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Existence of Solutions for Modified Schrödinger-Poisson System with Critical

Nonlinearity in R3

Weiming Liu* and Lu Gan

Abstract. In this paper, we study the existence and multiplicity of semiclassical solu-

tions of a modified version of the Schrödinger-Poisson system with critical nonlinearity

in R3. Under some given conditions which are given in Section 1, we prove that the

problem has at least one nontrivial solution provided that ε ≤ ε and that for any

n∗ ∈ N, it has at least n∗ pairs of solutions if ε ≤ εn∗ , where ε and εn∗ are sufficiently

small positive numbers. Moreover, these solutions uε → 0 in H1(R3) as ε→ 0.

1. Introduction and main result

In this paper, we consider the following modified Schrödinger-Poisson system

(1.1)

−ε2∆u+ V (x)u− ε2∆(u2)u+ Φ(x)u = K(x)|u|22∗−2u+ h(x, u), x ∈ R3,

−∆Φ = u2, x ∈ R3,

where ε > 0, 22∗ = 4N
N−2 = 12, V (x) is a nonnegative potential, and K(x) is a bounded

positive function. We assume that V (x), K(x) and h(x, u) satisfy the following conditions:

(V1) V ∈ C(R3,R) and there is b > 0 such that the set V b :=
{
x ∈ R3 : V (x) < b

}
has

finite Lebesgue measure.

(V2) 0 = V (0) = min
x∈R3

V (x) ≤ V (x) < M .

(K) K ∈ C(R3,R), 0 < K1 := inf
x∈R3

K(x) ≤ K2 := sup
x∈R3

K(x) <∞.

(h1) h ∈ C(R3 × R,R), h(x, u) = o(|u|) uniformly in x as u→ 0.

(h2) There are c0 > 0 and q ∈ (2, 2∗) such that

|h(x, u)| ≤ c0

(
1 + |u|2q−1

)
for all (x, u).
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(h3) There are a0 > 0 and 4 < µ, l < 2∗ such that H(x, u) ≥ a0(|u|2 + |u|)l and

2µH(x, u) ≤ h(x, u)u for all (x, u), where H(x, u) =

∫ u

0
h(x, s) ds.

The modified Schrödinger-Poisson system appears in an interesting physical context.

According to a classical model, the interaction of a charge particle with an electro-magnetic

field can be described by coupling the nonlinear Schrödinger’s and Poisson’s equations.

In recent years, there has been a lot of works dealing with the following Schrödinger-

Poisson equations:

(1.2)


−ε2∆u+ V (x)u+ λΦ(x)u = f(u), x ∈ R3,

−∆Φ = u2, lim
|x|→∞

Φ(x) = 0, x ∈ R3.

In [33], Zhang studied the existence and behavior of bound states for (1.2) with λ > 0

and small ε > 0. For f(u) = |u|p−2u, p ∈ (1, 5), there are some results in the literature. In

the case of ε = 1, V (x) ≡ 1, the existence of radially symmetric positive solutions of system

(1.2) was obtained by D’Aprile and Mugnai in [7] and Ruiz in [27] for p ∈ (2, 5). Azzollini

and Pomponio in [3] obtained the existence of ground state solutions for p ∈ (2, 5). When

p ∈ (1, 2), Ruiz in [27] obtained a nonexistence result. For f(u) = up, λ ≡ 1, the authors

proved that there exist radially symmetric solutions concentrate on the spheres in [13,16]

and a positive bound state solution concentrates on the local minimum of the potential

V in [15]. Ruiz and Vaira in [28] proved the existence of multi-bump solutions whose

bumps concentrated around the local minimum of the potential V . The proofs explored

in [28] are based on a singular perturbation, essentially a Lyapunov-Schmidt reduction

method. In [14], Ianni and Ruiz have been concerned with the existence of ground and

bound states for (1.2) with ε = 1, V (x) = 0, f(u) = µup. For more related results, one

can refer to [2, 5, 11,12,17,18,34] and the references therein.

Some authors researched the following modified nonlinear Schrödinger equation:

(1.3) −∆u+ V (x)u−∆(u2)u = f(x, u), x ∈ RN .

In [26], the existence of positive ground state solution of (1.3) with f(x, u) = λ|u|p−1u

and N = 1 was considered by using a constrained minimization argument, with λ being

the Lagrange multiplier. In [24], by a change of variables, the quasilinear problem was

transformed to a semilinear one and an Orlicz space framework was used as the working

space, and they were able to prove the existence of positive solutions of (1.3) with f(x, u) =

λ|u|p−1u by the mountain-pass theorem, where 4 ≤ p < 22∗. In [23], by utilizing the Nehari

method, Liu treated more general quasilinear problems and obtained positive and sign-

changing solutions. It was shown in [23] that (1.3) has no positive solutions in H1(RN )

with u2|∇u|2 ∈ L1(RN ) if p ≥ 22∗ and V satisfies ∇V (x) · x ≥ 0 in RN . Liu and Wang
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in [19] extended (1.3) to the general quasilinear elliptic equations. For more related results,

one can refer to [9, 10,19–23,25,30,32] and the references therein.

In [31], Yang and Ding have concerned with the existence and multiplicity of semiclas-

sical solutions of the following quasilinear Schrödinger equation:

−ε2∆u+ V (x)u− ε2∆(u2)u = K(x)|u|22∗−2u+ h(x, u), x ∈ RN .

Inspired by [31], we consider the modified Schrödinger-Poisson system with critical non-

linearity in R3. To the best of our knowledge, these results are new. In order to prove

all the results, we mainly follow the ideas in [31]. Our proofs are based on variational

methods.

The main results of this paper are as follows:

Theorem 1.1. Let (V1), (V2), (K), (h1), (h2) and (h3) hold. Then for any δ > 0, there is

εδ > 0 such that if ε ≤ εδ, problem (1.1) has at least one nontrivial solution uε satisfying:

(i)
1

24

∫
R3

K(x)|uε|22∗ +
µ− 4

4

∫
R3

H(x, uε) ≤ δε3, and

(ii)

(
1

2
− 1

µ

)∫
R3

(
ε2|∇uε|2 + V (x)|uε|2

)
≤ δε3.

Theorem 1.2. Assume that (V1), (V2), (K), (h1), (h2) and (h3) hold, and h(x,−u) =

−h(x, u). Then for any n∗ ∈ N and δ > 0 there is εn∗δ such that if ε ≤ εn∗δ, problem

(1.1) has at least n∗ pairs of solutions uε, which satisfies the estimates (i) and (ii) in

Theorem 1.1.

Our paper is organized as follows. In Section 2, we describe the analytic setting where

we restate the problems in equivalent form by replacing ε2 with 1
λ other than the usual

scaling [1], because of the non-autonomy of nonlinearities. In Section 3, we show that

the corresponding energy functional satisfies the Cerami condition at the levels less than

α0λ
− 1

2 with some α0 > 0 independent of λ. Then, we construct minimax levels less than

δλ−
1
2 for all λ large enough in Section 4. We prove our main results in Section 5.

Notations:

1. The ordinary inner product between two vectors a, b ∈ R3 will be denoted by a · b.

2. C, C̃, ci denote generic constants, which may vary inside a chain of inequalities.

3. |u|p denotes the usual Lp(R3) norm (
∫
R3 |u|p dx)

1
p .

4. We use O(t), o(t) to mean |O(t)| ≤ C|t|, o(t)
t → 0 as t → 0; o(1) denotes quantities

that tend to 0 as |t| → ∞.
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2. An equivalent variational problem

We introduce the space

E =

{
u : u ∈ H1(R3) :

∫
R3

V (x)u2 <∞
}
,

which is a Banach space under the scalar product

〈v1, v2〉 =

∫
R3

∇v1∇v2 +

∫
R3

V (x)v1v2.

The norm induced by the product 〈·, ·〉 is

‖u‖ =
√
〈u, u〉, u ∈ H1(R3).

The space

D1,2(R3) =
{
u ∈ L2∗(R3) : ∇u ∈ L2(R3)

}
,

with the norm

‖u‖D1,2 =

(∫
R3

|∇u|2
) 1

2

.

By the assumption (V1), we know that the embedding E ↪→ H1(R3) is continuous

(see [8, 29]). Note that the norm ‖·‖ is equivalent to the one ‖·‖λ defined by

‖u‖λ =

(∫
R3

|∇u|2 + λ

∫
R3

V (x)u2

) 1
2

,

for each λ > 0. It is obvious that for each p ∈ [2, 2∗], there is cp > 0 such that if λ ≥ 1

(2.1) |u|p ≤ cp ‖u‖ ≤ cp ‖u‖λ .

It is well known that problem (1.1) can be reduced to a single equation with a nonlocal

term. Actually, for each u ∈ E ⊂ H1(R3), the Lax-Milgram theorem implies that there

exists a unique Φu ∈ D1,2(R3) such that −∆Φu = u2 and Φu can be represented by

(2.2) Φu(x) =
1

4π

∫
R3

u2(y)

|x− y|
dy.

Furthermore, one has ∫
R3

Φuu
2 ≤ c|u|412

5

,

where c > 0.

Substituting (2.2) into elliptic system (1.1), we can rewrite system (1.1) as the following

equivalent equation

(2.3) − ε2∆u+ V (x)u− ε2∆(u2)u+ Φuu = K(x)|u|22∗−2u+ h(x, u).
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Let λ = ε−2, then (2.3) becomes

(2.4) −∆u+ λV (x)u−∆(u2)u+ λΦuu = λK(x)|u|22∗−2u+ λh(x, u).

Denote

(2.5) g(x, u) = K(x)|u|22∗−2u+ h(x, u)

and

(2.6) G(x, u) =

∫ u

0
g(x, s) ds =

1

22∗
K(x)|u|22∗ +H(x, u).

We notice that the natural functional associated with (2.4)

Iλ(u) =
1

2

∫
R3

(1 + 2|u|2)|∇u|2 +
λ

2

∫
R3

V (x)|u|2 +
λ

4

∫
R3

Φu|u|2 − λ
∫
R3

G(x, u)

is not well defined in general in function space E. Because the presence of the second-order

nonhomogeneous term ∆(u2)u prevents us to work directly with the functional Iλ, which

is not well defined in general in H1(R3). The other difficulty in treating this equations is

the possible lack of compactness due to the unboundedness of the domain and the critical

exponent growth. To overcome these difficulties that have arisen from these features, we

apply an argument developed by Liu in [24] and Colin, Jeanjean in [6]. We make the

change of variables by v = f−1(u), where f is defined by

f ′(t) =
1

(1 + 2|f(t)|2)
1
2

on [0,+∞),

f(t) = −f(−t) on (−∞, 0].

Below we summarize the properties of f .

Lemma 2.1 (Lemma 2.3, [6,24]). The function f(t) and its derivative satisfy the following

properties:

(1) f is uniquely defined, C∞ and invertible;

(2) |f ′(t)| ≤ 1 for all t ∈ R;

(3) |f(t)f ′(t)| < 1 for all t ∈ R;

(4) |f(t)| ≤ |t| for all t ∈ R;

(5) f(t)
t → 1 as t→ 0;

(6) |f(t)| ≤ 2
1
4 |t|

1
2 for all t ∈ R;
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(7) f(t)
2 ≤ tf

′(t) ≤ f(t) for all t ≥ 0;

(8) f2(t)
2 ≤ f(t)f ′(t)t ≤ f2(t) for all t ∈ R;

(9) there exists a positive constant C such that

|f(t)| ≥

C|t|, if |t| ≤ 1,

C|t|
1
2 , if |t| ≥ 1.

Then, after the change of variables, we obtain the following functional

Jλ(v) := Iλ(f(v))

=
1

2

∫
R3

|∇v|2 +
λ

2

∫
R3

V (x)|f(v)|2 +
λ

4

∫
R3

Φf(v)|f(v)|2 − λ
∫
R3

G(x, f(v)),
(2.7)

which is well defined in the space E and belongs C1. Moreover, the critical points of Jλ

are the weak solutions of the Euler-Lagrange equation associated with the functional Jλ

given by

−∆v = λK(x)|f(v)|22∗−2f(v)f ′(v) + λh(x, f(v))f ′(v)− λV (x)f(v)f ′(v)

− λΦf(v)f(v)f ′(v).
(2.8)

Now we can restate Theorems 1.1 and 1.2 as follows:

Theorem 2.2. Let (V1), (V2), (K), (h1), (h2) and (h3) hold. Then for any δ > 0, there is

Λδ > 0 such that if λ ≥ Λδ, problem (2.8) has at least one nontrivial solution vλ satisfying:

(i)
1

24

∫
R3

K(x)|f(vλ)|22∗ +
µ− 4

4

∫
R3

H(x, f(vλ)) ≤ δλ−
3
2 , and

(ii)

(
1

2
− 1

µ

)∫
R3

(
|∇vλ|2 + λV (x)|f(vλ)|2

)
≤ δλ−

1
2 .

Theorem 2.3. Let (V1), (V2), (K), (h1), (h2) and (h3) hold, and h(x,−u) = −h(x, u).

Then for any n∗ ∈ N and δ > 0, there is Λn∗δ > 0 such that if λ ≥ Λn∗δ, problem (2.8) has

at least n∗ pairs of solutions vλ, which satisfies the estimates (i) and (ii) in Theorem 2.2.

3. Behaviors of Cerami sequences

Let E be a real Banach space and Jλ : E → R be a function of class C1. We say that

{vn} ⊂ E is a Cerami sequence at c ((C)c-sequence, for short) for Jλ if {vn} satisfies

Jλ(vn) → c and (1 + ‖vn‖λ)J ′λ(vn) → 0, as n → ∞. Jλ is said to satisfy the Cerami

condition if any Cerami sequence contains a convergent subsequence. The main result of

this section is the following compactness result.
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Lemma 3.1. Let (V1), (V2), (K), (h1), (h2) and (h3) hold. Let {vn} be a (C)c sequence

for Jλ. Then c ≥ 0 and {vn} is bounded in E.

Proof. In order to prove {vn} is bounded in E, we use the same argument in the proof of

Lemma 3.1 in [31], and we only need to prove (3.2), because other estimates are the same

as in [31].

Since {vn} ∈ E is a Cerami sequence for Jλ, we have

(3.1) Jλ(vn)− 1

µ
J ′λ(vn)vn = c+ o(1),

as n→∞. By (K), (h3) and Lemma 2.1(7), we have

Jλ(vn)− 1

µ
J ′λ(vn)vn

=
1

2

∫
R3

(
|∇vn|2 + λV (x)|f(vn)|2

)
+
λ

4

∫
R3

Φf(vn)|f(vn)|2

− λ
∫
R3

G(x, f(vn))− 1

µ

∫
R3

(
|∇vn|2 + λV (x)f(vn)f ′(vn)vn

)
− λ

µ

∫
R3

Φf(vn)f(vn)f ′(vn)vn +
λ

µ

∫
R3

g(x, f(vn))f ′(vn)vn

=
1

2

∫
R3

(
|∇vn|2 + λV (x)|f(vn)|2

)
+
λ

4

∫
R3

Φf(vn)|f(vn)|2

− λ

µ

∫
R3

Φf(vn)f(vn)f ′(vn)vn −
1

µ

∫
R3

(
|∇vn|2 + λV (x)f(vn)f ′(vn)vn

)
+ λ

∫
R3

(
1

µ
h(x, f(vn))f ′(vn)vn −H(x, f(vn))

)
+ λ

∫
R3

(
1

µ
K(x)|f(vn)|22∗−2f(vn)f ′(vn)vn −

1

22∗
K(x)|f(vn)|22∗

)
≥ 1

2

∫
R3

(
|∇vn|2 + λV (x)|f(vn)|2

)
+
λ

4

∫
R3

Φf(vn)|f(vn)|2

− λ

µ

∫
R3

Φf(vn)f(vn)f ′(vn)vn −
1

µ

∫
R3

(
|∇vn|2 + λV (x)f(vn)f ′(vn)vn

)
+ λ

∫
R3

(
1

2µ
− 1

22∗

)
K(x)|f(vn)|22∗

+ λ

∫
R3

(
1

2µ
h(x, f(vn))f(vn)−H(x, f(vn))

)
≥
(

1

2
− 1

µ

)∫
R3

(
|∇vn|2 + λV (x)|f(vn)|2

)
+ λ

(
1

4
− 1

µ

)∫
R3

Φf(vn)|f(vn)|2

≥
(

1

2
− 1

µ

)∫
R3

(
|∇vn|2 + λV (x)|f(vn)|2

)
.

(3.2)

From Lemma 3.1, we know that every Cerami sequence is bounded, hence, without

loss of generality, we may assume vn ⇀ v in E, Lr(R3) and L2∗(R3), vn → v in Ltloc(R3)

for 2 ≤ t < 2∗ and vn → v a.e. for x ∈ R3. Obviously, v is a critical point of Jλ.



418 Weiming Liu and Lu Gan

Lemma 3.2 (Lemma 3.2, [31]). Let s ∈ [2, 22∗), and {vn} be a bounded Cerami sequence.

Then there is a subsequence
{
vnj
}

such that, for each ε > 0, there exists rε > 0 such that

lim sup
j→∞

∫
Bj\Br

|f(vnj )|s ≤ ε,

for all r ≥ rε, where Bk =
{
x ∈ R3 : |x| ≤ k

}
.

For the proof of the above lemma, we refer the reader to [31].

Remark 3.3. From the proof of Lemma 3.2, we can find the same subsequence
{
vnj
}

such

that the result of Lemma 3.2 holds for both s = 2 and s = q.

Let η : [0,∞) → [0, 1] be a smooth function satisfying η(t) = 1 if t ≤ 1, η(t) = 0 if

t ≥ 2. Define

ṽj(x) = η

(
2|x|
j

)
v(x).

Clearly,

(3.3) ‖v − ṽj‖λ → 0 as j →∞.

Then we have the following lemma which was proved in [31].

Lemma 3.4 (Lemma 3.4, [31]). Let
{
vnj
}

be defined in Lemma 3.2. Then we have

lim
j→∞

∣∣∣∣∫
R3

(
h(x, f(vnj ))f

′(vnj )− h(x, f(vnj − ṽj))f ′(vnj − ṽj)− h(x, f(ṽj))f
′(ṽj)

)
φ

∣∣∣∣ = 0

uniformly in φ ∈ E with ‖φ‖λ ≤ 1.

Lemma 3.5. Let {vn} be defined in Lemma 3.2. Then we have

(i) Jλ(vn − ṽn)→ c− Jλ(v);

(ii) J ′λ(vn − ṽn)→ 0.

Proof.

Jλ(vn − ṽn) = Jλ(vn)− Jλ(ṽn) +
1

2

∫
R3

|∇vn −∇ṽn|2 +
1

2

∫
R3

|∇ṽn|2

− 1

2

∫
R3

|∇vn|2 +
λ

2

∫
R3

V (x)|f(vn − ṽn)|2

+
λ

2

∫
R3

V (x)|f(ṽn)|2 − λ

2

∫
R3

V (x)|f(vn)|2

+
λ

4

∫
R3

Φf(vn−ṽn)|f(vn − ṽn)|2 +
λ

4

∫
R3

Φf(ṽn)|f(ṽn)|2

− λ

4

∫
R3

Φf(vn)|f(vn)|2

+
λ

22∗

∫
R3

K(x)
(
|f(vn)|22∗ − |f(vn − ṽn)|22∗ − |f(ṽn)|22∗

)
+ λ

∫
R3

(H(x, f(vn))−H(x, f(vn − ṽn))−H(x, f(ṽn))) .

(3.4)



Solutions for Modified Schrödinger-Poisson System 419

From assumptions (h1), (h2), (h3) and Lemma 2.1, similar to the proof of Lemma 3.4, it

is not difficult to check that∫
R3

(H(x, f(vn))−H(x, f(vn − ṽn))−H(x, f(ṽn)))→ 0.

Since V (x) and K(x) are bounded, using Lemma 3.5 in [31] and Proposition 2.1 in [33],

we obtain ∫
R3

V (x)|f(vn − ṽn)|2 +

∫
R3

V (x)|f(ṽn)|2 −
∫
R3

V (x)|f(vn)|2 → 0,(3.5) ∫
R3

K(x)
(
|f(vn)|22∗ − |f(vn − ṽn)|22∗ − |f(ṽn)|22∗

)
→ 0(3.6)

and

(3.7)

∫
R3

Φf(vn−ṽn)|f(vn − ṽn)|2 +

∫
R3

Φf(ṽn)|f(ṽn)|2 −
∫
R3

Φf(vn)|f(vn)|2 → 0.

From (3.4) to (3.7), together the facts that Jλ(vn)→ c and Jλ(ṽn)→ Jλ(v) as n→∞,

we obtain Lemma 3.5(i). To prove (ii), note that, for any φ ∈ E,

J ′λ(vn − ṽn)φ

= J ′λ(vn)φ− J ′λ(ṽn)φ+

∫
R3

(∇(vn − ṽn) +∇ṽn −∇vn)∇φ

+ λ

∫
R3

V (x)
(
f(vn − ṽn)f ′(vn − ṽn) + f(ṽn)f ′(ṽn)− f(vn)f ′(vn)

)
φ

+ λ

∫
R3

(
Φf(vn−ṽn)f(vn − ṽn)f ′(vn − ṽn) + Φf(ṽn)f(ṽn)f ′(ṽn)− Φf(vn)f(vn)f ′(vn)

)
φ

+ λ

∫
R3

K(x)
(
|f(vn)|22∗−2f(vn)f ′(vn)

− |f(vn − ṽn)|22∗−2f(vn − ṽn)f ′(vn − ṽn)− |f(ṽn)|22∗−2f(ṽn)f ′(ṽn)
)
φ

+ λ

∫
R3

(
h(x, f(vn))f ′(vn)− h(x, f(vn − ṽn))f ′(vn − ṽn)− h(x, f(ṽn))f ′(ṽn)

)
φ.

Using Lemma 3.5 in [31] and Proposition 2.1 in [33], we induce I ′λ(un − ũn)→ 0.

Proposition 3.6. Assume that (V1), (V2), (K), (h1), (h2) and (h3) hold. Then there

exists a constant α0 > 0 independent of λ such that, for any Cerami sequence {vn} for

Jλ, either vn → v in E, or

c− Jλ(v) ≥ α0λ
− 1

2 .

Proof. Taking wn := vn − ṽn. Then vn − v = wn + (ṽn − v), and by (3.3), vn → v if and

only if wn → 0. From Lemma 3.5, we have Jλ(wn)→ c− Jλ(v) and J ′λ(wn)→ 0. By (h3)
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and Lemma 2.1(7), we have

Jλ(wn)− 1

4
J ′λ(wn)wn

=
1

2

∫
R3

(
|∇wn|2 + λV (x)|f(wn)|2

)
+
λ

4

∫
R3

Φf(wn)|f(wn)|2

− λ
∫
R3

G(x, f(wn))− 1

4

∫
R3

(
|∇wn|2 + λV (x)f(wn)f ′(wn)wn

)
− λ

4

∫
R3

Φf(wn)f(wn)f ′(wn)wn +
λ

4

∫
R3

g(x, f(wn))f ′(wn)wn

≥ λ
∫
R3

(
1

4
h(x, f(wn))f ′(wn)wn −H(x, f(wn))

)
+ λ

∫
R3

(
1

4
K(x)|f(wn)|22∗−2f(wn)f ′(wn)wn −

1

22∗
K(x)|f(wn)|22∗

)
≥ λ

∫
R3

(
1

4
K(x)|f(wn)|22∗−2f(wn)f ′(wn)wn −

1

22∗
K(x)|f(wn)|22∗

)
≥ λ

∫
R3

(
1

8
− 1

22∗

)
K(x)|f(wn)|22∗

≥ λK1

24

∫
R3

|f(wn)|22∗ .

(3.8)

Therefore,

(3.9) |f(wn)|22∗
22∗ ≤

24(c− Jλ(v))

λK1
+ o(1).

Now, using Lemma 3.6 in [31], we can complete the proof.

By Proposition 3.6, we get the following compactness result.

Corollary 3.7. Under the assumptions of Proposition 3.6, Jλ satisfies the Cerami con-

dition for all c < α0λ
− 1

2 .

4. The mountain-pass structure

In the sequel, we always assume λ ≥ 1. First of all, the following two lemmas are standard,

which imply that Jλ possesses the mountain-pass structure.

Lemma 4.1. Let (V1), (V2), (K), (h1), (h2) and (h3) hold. For each λ there is a closed

subset Sλ of E which disconnects (arcwise) E into distinct connected components E1 and

E2. Then the functional Jλ satisfies: 0 ∈ E1 and there is αλ such that Jλ|Sλ ≥ αλ > 0.

Proof. First note that, for each λ, Jλ(0) = 0. Now, for every ρ > 0, define

Sλ,ρ =

{
v ∈ E :

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
= ρ2

}
.
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Since the functional

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
is continuous, Sλ,ρ is a closed subset which

disconnects the space E.

By (h1), (h2), for any δ > 0, there exists Cδ > 0 such that∫
R3

H(x, f(v)) ≤ δ
∫
R3

|f(v)|2 + Cδ

∫
R3

|f(v)|2q.

From Lemma 2.1(4), we know |f(v)|, |f(v)|2 ∈ E. And since the embedding from E to

Ls(R3), 2 ≤ s ≤ 2∗, is continuous, we have∫
R3

|f(v)|2 ≤ C2
2

∫
R3

(
|∇f(v)|2 + λV (x)|f(v)|2

)
≤ C2

2

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
= C2

2ρ
2.

(4.1)

Taking 0 < τ < 1 such that q = τ+2∗(1−τ), by the Hölder inequality and the Sobolev

Embedding Theorem, we obtain∫
R3

|f(v)|2q ≤
(∫

R3

|f(v)|2
)τ (∫

R3

|f(v)|22∗
)1−τ

≤ 2
2∗(1−τ)

2

(∫
R3

|f(v)|2
)τ (∫

R3

|v|2∗
)1−τ

≤ 2
2∗(1−τ)

2 C2τ
2 ρ2τS

2∗(τ−1)
2

(∫
R3

|∇v|2
) 2∗(1−τ)

2

≤ 2
2∗(1−τ)

2 C2τ
2 ρ2τ+2∗(1−τ)S

2∗(τ−1)
2 .

(4.2)

Furthermore, since K(x) is bounded, by Lemma 2.1(6) and the Sobolev Embedding

Theorem, we get ∫
R3

K(x)|f(v)|22∗ ≤ 2
2∗
2 K2

∫
R3

|v|2∗

≤ 2
2∗
2 K2S

− 2∗
2

(∫
R3

|∇v|2
) 2∗

2

≤ 2
2∗
2 K2S

− 2∗
2 ρ2∗ .

(4.3)

From the above inequalities, we know that

Jλ(v) =
1

2

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
+
λ

4

∫
R3

Φf(v)|f(v)|2 − λ
∫
R3

G(x, f(v))

≥
(

1

2
− λδC2

2

)
ρ2 − λCδ2

2∗(1−τ)
2 C2τ

2 ρ2τ+2∗(1−τ)S
2∗(τ−1)

2 − λ

22∗
2

2∗
2 K2S

− 2∗
2 ρ2∗ ,

(4.4)

for every v ∈ Sλ,ρ. Since 2τ + 2∗(1 − τ) > 2, we conclude that there are αλ > 0 and ρλ

such that Jλ|Sλ ≥ αλ > 0.
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Lemma 4.2. Under the assumptions of Lemma 4.1, for any finite-dimensional subspace

F ⊂ E,

Jλ(v)→ −∞ as v ∈ F , ‖v‖λ →∞.

Proof. By (h3) and Lemma 2.1(4), we have

Jλ(v) =
1

2

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
+
λ

4

∫
R3

Φf(v)|f(v)|2 − λ
∫
R3

G(x, f(v))

≤ 1

2

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
+
λ

4

∫
R3

Φv|v|2 − λ
∫
R3

H(x, f(v))

≤ 1

2

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
+ C

λ

4
‖v‖4λ − λ

∫
R3

a0(|f(v)|2 + |f(v)|)l

≤ 1

2

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
+ C

λ

4
‖v‖4λ − λC

∫
R3

|v|l,

(4.5)

for all u ∈ E since all norms in a finite-dimensional space are equivalent and l > 4. This

completes the proof of Lemma 4.2.

By Lemma 4.1 and Lemma 4.2, if Jλ satisfies the Cerami condition for all c > 0, then

Theorem 2.2 follows from standard critical theory. However, in general, we do not know if

Jλ satisfies Cerami condition for c large. By Corollary 3.7, Jλ satisfies Cerami condition

for λ large and cλ sufficiently small. Therefore, we will find special finite-dimensional

subspaces by which we construct sufficiently small minimax levels.

Recall that

inf

{∫
R3

|∇φ|2 : φ ∈ C∞0 (R3) : |φ|r = 1

}
= 0, 2 < r < 2∗.

For any σ > 0, we can choose φσ ∈ C∞0 (R3) with |φσ|r = 1 and suppφσ ⊂ Brσ(0) so that

|∇φσ |22 < σ. Denote

(4.6) eλ(x) = φσ(λ
1
2x).

Then supp eλ ⊂ B
λ−

1
2 rσ

(0).

Observe that

Jλ(teλ) =
1

2

∫
R3

(
t2|∇eλ|2 + λV (x)|f(teλ)|2

)
+
λ

4

∫
R3

Φf(teλ)|f(teλ)|2 − λ
∫
R3

G(x, f(teλ))

≤ t2

2

∫
R3

(
|∇eλ|2 + λV (x)|eλ|2

)
+
λ

4
t4
∫
R3

Φeλ |eλ|2 − λ
∫
R3

H(x, f(teλ))

≤ t2

2

∫
R3

(
|∇eλ|2 + λV (x)|eλ|2

)
+
λ

4
t4
∫
R3

Φeλ |eλ|2 − λa0
∫
R3

(
|f(teλ)|2 + |f(teλ)|

)l
≤ t2

2

∫
R3

(
|∇eλ|2 + λV (x)|eλ|2

)
+
λ

4
t4
∫
R3

Φeλ |eλ|2 − λa0Cltl
∫
R3

|eλ|l

= λ−
1
2

(
t2

2

∫
R3

(
|∇φσ|2 + V (λ−

1
2x)|φσ|2

)
+
t4

4
λ−1

∫
R3

Φφσ
|φσ|2 − a0Cltl

∫
R3

|φσ|l
)

= λ−
1
2 Ψλ(tφσ),
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where Ψλ ∈ C1(E,R) defined by

Ψλ(v) =
1

2

∫
R3

(
|∇v|2 + V (λ−

1
2x)|v|2

)
+

1

4
λ−1

∫
R3

Φv|v|2 − a0C
l

∫
R3

|v|l.

Since l > 4, thus there exists finite number t0 ∈ [0,+∞) such that

max
t≥0

Ψλ(tφσ) =
t20
2

∫
R3

(
|∇φσ|2 + V (λ−

1
2x)|φσ|2

)
+
t40
4
λ−1

∫
R3

Φφσ |φσ|2 − a0C
ltl0

∫
R3

|φσ|l

≤ t20
2

∫
R3

(
|∇φσ|2 + V (λ−

1
2x)|φσ|2

)
+
t40
4
Cλ−1

(∫
R3

|φσ|
12
5

) 5
3

.

On the other hand, since V (0) = 0 and suppφσ ⊂ Brσ(0), there exists Λσ such that

V (λ−
1
2x) ≤ σ

|φσ|22
for all |x| ≤ rσ and λ ≥ Λσ,

and λ−1 < σ. Then

max
t≥0

Ψλ(tφσ) ≤ C̃σ.

Hence, for any λ ≥ Λσ,

(4.7) max
t≥0

Jλ(teλ) ≤ C̃σλ−
1
2 .

Therefore, we have the following lemma.

Lemma 4.3. Under the assumptions of Lemma 4.1, for any δ > 0 there exists Λδ > 0

such that, for each λ ≥ Λδ, there is eλ with ‖eλ‖ > ρλ, Jλ(eλ) ≤ 0 and

max
t≥0

Jλ(teλ) ≤ δλ−
1
2 ,

where ρλ is given by Lemma 4.1.

Proof. Choose σ > 0 so small that C̃σ ≤ δ, and let eλ ∈ E be the function defined by

(4.6). Take Λδ = Λσ. Let tλ > 0 be such that tλ ‖eλ‖λ > ρλ and Jλ(teλ) ≤ 0 for all t ≥ tλ.

Let eλ := tλeλ. Then, by (4.7), we know the conclusion of Lemma 4.3 holds.

For any n∗ ∈ N, we can choose n∗ functions φjσ ∈ C∞0 (R3) with |φjσ|r = 1 and suppφjσ∩
suppφkσ = ∅, j 6= k so that |∇φjσ|22 < σ. Let rn

∗
σ > 0 be such that suppφjσ ⊂ Brn∗σ (0) for

j = 1, 2, . . . , n∗. Let

(4.8) ejλ(x) = φjσ(λ
1
2x) for j = 1, 2, . . . , n∗

and

Hn∗
λσ = span

{
e1
λ, . . . , e

n∗
λ

}
.
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Observe that for each

v =

n∗∑
j=1

cje
j
λ ∈ H

n∗
λσ ,

we have

Jλ(v) ≤ C
n∗∑
j=1

Jλ(cje
j
λ),

for some constant C > 0. By the similar argument as before, we know that

Jλ(cje
j
λ) ≤ λ−

1
2 Ψλ(|cj |ejλ).

Denote

βσ := max
{
|φjσ|22 | j = 1, 2, . . . , n∗

}
,

and choose Λn∗σ such that

V (λ−
1
2x) ≤ σ

βσ
for all |x| ≤ rn∗

σ and λ ≥ Λn∗σ.

Similarly, we have

(4.9) max
u∈Hn∗

λσ

Jλ(v) ≤ C̃σλ−
1
2 ,

for all λ ≥ Λn∗σ.

Using this estimate, we have the following lemma.

Lemma 4.4. Under the assumptions of Lemma 4.1, for any n∗ ∈ N and δ > 0 there

exists Λn∗δ > 0 such that, for each λ ≥ Λn∗δ, there exists an n∗-dimensional subspace

Fλn∗ satisfying

max
u∈Fλn∗

Jλ(v) ≤ δλ−
1
2 .

Proof. Choose σ > 0 so small that C̃σ ≤ δ, and take Fλn∗ = Hn∗
λσ . From (4.9), we know

that Lemma 4.4 holds.

5. The proofs of our main results

Now, we are in the position to prove our main results.

Proof of Theorem 2.2. Consider the functional Jλ. For any 0 < δ < α0, by Lemma 4.3 we

choose Λδ and define for λ ≥ Λδ the minimax value

cλ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(teλ),
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where

Γλ := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = eλ} .

It follows from Lemma 4.1 and (4.9) that

αλ ≤ cλ ≤ δλ−
1
2 .

Since by Corollary 3.7, Jλ satisfies the Cerami condition, the mountain-pass theorem

implies that there is vλ ∈ E such that J ′λ(vλ) = 0 and Jλ(vλ) = cλ. From the elliptic

regularity theory, we know vλ is of C2. Then we know that u = f(vλ) must solve equation

(2.4).

Because vλ is a critical point of Jλ, for ν ∈ [2, 2∗],

δλ−
1
2 ≥ Jλ(vλ) = Jλ(vλ)− 1

ν
J ′λ(vλ)vλ

=
1

2

∫
R3

(
|∇vλ|2 + λV (x)|f(vλ)|2

)
+
λ

4

∫
R3

Φf(vλ)|f(vλ)|2 − λ
∫
R3

G(x, f(vλ))

− 1

ν

∫
R3

(
|∇vλ|2 + λV (x)f(vλ)f ′(vλ)vλ

)
− λ

ν

∫
R3

Φf(vλ)f(vλ)f ′(vλ)vλ

+
λ

ν

∫
R3

g(x, f(vλ))f ′(vλ)vλ

≥
(

1

2
− 1

ν

)∫
R3

(
|∇vλ|2 + λV (x)|f(vλ)|2

)
+ λ

(
1

4
− 1

ν

)∫
R3

Φf(vλ)|f(vλ)|2|f(vλ)|2

+ λ

(
1

2ν
− 1

22∗

)∫
R3

K(x)|f(vλ)|22∗ + λ
(µ
ν
− 1
)∫

R3

H(x, f(vλ)),

where µ is the constant in (h3). Taking ν = µ, we obtain(
1

2
− 1

µ

)∫
R3

(
|∇vλ|2 + λV (x)|f(vλ)|2

)
≤ δλ−

1
2

and taking ν = 4 we obtain

1

24

∫
R3

K(x)|f(vλ)|22∗ +
µ− 4

4

∫
R3

H(x, f(vλ)) ≤ δλ−
3
2 .

Proof of Theorem 2.3. Using Lemma 4.4, for any n∗ ∈ N and δ ∈ [0, α0] there is Λn∗δ

such that for each λ ≥ Λn∗δ, we can choose n∗-dimensional subspace Fλn∗ with max

Jλ(Fλn∗) ≤ δλ−
1
2 .

Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets of E

by Σ. Let gen(Z) be the Krasnoselski genus and let

i(Z) := min
h∈Γn∗

gen(h(Z) ∩ Sλ),

where Γn∗ is the set of all odd homeomorphisms h ∈ C(E,E) and Sλ is the closed sym-

metric set

Sλ =

{
v ∈ E :

∫
R3

(
|∇v|2 + λV (x)|f(v)|2

)
= ρ2

}
,
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such that Jλ|Sλ ≥ αλ > 0. Then, i is a version of Benci’s pseudo-index [4]. Let

cλj := inf
i(Z)≥j

sup
v∈Z

Jλ(v), 1 ≤ j ≤ n∗.

Because by Lemma 4.1, we know that Jλ|Sλ(v) ≥ αλ > 0 and since i(Fλn∗) = dimFλn∗ =

n∗,

αλ ≤ cλ1 ≤ · · · ≤ cλn∗ ≤ sup
v∈Fλn∗

Jλ(v) ≤ δλ−
1
2 .

By Corollary 3.7, Jλ satisfies the Cerami condition at all level cλj , j = 1, 2, . . . , n∗. By the

usual critical point theory, all cλj , j = 1, 2, . . . , n∗, are critical levels, and Jλ has at least

n∗ pairs of nontrivial critical points satisfying

αλ ≤ Jλ(vλ) ≤ δλ−
1
2 .

Therefore, (2.8) has at least n∗ pairs of solutions and u = f(vλ) must solve the problem

(2.4).
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