $R\left(\Delta_{f}(m), h_{m}\right)=0$. If $h_{m}=\Delta_{f}(m)=0$, let $R\left(\Delta_{f}(m), h_{m}\right)=1$. Hence

$$
q_{f}(n)=\sum_{b \in P(n)} \prod_{m=1}^{n} R\left(\Delta_{f}(m), h_{m}\right)
$$

where $P(n)$ is the set of all partitions of n. It is clear that $h_{1}+2 h_{2}+\cdots+n h_{n}=n$. Therefore,

$$
\begin{aligned}
1+\sum_{n=1}^{\infty} q_{f}(n) z^{n} & =1+\sum_{n=1}^{\infty}\left(\sum_{b \in P(n)} \prod_{m=1}^{n} R\left(\Delta_{f}(m), h_{m}\right)\right) z^{n} \\
& =1+\sum_{n=1}^{\infty}\left(\sum_{b \in P(n)} \prod_{m=1}^{n} R\left(\Delta_{f}(m), h_{m}\right)\right) z^{h_{1}+2 h_{2}+\cdots+n h_{n}} \\
& =1+\sum_{n=1}^{\infty}\left(\sum_{b \in P(n)} \prod_{m=1}^{n} R\left(\Delta_{f}(m), h_{m}\right) z^{m h_{m}}\right) \\
& =\prod_{m=1}^{\infty}\left(\sum_{h_{m}=0}^{\infty} R\left(\Delta_{f}(m), h_{m}\right) z^{m h_{m}}\right) \\
& =\prod_{m=1}^{\infty}\left(\sum_{t_{1}=0}^{\infty} \sum_{t_{2}=0}^{\infty} \cdots \sum_{t_{\Delta_{f}(m)}=0}^{\infty} z^{m\left(t_{1}+t_{2}+\cdots+t_{\Delta_{f}(m)}\right)}\right) \\
& =\prod_{m=1}^{\infty}\left(\sum_{t_{1}=0}^{\infty} z^{t_{1} m} \sum_{t_{2}=0}^{\infty} z^{t_{2} m} \ldots \sum_{t_{f_{f}(m)}=0}^{\infty} z^{t_{\Delta_{f}(m)}}\right) \\
& =\prod_{m=1}^{\infty}\left(1-z^{m}\right)^{-\Delta_{f}(m)} .
\end{aligned}
$$

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

All constants c_{i} depend only on r. In this section $f(x)=\sqrt[r]{x}$. Then $q_{f}(n)=p_{r}(n)$. For any real number $r>1$, let

$$
g_{r}(n)=\#\{k:\lfloor\sqrt[r]{k}\rfloor=n\} .
$$

That is, $g_{r}(n)=\Delta_{f}(n)$.
Lemma 3.1. Let r be a real number with $r>1$. Then

$$
p_{r}(n) \geq p_{r}(n-1)+g_{r}(n)(n \geq 2), \quad p_{r}(n) \geq n+1(n \geq 1) .
$$

Proof. If $n-1=\left\lfloor\sqrt[r]{a_{1}}\right\rfloor+\cdots+\left\lfloor\sqrt[r]{a_{k}}\right\rfloor$ is an r-th root partition of $n-1$, then $n=$ $\left\lfloor\sqrt[r]{a_{0}}\right\rfloor+\left\lfloor\sqrt[r]{a_{1}}\right\rfloor+\cdots+\left\lfloor\sqrt[r]{a_{k}}\right\rfloor\left(a_{0}=1\right)$ is an r-th root partition of n. Since $n=\left\lfloor\sqrt[r]{b_{1}}\right\rfloor$ $\left(n^{r} \leq b_{1}<(n+1)^{r}\right)$ are $g_{r}(n) r$-th root partitions of n which can not be obtained from any r-th root partition of $n-1$, we have

$$
p_{r}(n) \geq p_{r}(n-1)+g_{r}(n) \quad(n \geq 2)
$$

It follows from $p_{r}(1) \geq 2$ and $g_{r}(n) \geq 1$ that

$$
p_{r}(n) \geq p_{r}(n-1)+1 \geq \cdots \geq p_{r}(1)+n-1 \geq n+1 .
$$

Lemma 3.2. Let $0<z<1$ and $r>1$. Then

$$
\frac{c_{3} z}{(1-z)^{r}} \leq \sum_{n=1}^{\infty} n^{r-1} z^{n} \leq \frac{c_{4} z}{(1-z)^{r}}
$$

where c_{3} and c_{4} are two explicit positive constants.
Proof. It is known that the Gamma function has the following property

$$
\Gamma(t)=\lim _{n \rightarrow \infty} \frac{n!n^{t}}{t(t+1) \cdots(t+n)}
$$

Hence

$$
\begin{aligned}
\Gamma(r) & =\lim _{n \rightarrow \infty} \frac{n!n^{r}}{r(r+1) \cdots(r+n)} \\
& =\lim _{n \rightarrow \infty} \frac{(n-1)!n^{r-1}}{r(r+1) \cdots(r+n-2)}
\end{aligned}
$$

Thus there exist two explicit positive constants c_{3} and c_{4} (depending only on r) such that

$$
c_{3} \leq \frac{(n-1)!n^{r-1}}{r(r+1) \cdots(r+n-2)} \leq c_{4} .
$$

That is,

$$
c_{3} \frac{r(r+1) \cdots(r+n-2)}{(n-1)!} \leq n^{r-1} \leq c_{4} \frac{r(r+1) \cdots(r+n-2)}{(n-1)!}
$$

Here and later, we consider $r(r+1) \cdots(r+n-2)$ as 1 if $n=1$. Since

$$
\begin{aligned}
\frac{z}{(1-z)^{r}} & =z \sum_{n=0}^{\infty} \frac{(-r)(-r-1) \cdots(-r-n+1)}{n!}(-z)^{n} \\
& =\sum_{n=0}^{\infty} \frac{r(r+1) \cdots(r+n-1)}{n!} z^{n+1} \\
& =\sum_{n=1}^{\infty} \frac{r(r+1) \cdots(r+n-2)}{(n-1)!} z^{n}
\end{aligned}
$$

it follows that

$$
\frac{c_{3} z}{(1-z)^{r}} \leq \sum_{n=1}^{\infty} n^{r-1} z^{n} \leq \frac{c_{4} z}{(1-z)^{r}}
$$

Lemma 3.3. Let r be a real number with $r>1$. Then

$$
(r-1) n^{r-1}<g_{r}(n)<r 2^{r} n^{r-1} .
$$

Proof. Since

$$
g_{r}(n)=\#\left\{k: n^{r} \leq k<(n+1)^{r}\right\}=\#\left\{k:\left\lceil n^{r}\right\rceil \leq k<\left\lceil(n+1)^{r}\right\rceil\right\},
$$

it follows that

$$
g_{r}(n)=\left\lceil(n+1)^{r}\right\rceil-\left\lceil n^{r}\right\rceil=(n+1)^{r}-n^{r}+\Delta,
$$

where $|\Delta|<1$ and $\lceil x\rceil$ denotes the least integer not less than x. By the Lagrange mean value theorem, we have

$$
g_{r}(n)=r \xi^{r-1}+\Delta
$$

for some real number $\xi \in(n, n+1)$. Then,

$$
(r-1) n^{r-1} \leq r n^{r-1}-1<g_{r}(n)<r(n+1)^{r-1}+1<2 r(n+1)^{r-1} \leq r 2^{r} n^{r-1}
$$

Lemma 3.4. We have

$$
\begin{equation*}
\frac{c_{5} z}{(1-z)^{r}}<\log w(z)<\frac{c_{6} z}{(1-z)^{r}}, \quad 0<z<1 \tag{3.1}
\end{equation*}
$$

where c_{5} and c_{6} are two explicit positive constants.
Proof. It follows from Theorem 1.1 that (noting that $\Delta_{f}(n)=g_{r}(n)$ for $f(x)=\sqrt[r]{x}$)

$$
w(z)=\prod_{n=1}^{\infty}\left(1-z^{n}\right)^{-g_{r}(n)}
$$

Thus

$$
\begin{equation*}
\log w(z)=-\sum_{n=1}^{\infty} g_{r}(n) \log \left(1-z^{n}\right) \tag{3.2}
\end{equation*}
$$

By Lemma 3.3 and (3.2), we have

$$
\begin{gather*}
\log w(z)>\sum_{n=1}^{\infty} g_{r}(n) z^{n}>(r-1) \sum_{n=1}^{\infty} n^{r-1} z^{n} \tag{3.3}\\
\log w(z)<-r 2^{r} \sum_{n=1}^{\infty} n^{r-1} \log \left(1-z^{n}\right) \tag{3.4}
\end{gather*}
$$

By Lemma 3.2 and (3.3), we obtain the lower bound of (3.1).

Now we prove the upper bound of (3.1) by (3.4). By Lemma 3.2,

$$
\begin{aligned}
-\sum_{n=1}^{\infty} n^{r-1} \log \left(1-z^{n}\right) & =\sum_{n=1}^{\infty} n^{r-1} \sum_{k=1}^{\infty} \frac{z^{k n}}{k} \\
& =\sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{\infty} n^{r-1} z^{k n} \\
& <c_{4} \sum_{k=1}^{\infty} \frac{1}{k} \frac{z^{k}}{\left(1-z^{k}\right)^{r}} \\
& =\frac{c_{4}}{(1-z)^{r}} \sum_{k=1}^{\infty} \frac{1}{k} \frac{z^{k}}{\left(1+z+\cdots+z^{k-1}\right)^{r}} \\
& <\frac{c_{4} z}{(1-z)^{r}} \sum_{k=1}^{\infty} \frac{1}{k} \frac{z^{k-1}}{1+z+\cdots+z^{k-1}} \\
& <\frac{c_{4} z}{(1-z)^{r}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \\
& =\frac{\pi^{2}}{6} \frac{c_{4} z}{(1-z)^{r}} .
\end{aligned}
$$

Therefore, in combination with (3.4) we obtain the upper bound of (3.1).
Proof of Theorem 1.2. For $f(x)=\sqrt[r]{x}$, we have $q_{f}(n)=p_{r}(n)$. Since

$$
\log x>\frac{x-1}{x}
$$

for any real number $x \in(0,1)$ and using Lemma 3.4, it follows from (1.3) that, for $0<z<1$, we have

$$
\log \left(p_{r}(n) z^{n}\right) \leq \log w(z) \leq c_{6} \frac{z}{(1-z)^{r}}<\frac{c_{6}}{z^{r-1}(-\log z)^{r}}
$$

That is,

$$
\log p_{r}(n) \leq \frac{c_{6}}{z^{r-1}(-\log z)^{r}}-n \log z
$$

We choose $z_{1}=\exp \left(-n^{-1 /(r+1)}\right)$. Then $z_{1} \geq e^{-1}$ and

$$
\begin{equation*}
\log p_{r}(n) \leq \frac{c_{6}}{e^{-r+1}\left(-\log z_{1}\right)^{r}}-n \log z_{1}=c_{2} n^{r /(r+1)} \tag{3.5}
\end{equation*}
$$

where $c_{2}=c_{6} e^{r-1}+1$. Thus, we have proved the upper bound in Theorem 1.2.
We will use this upper bound to give a lower bound of $\log p_{r}(n)$. For $0<z<1$, by Lemma 3.1 and (3.5), we have

$$
\begin{aligned}
w(z) & =1+\sum_{k=1}^{n-1} p_{r}(k) z^{k}+\sum_{k=n}^{\infty} p_{r}(k) z^{k} \\
& \leq n p_{r}(n)+\sum_{k=n}^{\infty} \exp \left(c_{2} k^{r /(r+1)}\right) z^{k} .
\end{aligned}
$$

We choose $z_{2}=\exp \left(-(r+1) c_{2} n^{-1 /(r+1)}\right)$. Then

$$
\exp \left(c_{2} k^{r /(r+1)}\right) z_{2}^{k /(r+1)}=\exp \left(c_{2}\left(k^{r /(r+1)}-k n^{-1 /(r+1)}\right)\right) \leq 1, \quad k \geq n
$$

Thus, by Lemma 3.1 and $c_{2}>1$, we have

$$
\begin{aligned}
w\left(z_{2}\right) & \leq n p_{r}(n)+\sum_{k=n}^{\infty} z_{2}^{k r /(r+1)}=n p_{r}(n)+\frac{z_{2}^{n r /(r+1)}}{1-z_{2}^{r /(r+1)}} \\
& =n p_{r}(n)+\frac{\exp \left(-c_{2} r n^{r /(r+1)}\right)}{1-\exp \left(-c_{2} r n^{-1 /(r+1)}\right)} \\
& =n p_{r}(n)+\frac{\exp \left(-c_{2} r\left(n^{r /(r+1)}-n^{-1 /(r+1)}\right)\right)}{\exp \left(c_{2} r n^{-1 /(r+1)}\right)-1} \\
& <n p_{r}(n)+\frac{1}{c_{2} r} n^{1 /(r+1)} \exp \left(-c_{2} r\left(n^{r /(r+1)}-n^{-1 /(r+1)}\right)\right) \\
& <n p_{r}(n)+\frac{1}{c_{2} r} n<n p_{r}(n)+n=(n+1) p_{r}(n) \leq p_{r}(n)^{2} .
\end{aligned}
$$

Since $\log x<x-1$ for any real number $x \in(0,1)$ and using Lemma 3.4, it follows that

$$
\log p_{r}(n) \geq \frac{1}{2} \log w\left(z_{2}\right) \geq \frac{c_{5} z_{2}}{2\left(1-z_{2}\right)^{r}} \geq \frac{c_{5} z_{2}}{2\left(-\log z_{2}\right)^{r}} \geq c_{1} n^{r /(r+1)}
$$

where

$$
c_{1}=\frac{c_{5} \exp \left(-(r+1) c_{2}\right)}{2(r+1)^{r} c_{2}^{r}}
$$

Thus, we have proved the lower bound in Theorem 1.2. This completes the proof.

Acknowledgments

In the proof of the upper bound of (3.1), we use an idea of R . Balasubramanian for $r=2$. We would like to thank R. Balasubramanian for allowing us to use his idea.

References

[1] R. Balasubramanian and F. Luca, On the number of factorizations of an integer, Integers 11 (2011), no. 2, 139-143. http://dx.doi.org/10.1515/integ.2011.012
[2] Y.-G. Chen and Y.-L. Li, On the square-root partition function, C. R. Math. Acad. Sci. Paris 353 (2015), no. 4, 287-290. http://dx.doi.org/10.1016/j.crma.2015.01.013

Ya-Li Li and Yong-Gao Chen
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal
University, Nanjing 210023, P. R. China
E-mail address: 605494383@qq.com, ygchen@njnu.edu.cn

[^0]: Received September 17, 2015, accepted December 29, 2015.
 Communicated by Yu-Ru Liu.
 2010 Mathematics Subject Classification. 11P81, 11P82, 11P83, 05A17.
 Key words and phrases. r-th root partition, Partition function.
 This work was supported by the National Natural Science Foundation of China (No. 11371195) and PAPD. *Corresponding author.

