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Normalized Laplacian Eigenvalues and Energy of Trees

Kinkar Ch. Das* and Shaowei Sun

Abstract. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G). For any vertex vi ∈ V (G), let di denote the degree of vi. The normalized

Laplacian matrix of the graph G is the matrix L = (Lij) given by

Lij =


1 if i = j and di 6= 0

− 1√
di dj

if vivj ∈ E(G)

0 otherwise.

In this paper, we obtain some bounds on the second smallest normalized Laplacian

eigenvalue of tree T in terms of graph parameters and characterize the extremal trees.

Utilizing these results we present some lower bounds on the normalized Laplacian

energy (or Randić energy) of tree T and characterize trees for which the bound is

attained.

1. Introduction

Let G = (V,E) be a connected graph with vertex set V = {v1, v2, . . . , vn} and edge set

E = E(G) (|E(G)| = m). Also let di be the degree of vertex vi for i = 1, 2, . . . , n. The

maximum degree and the second maximum degree of G are denoted by ∆1 = ∆1(G) and

∆2 = ∆2(G), respectively. Let NG(vi) be the neighbor set of the vertex vi ∈ V (G). The

distance dG(vi, vj) between the vertices vi and vj of the graph G is equal to the length of

(number of edges in) the shortest path that connects vi and vj . The diameter of a graph

G, denoted by d, is the maximum distance between any two vertices of G. If vertices vi

and vj are adjacent, we denote that by vivj ∈ E(G). Let A(G) and D(G) be the adjacency

matrix and the diagonal matrix of vertex degrees of G, respectively. The Laplacian matrix

of G is L(G) = D(G)− A(G). The normalized Laplacian matrix L(G) of G is defined as

D−1/2(G)L(G)D−1/2(G). Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 ≥ ρn = 0 denote the eigenvalues of

L(G). Denote by Spec(G) = {ρ1, ρ2, . . . , ρn} the spectrum of L(G), i.e., the normalized
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Laplacian spectrum of G. Then we have
∑n

i=1 ρi = n. When the graph G is disconnected,

ρn−1 = ρn = 0.

For a subset U of V (G), let G − U be the subgraph of G obtained by deleting the

vertices of U and the edges incident with them. If U = {vi}, the subgraph G − U will

be written as G − vi for short. For any two adjacent vertices vi and vj in graph G, we

use G − vivj to denote the graph obtained by deleting an edge vivj from graph G. As

usual, Kn, and Sn, denote, respectively, the complete graph, and the star on n vertices.

Let DS(p, q) (p + q = n, 2 ≤ p ≤ q) be a double star obtained by joining the centers of

two stars Sp and Sq with an edge. The normalized Laplacian spectrum of DS(p, q) is

(1.1) Spec(DS(p, q)) =

2, 1±

√(
1− 1

p

)(
1− 1

q

)
, 1, . . . , 1︸ ︷︷ ︸

n−4

, 0

 .

For other undefined notations and terminology from graph theory, the readers are referred

to [1].

Chung [6] gave an upper bound on ρn−1 in the following:

ρn−1(G) ≤ 1− 2

√
∆1 − 1

∆1

(
1− 2

d

)
+

2

d
, (d ≥ 4).

From the above, we can see that the upper bound for ρn−1 of graphs is very close to 1. Li

et al. [12] obtained the following result:

(1.2) ρn−1(T ) ≤ 1−

√
1− n− 1

2(n− 2)
, (T � Sn, n ≥ 5)

with equality holding if and only if T ∼= DS(2, n−2). Li et al. [13] presented the following

upper bound:

(1.3) ρn−1(T ) ≤ 1−
√

6

3
, (n ≥ 8, d ≥ 5).

We give an upper bound on ρn−1(T ) in terms of ∆1 and ∆2, and we state the theorem as

follows.

Theorem 1.1. Let T be a tree of order n ≥ 3. Then

(1.4) ρn−1(T ) ≤


1−

√(
1− 1

∆1

)(
1− 1

∆2

)
, v1v2 ∈ E(T );

1−
√

1− 1

∆2
, v1v2 6= E(T ),

where ∆1 and ∆2 are the maximum and the second maximum degrees of vertices v1 and

v2 in T , respectively. Moreover, the equality holds in (1.4) if and only if
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(i) when v1v2 ∈ E(T ), T ∼= Sn or T ∼= DS(∆2,∆1), ∆1 + ∆2 = n.

(ii) when v1v2 6= E(T ), T ∼= T (n, k, n1, n2, . . . , nk), n1 = n2.

The normalized Laplacian energy [4] (or Randić energy) of a graph G is

(1.5) EL(G) =
n∑
i=1

|ρi − 1|.

For several lower and upper bounds on normalized Laplacian energy, see [3, 4, 8–10]. In

this paper, we obtain the following lower bound on EL(T ) in terms of ∆1 and ∆2 of trees

T .

Theorem 1.2. Let T be a tree of order n ≥ 3. Then

(1.6) EL(T ) ≥


2 + 2

√(
1− 1

∆1

)(
1− 1

∆2

)
, v1v2 ∈ E(T );

2 + 2

√
1− 1

∆2
, v1v2 6= E(T ),

where ∆1 and ∆2 are the maximum and the second maximum degrees of vertices v1 and

v2 in T , respectively. Moreover, the equality holds in (1.6) if and only if

(i) when v1v2 ∈ E(T ), T ∼= Sn or T ∼= DS(∆2,∆1), ∆1 + ∆2 = n.

(ii) when v1v2 6= E(T ), T ∼= T (n, 2, n−12 , n−12 ).

2. Preliminaries

In this section, we shall list some previously known results that will be needed in the next

two sections.

Lemma 2.1. [6] Let G be a connected graph of order n ≥ 2. Then ρn−1 ≤ n
n−1 with

equality holding if and only if G ∼= Kn. If G is not the complete graph Kn, then ρn−1 ≤ 1.

Lemma 2.2. [6] Let G be a graph and f be a harmonic eigenfunction of L associated with

eigenvalue ρ. Then for any vi ∈ V (G), we have

(2.1) f(vi)−
1

di

∑
vivj∈E(G)

f(vj) = ρf(vi).

Lemma 2.3. [5] Let G be a graph, and let H = G− e, where e is an edge of G. If

ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G) and ρ1(H) ≥ ρ2(H) ≥ · · · ≥ ρn(H)

are the eigenvalues of L(G) and L(H), respectively, then

ρi−1(G) ≥ ρi(H) ≥ ρi+1(G) for i = 1, 2, . . . , n,

where ρ0(G) = 2 and ρn+1(G) = 0.



494

Lemma 2.4. Let T be a tree of order n. Also let T ∗ be a tree obtained by removing k

pendant vertices from T . Then

ρn−1(T ) ≤ ρn−k−1(T ∗).

Proof. Denote by T i the tree obtained by removing one pendant vertex from T i−1, 1 ≤
i ≤ k, where T 0 ∼= T . Then we have T k ∼= T ∗. By Lemma 2.3, we have

ρn−1(T ) ≤ ρn−2(T 1) ≤ ρn−3(T 2) ≤ · · · ≤ ρn−k−1(T k) = ρn−k−1(T
∗).

Let e = uv be an edge of a graph G. Let G′ be the graph obtained from G by

contracting the edge e into a new vertex ue and adding a new pendant edge ueve, where

ve is a new pendant vertex. We say that G′ is obtained from G by separating an edge uv.

In [12], Li et al. study how the second smallest normalized Laplacian eigenvalue behaves

when the graph is perturbed by separating an edge.

Lemma 2.5. [12] Let e = uv be a cut edge of a connected graph G and suppose that

G − uv = G1 ∪ G2 (|V (G1)|, |V (G2)| ≥ 2), where G1 and G2 are two components of

G − uv, u ∈ V (G1) and v ∈ V (G2). Let G′ be the graph obtained from G by separating

the edge uv. Then ρn−1(G) ≤ ρn−1(G
′), and the inequality is strict if f(ve) 6= 0, where f

is a harmonic eigenfunction associated with ρn−1(G
′).

The following result is obtained by Chung [6].

Lemma 2.6. Let G be a bipartite graph of order n. Then ρi(G) + ρn−i+1(G) = 2, 1 ≤
i ≤

⌈
n
2

⌉
.

Lemma 2.7. [12] Let G be a connected graph with a cut vertex v. Then ρn−1 ≤ 1.

Moreover, if ρn−1 = 1, then v is adjacent to every vertex of G and δ(G) = 1, where δ(G)

is the minimum degree of graph G.

The following result is very similar to the result in [7], so we omit the proof.

Lemma 2.8. Let G = (V,E) be a graph with vertex subset V ′ = {v1, v2, . . . , vk} having the

same set of neighbors {vk+1, vk+2, . . . , vs}, where V = {v1, . . . , vk, . . . , vs, . . . , vn}. Then

this graph G has at least k − 1 equal normalized Laplacian eigenvalues 1.

3. Bounds on the second smallest normalized Laplacian eigenvalue of trees

Let e = uv be an edge of graph G, and define two sets Nu(e) and Nv(e) as follows:

Nu(e) = {w ∈ V (G) | dG(w, u) < dG(w, v)} ,

Nv(e) = {w ∈ V (G) | dG(w, v) < dG(w, u)} .
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The number of elements of Nu(e) and Nv(e) are denoted by nu(e) and nv(e), respec-

tively. Thus, nu(e) counts the vertices of G lying closer to the vertex u than to vertex

v. The meaning of nv(e) is analogous. Vertices equidistant from both ends of the edge

uv belong neither to Nu(e) nor to Nv(e). Note that for any edge e of G, nu(e) ≥ 1 and

nv(e) ≥ 1, because u ∈ Nu(e) and v ∈ Nv(e). We now give some upper bounds on the

second smallest normalized Laplacian eigenvalue of trees.

Theorem 3.1. Let T be a tree of order n. Then

(3.1) ρn−1(T ) ≤ 1− max
wz∈E(T )

{√(
1− 1

nw(e)

)(
1− 1

nz(e)

)}
,

where nw(e) counts the number of vertices of T lying closer to the vertex w than to vertex

z, where e = wz ∈ E(T ). Moreover, the equality holds in (3.1) if and only if T ∼= Sn or

T ∼= DS(p, q), p+ q = n.

Proof. Let d be the diameter of tree T . For d = 2, we have T ∼= Sn and hence ρn−1(T ) = 1,

the equality holds in (3.1). For d = 3, we have T ∼= DS(p, q), p+ q = n, p ≤ q. By (1.1),

we get the equality in (3.1).

Now we assume that d ≥ 4. Suppose we consider an edge e = wz ∈ E(T ) such that

nz ≥ nw ≥ 2. Let T 1 be the tree obtained from T by separating an edge uv such that

e = wz 6= uv and du, dv ≥ 2. By Lemma 2.5, we have ρn−1(T ) ≤ ρn−1(T 1). Repeating the

above process by at most n− dw − dz times, we can obtain a sequence of trees:

T, T 1, T 2, . . . , T k−1, T k = DS(nw, nz) (nw + nz = n, nz ≥ nw)

with ρn−1(T ) ≤ ρn−1(T 1) ≤ ρn−1(T 2) ≤ · · · ≤ ρn−1(T k−1) ≤ ρn−1(T k) = ρn−1(DS(nw, nz)).

By Lemma 2.5, we get ρn−1(T
k−1) < ρn−1(T

k) = ρn−1(DS(nw, nz)) (otherwise, the har-

monic eigenfunction f associated with ρn−1(T
k) = ρn−1(DS(nw, nz)) must be equal to

zero, a contradiction). By (1.1), we get the required result.

We now obtain a lower bound on ρ2(T ) of tree T .

Theorem 3.2. Let T be a tree of order n. Then

(3.2) ρ2(T ) ≥ 1 + max
wz∈E(T )

{√(
1− 1

nw(e)

)(
1− 1

nz(e)

)}
,

where nw(e) counts the number of vertices of T lying closer to the vertex w than to vertex

z, where e = wz ∈ E(T ). Moreover, the equality holds in (3.2) if and only if T ∼= Sn or

T ∼= DS(p, q), p+ q = n.
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Proof. By Lemma 2.6, we have ρ2(T ) = 2− ρn−1(T ). By (3.1), we get the required result

in (3.2). Moreover, the equality holds in (3.2) if and only if T ∼= Sn or T ∼= DS(p, q),

(p+ q = n, p ≤ q), by Theorem 3.1.

Denote by T (n, k, n1, n2, . . . , nk) the tree of order n formed by joining the center vi of

star Sni to a new vertex v for i = 1, 2, . . . , k; that is,

T (n, k, n1, n2, . . . , nk)− {v} = Sn1 ∪ Sn2 ∪ · · · ∪ Snk
.

Therefore this tree T (n, k, n1, n2, . . . , nk) has n1+n2+ · · ·+nk+1 = n vertices and assume

that n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. In particular, T (n, k, n1, n2, . . . , nk) ∼= Sn for n1 = 1. Let

T ∼= T (n, k, n1, n2, . . . , nk) and

SN(v) = {vi ∈ V (T ) : there exists a vertex vj ∈ NT (v) with ni = nj , 1 ≤ i 6= j ≤ k} .

Lemma 3.3. Let T ∼= T (n, k, n1, n2, . . . , nk) be a tree of order n with n1 ≥ n2 ≥ · · · ≥ nk.

If any vi ∈ SN(v) 6= ∅, then

ρn−1(T ) ≤ 1−
√

1− 1

ni
.

Proof. We only have to prove 1−
√

1− 1
ni

is an eigenvalue of T . If ni = 1, then there exist

two vertices vi and vk in T such that ni = nk = 1 with viv ∈ E(T ), vkv ∈ E(T ) (from the

given condition). By Lemma 2.8, ρ = 1 = 1−
√

1− 1
ni

is an eigenvalue of T . Otherwise,

ni ≥ 2. Then we have to prove that ρ = 1 −
√

1− 1
ni

(< 1) is an eigenvalue of T . Let

r = max {j | nj > 1, 1 ≤ j ≤ k}. Then nr+1 = nr+2 = · · · = nk = 1. In T , d(v) = k and

vvj ∈ E(T ), 1 ≤ j ≤ k. Since d(vj) = nj , we can assume that vj,1, vj,2, . . . , vj,nj−1 are

the remaining vertices adjacent to vertex vj , j = 1, 2, . . . , r. Again since n2 ≥ 2, we can

assume that ρ (6= 1, 2) is a non-zero eigenvalue of T . From (2.1), we can easily get

f(vj,1) = f(vj,2) = · · · = f(vj,nj−1), 1 ≤ j ≤ r,

f(vr+1) = f(vr+2) = · · · = f(vk).

We denote f(vj,1) by xj for 1 ≤ j ≤ r, f(vj) by yj for 1 ≤ j ≤ k (yr+1 = yr+2 = · · · = yk).

For 1 ≤ j ≤ r, from (2.1), we have

ρxj = xj − yj ,(3.3)

ρyj = yj −
nj − 1

nj
xj −

1

nj
f(v),(3.4)

and

ρyr+1 = yr+1 − f(v),(3.5)

ρf(v) = f(v)− 1

k

k∑
j=1

yj .(3.6)
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From (3.3) and (3.4), we get

(3.7) (1− ρ)f(v) = (njρ
2 − 2njρ+ 1)yj for 1 ≤ j ≤ r.

Note that (3.7) is also true for r+ 1 ≤ j ≤ k by (3.5) (since nj = 1, r+ 1 ≤ j ≤ k). Then

we have

(1− ρ)f(v) = (njρ
2 − 2njρ+ 1)yj for 1 ≤ j ≤ k,(3.8)

k(1− ρ)f(v) =
k∑
j=1

yj .(3.9)

Let

aj = njρ
2 − 2njρ+ 1, j = 1, 2, . . . , k.

Also let

Aj =

r+1∏
t=1,t6=j

at for j = 1, 2, . . . , r + 1; Ar+1 = Ar+2 = · · · = Ak.

Denote by

A =

r+1∏
j=1

aj = ajAj , 1 ≤ j ≤ k.

If yj = 0, 1 ≤ j ≤ k, then by (2.1), we have xj = 0, 1 ≤ j ≤ r and f(v) = 0, a

contradiction. Thus all the yj ’s can not be zero. Then there exist two vertices vp, vq ∈ V (T )

(1 ≤ p, q ≤ r) such that yp 6= 0 and yq 6= 0. (Otherwise, from (3.3), (3.4), (3.5) and (3.6),

we get that all the eigencomponents are zero, a contradiction.) If f(v) = 0, then from

(3.7), we get ap = aq = 0. Then we have Aj = 0 for j = 1, 2, . . . , k and hence

(3.10)
k∑
j=1

njAj = 0.

Otherwise, f(v) 6= 0. By (3.8), aj 6= 0, j = 1, 2, . . . , k. Then Aj 6= 0, j = 1, 2, . . . , k.

Multiply by Aj to each side of (3.8), we have (1− ρ)Ajf(v) = ajAjyj = Ayj , 1 ≤ j ≤ k.

Using this result with (3.9), we get

(1− ρ)f(v)

k∑
j=1

Aj =

k∑
j=1

(1− ρ)Ajf(v) =

k∑
j=1

Ayj = A

k∑
j=1

yj = (1− ρ)kAf(v).
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Thus we have

0 = kA−
k∑
j=1

Aj

=
k∑
j=1

(A−Aj)

=
k∑
j=1

Aj(njρ
2 − 2njρ) as aj = njρ

2 − 2njρ+ 1

=
k∑
j=1

njAjρ(ρ− 2),

that is,
k∑
j=1

njAj = 0, as ρ 6= 0, 2,

again satisfies (3.10).

Now we have to check whether 1−
√

1− 1
ni

is a solution of (3.10) or not. For this we

assume that ρ = 1−
√

1− 1
ni

. Then there exists a vertex vp in SN(v) such that ni = np.

Since aj = njρ
2 − 2njρ + 1, we have ai = ap = 0. Thus Aj = 0 for all j = 1, 2, . . . , k,

which satisfies (3.10). Therefore

ρ = 1−
√

1− 1

ni
, vi ∈ SN(v),

is a solution of (3.10), that is, ρ is an eigenvalue of tree T . This completes the proof.

Lemma 3.4. Let T ∼= T (n, k, n1, n2, . . . , nk) be a tree of order n. Then 1 −
√

1− 1
ni

(ni > 1) is an eigenvalue of T if and only if vi ∈ SN(v) 6= ∅.

Proof. Suppose that vi ∈ SN(v) 6= ∅. Then by the proof of Lemma 3.3, we have that

1−
√

1− 1
ni

is an eigenvalue of T .

Conversely, let ρ = 1 −
√

1− 1
ni

(ni > 1) be an eigenvalue of T . By contradiction

we will prove that vi ∈ SN(v) 6= ∅ for ni > 1. For this we assume that vi /∈ SN(v).

Then there is no vertex vj such that ni = nj , j = 1, 2, . . . , k (j 6= i). From the proof of

Lemma 3.3, we have at = ntρ
2 − 2ntρ+ 1, t = 1, 2, . . . , k. Moreover, As =

∏r+1
t=1,t6=s at for

s = 1, 2, . . . , r + 1. Since ρ = 1−
√

1− 1
ni

(ni > 1) is an eigenvalue of T , we have ai = 0

and at 6= 0 as ni 6= nt, t = 1, 2, . . . , k (t 6= i). Therefore Ai 6= 0 and At = 0, t = 1, 2, . . . , k

(t 6= i), that is,
∑k

j=1 njAj 6= 0, a contradiction by (3.10). This completes the proof.
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Lemma 3.5. [2] Let T ∼= T (n, k, n1, n1, . . . , n1) be a tree of order n. Then the distinct

normalized Laplacian eigenvalues of T are:

2, 1 +

√
1− 1

n1
, 1, 1−

√
1− 1

n1
, 0.

Corollary 3.6. Let T ∼= T (n, k, n1, n2, . . . , nk) be a tree of order n with n1 = n2. Then

ρn−1(T ) = 1−
√

1− 1

n1
.

Proof. Since v1 ∈ SN(v), by Lemma 3.3, we have

ρn−1(T ) ≤ 1−
√

1− 1

n1
.

Let T ∗ be a tree obtained from T by adding si (≥ 0 pendent edges to vi (i = 3, 4, . . . , k)

such that T ∗ ∼= T (n∗, k, n1, n1, . . . , n1), where n∗ = n +
∑k

i=3 si = kn1 + 1. Then by

Lemmas 2.4 and 3.5, we have

ρn−1(T ) ≥ ρn∗−1(T ∗) = 1−
√

1− 1

n1
.

Hence

ρn−1(T ) = 1−
√

1− 1

n1
.

Theorem 3.7. Let T = T (n, k, n1, n2, . . . , nk) be a tree of order n with n1 ≥ n2 ≥ · · · ≥
nk. Then

(3.11) ρn−1(T ) ≥ 1−
√

1− 1

n1

with equality holding if and only if n1 = n2.

Proof. By Lemma 2.4 and Corollary 3.6, we can get the required result in (3.11).

If T ∼= T (n, k, n1, n2, . . . , nk), n1 = n2, then by Corollary 3.6, the equality holds in

(3.11). Conversely, let

ρn−1(T ) = 1−
√

1− 1

n1
.

If n1 = 1, then T ∼= T (n, n − 1, 1, . . . , 1). Otherwise, by Lemma 3.4, we have T ∼=
T (n, k, n1, n2, . . . , nk), n1 = n2.

Theorem 3.8. Let T = T (n, k, n1, n2, . . . , nk) be a tree of order n with n1 ≥ n2 ≥ · · · ≥
nk. Then

(3.12) ρn−1(T ) ≤ 1−
√

1− 1

n2

with equality holding if and only if n1 = n2.
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Proof. The first part of the proof is similar to the proof of Theorem 3.7.

If T ∼= T (k, n1, n2, . . . , nk), n1 = n2, then by Corollary 3.6, the equality holds in

(3.12). Conversely, let ρn−1(T ) = 1 −
√

1− 1
n2

. By contradiction we will prove T ∼=
T (n, k, n1, n2, . . . , nk) with n1 = n2. For this we assume that T ∼= T (n, k, n1, n2, . . . , nk)

with n1 > n2. If n2 = 1, then T ∼= DS(p, q) (p ≤ q, p+ q = n). By (1.1),

ρn−1(T ) = 1−

√(
1− 1

p

)(
1− 1

q

)
< 1,

a contradiction. Otherwise, n2 > 1. We denote by T ∗∗, a tree obtained from T such that

T ∗∗ = T − {v3, v4, . . . , vk}. Therefore T ∗∗ ∼= T (n1 + n2 + 1, 2, n1, n2). Since n1 > n2,

v2 /∈ SN(v) and hence by Lemma 3.4, 1−
√

1− 1
n2

is not an eigenvalue of T ∗∗. By (3.12),

we have

ρn−1(T ) ≤ ρn1+n2(T ∗∗) < 1−
√

1− 1

n2
,

a contradiction. This completes the proof.

Denote by Ti(n
∗, k, n1, n2, . . . , nk, h) (see, Figure 3.1), a tree of order n∗ (= n + h)

obtained from T (n, k, n1, n2, . . . , nk) (nk ≥ 2) by adding h pendant edges to a pendant

vertex, neighbor of vi (1 ≤ i ≤ k), that is,

Ti(n
∗, k, n1, n2, . . . , nk, h)− v

= DS(h+ 1, ni − 1) ∪ Sn1 ∪ Sn2 ∪ · · · ∪ Sni−1 ∪ Sni+1 ∪ · · · ∪ Snk
.

Therefore this tree Ti(n
∗, k, n1, n2, . . . , nk, h) has

∑k
j=1 nj+h+1 = n∗ vertices. Moreover,

the tree Ti(n
∗, k, n1, n2, . . . , nk, h) has diameter 5.

Figure 3.1: Tree Ti(n
∗, k, n1, n2, . . . , nk, h).
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Lemma 3.9. Let T = Ti(n
∗, k, n1, n1, . . . , n1︸ ︷︷ ︸

k−1

, nk, h) be a tree of order n∗ (= (k − 1)n1 +

nk + h+ 1) with n1 ≥ nk ≥ 2, k ≥ 3. Then

ρn∗−1(T ) < 1−
√

1− 1

n1
.

Proof. Let H1
∼= T (n∗, k, n1+h, n1, . . . , n1︸ ︷︷ ︸

k−2

, nk), H2
∼= T (n∗, k, nk+h, n1, n1, . . . , n1︸ ︷︷ ︸

k−1

) (n1 <

nk + h) and H3
∼= T (n∗, k, n1, n1, . . . , n1︸ ︷︷ ︸

k−1

, nk + h) (n1 ≥ nk + h). By Lemma 2.5, one can

see easily that

(3.13) ρn∗−1(Ti(n
∗, k, n1, n1, . . . , n1︸ ︷︷ ︸

k−1

, nk, h)) ≤ ρn∗−1(Ht), t = 1, 2, 3

and the inequality is strict if f(ve) 6= 0, where f is a harmonic eigenfunction associated

with ρn∗−1(Ht) and ve is a pendant vertex adjacent to vertex vi in Ht, t = 1, 2, 3. By

Theorem 3.8,

ρn∗−1(Ht) < 1−
√

1− 1

n1
(t = 1, 2)

and

(3.14) ρn∗−1(H3) ≤ 1−
√

1− 1

n1
.

Now we have to prove that the inequality in (3.13) is strict for H3 (for this tree i = k).

We prove this by contradiction. For this we assume that f(ve) = 0. Then by (2.1), we

must have f(vk) = 0 and f(vk,r) = 0, vk,r is a pendant vertex with vkvk,r ∈ E(H3). Again

by (2.1) at vk, we have f(v) = 0. At v, we have

(1− ρn∗−1)f(v) =
1

k

k−1∑
j=1

f(vj).

By symmetry and from the above, we get f(v1) = f(v2) = · · · = f(vk−1) = 0. Similarly,

one can see easily that f(vj,r) = 0, vj,r is a pendant vertex with vjvj,r ∈ E(H3), j =

1, 2, . . . , k − 1. Therefore all the eigencomponents corresponding to ρn∗−1(H3) are zero, a

contradiction. Hence the inequality in (3.13) is strict. From (3.13) and (3.14), we get the

required result.

Theorem 3.10. Let Ti(n
∗, k, n1, n2, . . . , nk, h) be a tree of order n∗ (=

∑k
i=1 ni + h+ 1)

with nk ≥ 2, k ≥ 3. Then

ρn∗−1(Ti(n
∗, k, n1, n2, . . . , nk, h)) < 1−

√
1− 1

n2
.
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Proof. For i = 1 or 2, by Lemma 2.5 and Theorem 3.8, we get

ρn∗−1(Ti(n
∗, k, n1, n2, . . . , nk, h)) ≤ ρn∗−1(T (n∗, k, n′1, n

′
2, n3, . . . , nk))

< 1−
√

1− 1

n2
,

where (n′1, n
′
2) = (n1 + h, n2) or (n1, n2 + h). Otherwise, 3 ≤ i ≤ k. By removing

pendant vertices associated with vertices v3, v4, . . . , vi−1, vi+1, . . . , vk and n1 − n2 number

of pendant vertices adjacent to v1 from Ti(n
∗, k, n1, n2, . . . , nk, h), we obtain a new tree

T3(n
∗∗, 3, n2, n2, ni, h), where n∗∗ = 2n2 + ni + h+ 1. For 3 ≤ i ≤ k, by Lemmas 2.4 and

3.9, we get

ρn∗−1(Ti(n
∗, k, n1, n2, . . . , nk, h)) ≤ ρn∗∗−1(T3(n∗∗, 3, n2, n2, ni, h))

< 1−
√

1− 1

n2
.

We are now ready to give our proof of Theorem 1.1:

Proof of Theorem 1.1. Let d be the diameter of tree T . For d = 2, then T ∼= Sn and the

equality holds in (1.4). For d = 3, then T ∼= DS(∆2,∆1), ∆1 + ∆2 = n and the equality

holds in (1.4), by (1.1). Otherwise, d ≥ 4.

First we assume that e = v1v2 ∈ E(T ). By Theorem 3.1, we have

ρn−1(T ) ≤ 1−

√(
1− 1

nv1(e)

)(
1− 1

nv2(e)

)
< 1−

√(
1− 1

∆1

)(
1− 1

∆2

)
as nv1(e) ≥ ∆1 and nv2(e) ≥ ∆2 with at least one of them must be strict.

Next we assume that v1v2 /∈ E(T ). We now consider two cases:

Case (i). d = 4. In this case T ∼= T (n, k, n1, n2, . . . , nk). Therefore n1 = ∆1 and

n2 = ∆2. These results with Theorem 3.8, we get

ρn−1(T ) ≤ 1−
√

1− 1

n2
= 1−

√
1− 1

∆2

with equality holding if and only if T ∼= T (k, n1, n2, . . . , nk), n1 = n2.

Case (ii). d ≥ 5. Since v1v2 /∈ E(T ), then there exists a vertex v of degree k (≥ 2)

such that ep = vvp ∈ E(T ) and eq = vvq ∈ E(T ), where nvp(ep) ≥ ∆1 and nvq(eq) ≥ ∆2.

Without loss of generality, we can assume that nvp(ep) ≥ nvq(eq). Let T ′ be a tree

obtained from T by separating an edge wz such that e = wz /∈ {ep, eq} and dw, dz ≥ 2.

By Lemma 2.5, we have ρn−1(T ) ≤ ρn−1(T
′). Since d ≥ 5, repeating the above process,

we can obtain a sequence of trees:

T, T ′, T ′′, . . . , Tn
′−1, Tn

′
= Ti(n

∗, k, n1, n2, . . . , nk, h)
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with ρn−1(T ) ≤ ρn−1(T
′) ≤ ρn−1(T

′′) ≤ · · · ≤ ρn−1(T
n′−1) ≤ ρn−1(T

n′). By Theo-

rem 3.10, one can get easily that

ρn−1(T ) ≤ ρn−1(Tn
′
) < 1−

√
1− 1

n2
≤ 1−

√
1− 1

∆2
as n2 ≥ ∆2.

This completes the proof of the theorem.

Corollary 3.11. Let T be a tree of order n ≥ 3. Then

(3.15) ρn−1(T ) ≤ 1

∆2

with equality holding if and only if T ∼= Sn or T ∼= DS(n/2, n/2) (n is even).

Proof. For v1v2 /∈ E(T ), we have ∆2 ≥ 2 and hence

1−
√

1− 1

∆2
< 1−

√(
1− 1

∆1

)(
1− 1

∆2

)
.

Since ∆1 ≥ ∆2, one can see easily that

1−

√(
1− 1

∆1

)(
1− 1

∆2

)
≤ 1

∆2

with equality holding if and only if ∆2 = 1 or ∆1 = ∆2. By Theorem 1.1, we get the

required result in (3.15). Moreover, the equality holds in (3.15) if and only if T ∼= Sn or

T ∼= DS(n/2, n/2) (n is even).

Remark 3.12. For ∆2 ≥ 2, one can see easily that

1−
√

1− 1

∆2
< 1−

√
1− n− 1

2(n− 2)
.

Therefore our result in (1.4) is always better than the result in (1.2) when v1v2 /∈ E(T ).

Remark 3.13. For ∆2 ≥ 3 with v1v2 /∈ E(T ), our result is better than the result in (1.3).

Remark 3.14. For d ≥ 5, one can easily check that the upper bound in (1.3) is always

better than the upper bound in (1.2). For v1v2 ∈ E(T ), the upper bound in (1.4) is better

than the upper bound in (1.3) when ∆2 ≥ 6 because

1−

√(
1− 1

∆1

)(
1− 1

∆2

)
< 1−

√
6

3
,

that is,

(∆1 − 3)(∆2 − 3) > 6.

But for the graph H1 (see, Figure 3.2), the upper bound in (1.3) is better than the upper

bound in (1.4).
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Figure 3.2: Tree H1.

Remark 3.15. For any given n, we can always make a tree T (n, k, n1, n2, . . . , nk) (n1 = n2)

such that the equality holding in (1.4).

4. Normalized Laplacian energy of trees

In this section we give some lower bounds on the normalized Laplacian energy of trees. In

the literature several lower bounds were established [9,11], but all the lower bounds are in

terms of several graph invariants, not easy to compute. Here we give some lower bounds

on normalized Laplacian energy of trees.

Theorem 4.1. Let T be a tree of order n. Then

(4.1) EL(T ) ≥ 2 + 2 max
uv∈E(T )

{√(
1− 1

nu(e)

)(
1− 1

nv(e)

)}
with equality holding if and only if T ∼= Sn or T ∼= DS(p, q) (2 ≤ p ≤ q, p+ q = n).

Proof. Let d be the diameter of tree T . For d = 2, T ∼= Sn and hence the equality holds

in (4.1). For d = 3, T ∼= DS(p, q) (2 ≤ p ≤ q, p+ q = n). Using (1.1) in (1.5), one can see

easily that the equality holds in (4.1). Otherwise, d ≥ 4.

Let ν (1 ≤ ν ≤ n− 1) be the largest positive integer such that

ρν > 1.

Also let Sk(T ) be the sum of the largest k normalized Laplacian eigenvalues of tree T .

Then

Sk(T ) =
k∑
i=1

ρi.

One can easily see that

Sν(T )− Sk(T ) =
ν∑

i=k+1

ρi ≥ ν − k for ν > k,

Sk(T )− Sν(T ) =

k∑
i=ν+1

ρi ≤ k − ν for k > ν
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and

Sν(T ) = Sk(T ) for k = ν.

From the above, we conclude that for any k, 1 ≤ k ≤ n− 1,

Sν(T )− Sk(T ) ≥ ν − k,

that is,

2Sν(T )− 2ν ≥ 2Sk(T )− 2k.

Using the above result in (1.5), we have

EL(T ) =
ν∑
i=1

(ρi − 1) +
n∑

i=ν+1

(1− ρi)

= 2Sν(T )− 2ν as
n−1∑
i=1

ρi = n

≥ 2Sn−2(T )− 2(n− 2).

Since Sn−2(T ) = n− ρn−1, we get

EL(T ) ≥ 4− 2ρn−1.

Since d ≥ 4, by Theorem 3.1,

EL(T ) > 2 + 2 max
uv∈E(T )

{√(
1− 1

nu(e)

)(
1− 1

nv(e)

)}
.

This completes the proof.

Lemma 4.2. Let T ∼= T (n, k, n1, n2, . . . , nk) with n1 = n2 ≥ n3 ≥ · · · ≥ nk (n1 ≥ 2) be a

tree of order n. Then ρ3 = ρ4 = · · · = ρn−2 = 1 if and only if T ∼= T (n, 2, n−12 , n−12 ).

Proof. If T ∼= T (n, 2, n−12 , n−12 ), then the normalized Laplacian spectrum of tree T is the

following: 2, 1±
√
n− 3

n− 1
, 1, 1, . . . , 1︸ ︷︷ ︸

n−4

, 0

 .

Thus we have ρ3 = ρ4 = · · · = ρn−2 = 1. Otherwise, k ≥ 3 and hence T ⊇ T (n∗, 3, n1, n1, 1)

(n ≥ n∗). The normalized Laplacian spectrum of tree T (n∗, 3, n1, n1, 1) is the following:2, 1±
√
n1 − 1

n1
, 1±

√
n1 − 1

3n1
, 1, 1, . . . , 1︸ ︷︷ ︸

n∗−6

, 0

 .
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By Lemma 2.3, we have

ρn−2(T (n, k, n1, n1, n3, . . . , nk)) ≤ ρn∗−2(T (n∗, 3, n1, n1, 1)) < 1 (n ≥ n∗).

This completes the proof of the lemma.

We are now giving our proof of Theorem 1.2.

Proof of Theorem 1.2. For T ∼= Sn or T ∼= DS(∆2,∆1), ∆1 + ∆2 = n, v1v2 ∈ E(T ), one

can see easily that the equality holds in (1.6). Otherwise, d ≥ 4.

Similarly, from the proof of Theorem 4.1, we get

EL(T ) = 2Sν(T )− 2ν ≥ 2S2(T )− 4 = 2ρ2 as ρ1 = 2.

By Lemma 2.6 with Theorem 1.1, we get the required result in (1.6). The first part of the

proof is done.

For d ≥ 4, the equality holds in (1.6) if and only if ν = 2 and T ∼= T (n, k, n1, n2, . . . , nk),

n1 = n2 ≥ 2, v1v2 /∈ E(T ), by Theorem 1.1. Since ν = 2, ρi ≤ 1, i = 3, 4, . . . , n − 1. By

Lemma 2.6, ρ2 + ρn−1 = 2. Thus we have
∑n−2

i=3 ρi = n − 4, this implies that ρ3 = ρ4 =

· · · = ρn−2 = 1. Hence the equality holds in (1.6) if and only if T ∼= T (n, 2, n−12 , n−12 ) with

v1v2 /∈ E(T ), by Lemma 4.2.
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Comput. Chem. 74 (2015), no. 2, 389–398.

[12] J. Li, J.-M. Guo, W. C. Shiu and A. Chang, An edge-separating theorem on the second

smallest normalized Laplacian eigenvalue of a graph and its applications, Discrete

Appl. Math. 171 (2014), 104–115. http://dx.doi.org/10.1016/j.dam.2014.02.020

[13] , Six classes of trees with largest normalized algebraic connectivity, Linear

Algebra Appl. 452 (2014), 318–327. http://dx.doi.org/10.1016/j.laa.2014.03.030

Kinkar Ch. Das and Shaowei Sun

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of

Korea

E-mail address: kinkardas2003@gmail.com, sunshaowei2009@126.com

http://dx.doi.org/10.1137/s0895480103438589
http://dx.doi.org/10.1090/cbms/092
http://dx.doi.org/10.1016/j.laa.2013.06.010
http://dx.doi.org/10.1016/j.dam.2014.02.020
http://dx.doi.org/10.1016/j.laa.2014.03.030

	Introduction
	Preliminaries
	Bounds on the second smallest normalized Laplacian eigenvalue of trees
	Normalized Laplacian energy of trees

